Bioenergy and Biopesticides Production in Serbia—Could Invasive Alien Species Contribute to Sustainability?
Abstract
:1. Introduction
2. Research Methodology
3. Biowaste in the Context of Sustainable Development, Circular Economy and Invasive Alien Species Utilization
4. Current Status and Potential for Bioenergy and Biopesticides Production in Serbia
4.1. Biomass, Liquid Biofuels and Biogas
4.2. Biopesticides
5. Invasive Alien Species in the Urban Environment—The Allies of the Cities’ Sustainable Development
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, M.; Sun, H.; Gao, M.; Wang, Q.; Wu, C. Bioconversion of biowaste into renewable energy and resources: A sustainable strategy. Environ. Res. 2022, 214, 113929. [Google Scholar] [CrossRef]
- Behrooznia, L.; Sharifi, M.; Hosseinzadeh-Bandbafha, H. Comparative life cycle environmental impacts of two scenarios for managing an organic fraction of municipal solid waste in Rasht-Iran. J. Clean. Prod. 2020, 268, 122217. [Google Scholar] [CrossRef]
- Akbi, A.; Saber, M.; Aziza, M.; Yassaa, N. An overview of sustainable bioenergy potential in Algeria. Renew. Sustain. Energy Rev. 2017, 72, 240–245. [Google Scholar] [CrossRef]
- Shah, A.V.; Singh, A.; Sabyasachi Mohanty, S.; Kumar Srivastava, V.; Varjani, S. Organic solid waste: Biorefinery approach as a sustainable strategy in circular bioeconomy. Bioresour. Technol. 2022, 349, 126835. [Google Scholar] [CrossRef]
- Vyas, S.; Prajapati, P.; Shah, A.V.; Varjani, S. Municipal solid waste management: Dynamics, risk assessment, ecological influence, advancements, constraints and perspectives. Sci. Total Environ. 2022, 814, 152802. [Google Scholar] [CrossRef] [PubMed]
- Chilakamarry, C.R.; Mimi Sakinah, A.M.; Zularisam, A.W.; Sirohi, R.; Khilji, I.A.; Ahmad, N.; Pandey, A. Advances in solid-state fermentation for bioconversion of agricultural wastes to value-added products: Opportunities and challenges. Bioresour. Technol. 2022, 343, 126065. [Google Scholar] [CrossRef]
- Aniza, R.; Chen, W.H.; Petrissans, A.; Hoang, T.A.; Ashokkumar, V.; Petrissans, M. A review of biowaste remediation and valorization for environmental sustainability: Artificial intelligence approach. Environ. Pollut. 2023, 324, 121363. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, A. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers. Manag. 2008, 49, 2106–2116. [Google Scholar] [CrossRef]
- Williams, C.L.; Dahiya, A.; Porter, P. Introduction to bioenergy. In Bioenergy; Dahiya, A., Ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 5–36. [Google Scholar]
- Đurišić-Mladenović, L.N.; Predojević, J.Z.; Škrbić, D.B. Conventional and advanced liquid biofuels. Chem. Ind. 2016, 70, 225–241. [Google Scholar] [CrossRef]
- Kundariya, N.; Mohanty, S.S.; Varjani, S.; Hao Ngo, H.W.C.; Wong, J.; Taherzadeh, M.J.; Chang, J.S.; Yong Ng, H.; Kim, S.H.; Bui, X.T. A review on integrated approaches for municipal solid waste for environmental and economical relevance: Monitoring tools, technologies, and strategic innovations. Bioresour. Technol. 2021, 342, 125982. [Google Scholar] [CrossRef]
- Dar, S.A.; Khan, Z.H.; Khan, A.A.; Ahmad, S.B. Biopesticides–Its Prospects and Limitations: An Overview. In Perspective in Animal Ecology and Reproduction; Astral International (P) Ltd.: New Delhi, India, 2019; pp. 296–314. [Google Scholar]
- Rajput, V.S.; Jhala, J.; Acharya, V.S. Biopesticides and their mode of action against insect pests: A review. Int. J. Chem. Stud. 2020, 8, 2856–2862. [Google Scholar] [CrossRef]
- Axon, C.J.; Darton, R.C. Sustainability and risk—A review of energy security. Sustain. Prod. Consum. 2021, 27, 1195–1204. [Google Scholar] [CrossRef]
- Schyns, J.F.; Vanham, D. The Water Footprint of Wood for Energy Consumed in the European Union. Water 2019, 11, 206. [Google Scholar] [CrossRef]
- Fingerman, K.R.; Nabuurs, G.J.; Iriarte, L.; Fritsche, U.R.; Staritsky, I.; Visser, L.; Mai-Moulin, T.; Junginger, M. Opportunities and risks for sustainable biomass export from the south-eastern United States to Europe. Biofuel Bioprod. Biorefining 2019, 13, 281–292. [Google Scholar] [CrossRef]
- Hansson, J.; Berndes, G.; Englund, O.; De Freitas, F.L.; Sparovek, G. How is biodiversity protection influencing the potential for bioenergy feedstock production on grasslands? Bioenergy 2019, 11, 517–538. [Google Scholar] [CrossRef]
- Corona, B.; Shen, L.; Reike, D.; Carreón, J.R.; Worrell, E. Towards sustainable development through the circular economy—A review and critical assessment on current circularity metrics. Resour. Conserv. Recycl. 2019, 151, 104498. [Google Scholar] [CrossRef]
- Popp, J.; Lakner, Z.; Harangi-Rákos, M.; Fari, M. The effect of bioenergy expansion: Food, energy, and environment. Renew. Sustain. Energy Rev. 2014, 32, 559–578. [Google Scholar] [CrossRef]
- Chakravorty, U.; Hubert, M.H.; Nøstbakken, L. Fuel versