Research on a Small-Sample Fault Diagnosis Method for UAV Engines Based on an MSSST and ACS-BPNN Optimized Deep Convolutional Network
Abstract
:1. Introduction
- Two-dimensional images can represent data information from multiple angles, and the information represented by one-dimensional signals is not comprehensive.
- The image is easier to distinguish. Through the time-frequency conversion method, the one-dimensional signal is converted into a two-dimensional time-frequency map. Through the intelligent classification method, the classification and recognition can be more intuitive.
- (a)
- Using the current experimental environment, the preset fault experiment of the UAV engine is carried out, and the vibration signal of the UAV engine in a typical fault status is collected.
- (b)
- The one-dimensional vibration signal of the UAV engine is transformed into a time-frequency map by MSSST, and the time dependence of the vibration signal is mapped into the image feature space, so that the original feature information is retained in the time-frequency map as much as possible. Then, the deep learning network trained by small-sample transfer learning is used to automatically extract the temporal and spatial features in the image and complete the fault status recognition of small samples.
- (c)
- The feasibility and effectiveness of the proposed fault diagnosis method for the UAV engine are verified by the measured data of the UAV engine.
2. Relevant Theories
2.1. Time-Frequency Image Conversion Based on MSSST
2.1.1. Synchronous Compression S-Transform
2.1.2. Multiple Simultaneous Squeezing S-Transform
2.2. Transfer Learning
2.3. Convolutional Network Model
2.4. Agent Model
2.4.1. Cuckoo Algorithm and Its Improvement
- (a)
- Cuckoos lay one egg at a time and parasitize a random host nest.
- (b)
- Only the finest eggs are kept for the next generation.
- (c)
- The number of nests is fixed, and is the probability that a parasitized bird’s egg is found. Once a parasitized bird egg is found and discarded, the cuckoo then flies throughout the search space, Lévy generating a new nest-finding path, and re-lays the egg.
2.4.2. Adaptive Cuckoo Search (ACS) Algorithm
- (a)
- Improvements in step length ratios
- (b)
- Improvement in host detection probability.
2.4.3. Back Propagation Neural Network (BPNN)
2.4.4. Agent Model of Adaptive Cuckoo Search Algorithm—BPNN
- (a)
- Parameter setting. the number of nests, n, the maximum breeding algebra, , the upper and lower boundaries of the solution, Ub and Lb, the initial and final step sizes, and , and the initial and final host discovery rates, and are set.
- (b)
- Initializing the solution. Solution A in each nest is initialized.
- (c)
- Lévy flight. Lévy flight is implemented for Solution A to generate Solution B.
- (d)
- Discovery. The host discovers partial Solution B according to probability . For the discovered part, it is randomly generated again to form a new solution, B.
- (e)
- Mix. The fitness values of Solution B and Solution A are compared, recording the medium and excellent Solution B in A, forming a new solution, still recording as A, and recording the current optimal solution best and optimal fitness .
- (f)
- Determination of whether to terminate. If multiplication algebra reaches G, the optimal solution best and optimal fitness are output, and the calculation is completed; otherwise, Step (c) is repeated and multiplication continues.
2.4.5. Analysis of Algorithm Improvement Effect
3. Fault Diagnosis Algorithm Flow
- (a)
- UAV engine fault presetting experiments are conducted to collect and preprocess the vibration signals in the fault state;
- (b)
- The acquired vibration signals are converted into three-channel color time-frequency image samples by the MSSST and divided into the training set, the test set, and the validation set according to a certain ratio;
- (c)
- A pre-trained ResNet-18 network model on the ImageNet image set is used as the base migration model;
- (d)
- The learning rate of all network layers with parameter space before the last fully connected layer of the binary convolutional network is set to zero, i.e., these network layers are frozen and only the parameter-initialized connected layer of the last fully connected layer is retained in order to learn the classification features of UAV engine fault samples;
- (e)
- After training the network using the training set to obtain better training accuracy, the hyperparameters of the two types of convolutional networks are autonomously optimized using the ACS-BPNN agent model;
- (f)
- Two types of convolutional networks are trained using optimized hyperparameters and the trained networks are used to classify the test samples for fault diagnosis.
4. Experimental Data Collection and Description
- (a)
- Simulation of the four-cylinder engine does not inject fuel (injector failure).
- (b)
- Simulation of the four-cylinder engine does not work (spark plug connector abnormal).
- (c)
- Low voltage on the analog engine supply.
- (d)
- Simulation of disconnecting the A ignition (disconnecting one-way ignition).
- (e)
- The engine is in a normal working condition.
- (a)
- SSST-CS-BPNN-ResNet-18;
- (b)
- MSSST-CS-BPNN-ResNet-18;
- (c)
- SSST-ACS-BPNN-ResNet-18;
- (d)
- MSSST-ACS-BPNN-ResNet-18.
5. Conclusions
- (a)
- The vibration signals of the UAV engine under different fault statuses are collected by vibration sensors, and the vibration signals are converted into time-frequency diagrams using MSSST as inputs to the fault diagnosis model, and this feature extraction method minimizes the disturbing factors of human-selected features.
- (b)
- The CS algorithm, i.e., the ACS algorithm, is improved, which effectively enhances the intelligence of the algorithm and further improves its global optimization capability. The combination of the ACS algorithm and the BPNN model is used for the hyperparameter autonomous optimization of convolutional network ResNet-18. It is experimentally verified that the proposed method can effectively diagnose the faults of UAV engines under small-sample conditions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Guo, H.; Wang, J.; Wang, L. Predicting the Health Status of an Unmanned Aerial Vehicles Data-Link System Based on a Bayesian Network. Sensors 2018, 18, 3916. [Google Scholar] [CrossRef]
- He, Y.; Peng, Y.; Wang, S.; Liu, D.; Leong, P.H.W. A Structured Sparse Subspace Learning Algorithm for Anomaly Detection in UAV Flight Data. IEEE Trans. Instrum. Meas. 2018, 67, 90–100. [Google Scholar] [CrossRef]
- Cabahug, J.; Eslamiat, H. Failure Detection in Quadcopter UAVs Using K-Means Clustering. Sensors 2022, 22, 6037. [Google Scholar] [CrossRef] [PubMed]
- Velidi, G.; Yoo, C.S. A Review on Flame Stabilization Technologies for UAV Engine Micro-Meso Scale Combustors: Progress and Challenges. Energies 2023, 16, 3968. [Google Scholar] [CrossRef]
- Wu, C.; Jiang, P.; Ding, C.; Feng, F.; Chen, T. Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network. Comput. Ind. 2019, 108, 53–61. [Google Scholar] [CrossRef]
- Tang, M.; Wu, Y.; Zhou, N. Audio Signal Separation for Unmanned Aerial Vehicle Engines Driving in Under-definite Conditions. Noise Vib. Control. 2022, 42, 127–131. [Google Scholar]
- Ye, H.; Luo, Q.; Li, Y. Application of Wavelet and Multi-Kernel SVM Methods for Fault Diagnosis of UVA Sensors. Electron. Meas. Technol. 2014, 37, 112–116. [Google Scholar] [CrossRef]
- Li, Y.; Du, X.; Wan, F.; Wang, X.; Yu, H. Rotating machinery fault diagnosis based on convolutional neural network and infrared thermal imaging. Chinese J. Aeronaut. 2020, 33, 427–438. [Google Scholar] [CrossRef]
- Dey, D.; Chatterjee, B.; Dalai, S.; Munshi, S.; Chakravorti, S. A deep learning framework using convolution neural network for classification of impulse fault patterns in transformers with increased accuracy. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3894–3897. [Google Scholar] [CrossRef]
- Hoang, D.-T.; Kang, H.-J. A survey on Deep Learning based bearing fault diagnosis. Neurocomputing 2019, 335, 327–335. [Google Scholar] [CrossRef]
- Ma, Y.; Xie, Z.; Chen, M.; Chang, G. Structural Fault Diagnosis of Unmanned Aerial Vehicles Based on Convolutional Neural Networks. J. Binzhou Coll. 2023, 39, 24–28. [Google Scholar] [CrossRef]
- Ma, Y.; Mustapha, F.; Ishak, M.R.; Rahim, S.A.; Mustapha, M. Structural fault diagnosis of UAV based on convolutional neural network and data processing technology. Nondestruct. Test. Eval. 2023. [Google Scholar] [CrossRef]
- Jack, N.; Iskandar, B.P.; Murthy, D.N.P. A repair-replace strategy based on usage rate for items sold with a two-dimensional warranty. Reliab. Eng. Syst. Saf. 2009, 94, 611–617. [Google Scholar] [CrossRef]
- Thillainayagi, R.; Kumar, K.S. Bi-dimensional Empirical Mode Decomposition Based Contrast Enhancement Technique for UAV Thermal Images. IETE J. Res. 2022, 68, 630–637. [Google Scholar] [CrossRef]
- Bahoura, M.; Simard, Y. Blue whale calls classification using short-time Fourier and wavelet packet transforms and artificial neural network. Digit. Signal Process. 2010, 20, 1256–1263. [Google Scholar] [CrossRef]
- Du, J.; Li, X.; Gao, Y.; Gao, L. Integrated Gradient-Based Continuous Wavelet Transform for Bearing Fault Diagnosis. Sensors 2022, 22, 8760. [Google Scholar] [CrossRef] [PubMed]
- Elbouchikhi, E.; Choqueuse, V.; Amirat, Y.; Benbouzid, M.E.H.; Turri, S. An Efficient Hilbert–Huang Transform-Based Bearing Faults Detection in Induction Machines. IEEE Trans. Energy Convers. 2017, 32, 401–413. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Y.; Li, S. Demodulated Multisynchrosqueezing S Transform for Fault Diagnosis of Rotating Machinery. IEEE Sens. J. 2022, 22, 20773–20784. [Google Scholar] [CrossRef]
- Lin, R.; Liu, Z.; Jin, Y. Instantaneous frequency estimation for wheelset bearings weak fault signals using second-order synchrosqueezing S-transform with optimally weighted sliding window. Isa Trans. 2021, 115, 218–233. [Google Scholar] [CrossRef]
- Li, C.; Zhang, S.; Qin, Y.; Estupinan, E. A systematic review of deep transfer learning for machinery fault diagnosis. Neurocomputing 2020, 407, 121–135. [Google Scholar] [CrossRef]
- Guc, F.; Chen, Y. Sensor Fault Diagnostics Using Physics-Informed Transfer Learning Framework. Sensors 2022, 22, 2913. [Google Scholar] [CrossRef] [PubMed]
- Misbah, I.; Lee, C.K.M.; Keung, K.L. Fault diagnosis in rotating machines based on transfer learning: Literature review. Knowl.-Based Syst. 2024, 283, 111158. [Google Scholar] [CrossRef]
- Zhao, K.; Di, S.; Li, S.; Liang, X.; Zhai, Y.; Chen, J.; Ouyang, K.; Cappello, F.; Chen, Z. FT-CNN: Algorithm-Based Fault Tolerance for Convolutional Neural Networks. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 1677–1689. [Google Scholar] [CrossRef]
- Hong, L.; Li, H.; Fu, J. A novel surrogate-model based active learning method for structural reliability analysis. Comput. Method. Appl. Mech. 2022, 394, 114835. [Google Scholar] [CrossRef]
- Shirzadeh, M.; Amirkhani, A.; Tork, N.; Taghavifar, H. Trajectory tracking of a quadrotor using a robust adaptive type-2 fuzzy neural controller optimized by cuckoo algorithm. Isa Trans. 2021, 114, 171–190. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Li, H.; Zhang, G.; Li, C.; Man, J.; Xiao, M. Rolling Bearing Fault Diagnosis Method Based on Parallel QPSO-BPNN Under Spark-GPU Platform. IEEE Access 2021, 9, 56786–56801. [Google Scholar] [CrossRef]
- Zheng, X.; Feng, Z.; Lei, Z.; Chen, L. LW-BPNN: A Novel Feature Extraction Method for Rolling Bearing Fault Diagnosis. Processes 2023, 11, 3351. [Google Scholar] [CrossRef]
- Sundarraj, S.; Reddy, R.V.K.; Babu, B.M.; Lokesh, G.H.; Flammini, F.; Natarajan, R. Route Planning for an Autonomous Robotic Vehicle Employing a Weight-Controlled Particle Swarm-Optimized Dijkstra Algorithm. IEEE Access 2023, 11, 92433–92442. [Google Scholar] [CrossRef]
- Singh, P. Enhancing Performance of Hybrid Electric Vehicle using Optimized Energy Management Methodology. Int. J. Data Inform. Intell. Comput. 2023, 2, 1–10. [Google Scholar] [CrossRef]
Function Name | Function Expression | Parameter Value Range | Theoretical Optimal Solution (Minimum Value) |
---|---|---|---|
Goldstein and Price | [−2, 2] | 3 | |
Branin | [−5, 15] | 0.397887 | |
Schaffer F6 | [−100, 100] | −1 | |
Rastrigin | [−5.12, 5.12] | 0 | |
Michalewicz | [0, π] | −4.6877 (if D = 5) | |
Schwefel | [−500, 500] | 0 |
Test Function—Dimension | f1—2 | f2—2 | f3—2 | f4—5 | f5—5 | f6—5 | |
---|---|---|---|---|---|---|---|
Algorithm Index | |||||||
PSO | BE | 1.510 × 10−6 | 5.275 × 10−7 | 3.860 × 10−3 | 0.007 | 1.512 | 398.4 |
WE | 0.301 | 2.308 | 4.595 × 10−2 | 5.970 | 2.901 | 978.4 | |
AE | 4.866 × 10−2 | 2.311 × 10−2 | 1.622 × 10−2 | 2.127 | 2.286 | 700.7 | |
GA | BE | 6.490 × 10−7 | 3.773 × 10−7 | 1.072 × 10−3 | 0.337 | 0.215 | 1.233 |
WE | 27.00 | 2.436 × 10−2 | 3.725 × 10−2 | 8.839 | 1.329 | 503.4 | |
AE | 0.271 | 4.249 × 10−4 | 1.127 × 10−2 | 3.509 | 0.725 | 238.9 | |
CS | BE | 1.151 × 10−6 | 3.686 × 10−7 | 3.301 × 10−5 | 0.007 | 0.199 | 1.121 |
WE | 3.957 × 10−2 | 6.171 × 10−4 | 9.716 × 10−3 | 2.587 | 1.445 | 270.2 | |
AE | 2.342 × 10−3 | 1.880 × 10−4 | 7.199 × 10−3 | 0.895 | 0.685 | 59.21 | |
ACS | BE | 1.337 × 10−8 | 2.295 × 10−7 | 0 | 0 | 0.162 | 0.731 |
WE | 0.144 | 5.217 × 10−4 | 0 | 0 | 1.029 | 125.7 | |
AE | 1.759 × 10−3 | 1.009 × 10−4 | 0 | 0 | 0.356 | 21.15 |
Type | Parameter | Category | Parameter |
---|---|---|---|
Bore | 79.5 mm | Weight | 75.0 kg |
Piston stroke | 60 mm | Maximum continuous speed | 5500 r/min |
Number of cylinders | 4 | MCR | 1250 hPa |
Methodologies | Accuracy |
---|---|
SSST-CS-BPNN-ResNet-18 | 93.5028 |
MSSST-CS-BPNN-ResNet-18 | 95.3642 |
SSST-ACS-BPNN-ResNet-18 | 96.0625 |
MSSST-ACS-BPNN-ResNet-18 | 97.1751 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Liu, Z.; Yan, Y.; Han, K.; Han, Y.; Miao, X.; Cheng, Z.; Ma, S. Research on a Small-Sample Fault Diagnosis Method for UAV Engines Based on an MSSST and ACS-BPNN Optimized Deep Convolutional Network. Processes 2024, 12, 367. https://doi.org/10.3390/pr12020367
Li S, Liu Z, Yan Y, Han K, Han Y, Miao X, Cheng Z, Ma S. Research on a Small-Sample Fault Diagnosis Method for UAV Engines Based on an MSSST and ACS-BPNN Optimized Deep Convolutional Network. Processes. 2024; 12(2):367. https://doi.org/10.3390/pr12020367
Chicago/Turabian StyleLi, Siyu, Zichang Liu, Yunbin Yan, Kai Han, Yueming Han, Xinyu Miao, Zhonghua Cheng, and Shifei Ma. 2024. "Research on a Small-Sample Fault Diagnosis Method for UAV Engines Based on an MSSST and ACS-BPNN Optimized Deep Convolutional Network" Processes 12, no. 2: 367. https://doi.org/10.3390/pr12020367
APA StyleLi, S., Liu, Z., Yan, Y., Han, K., Han, Y., Miao, X., Cheng, Z., & Ma, S. (2024). Research on a Small-Sample Fault Diagnosis Method for UAV Engines Based on an MSSST and ACS-BPNN Optimized Deep Convolutional Network. Processes, 12(2), 367. https://doi.org/10.3390/pr12020367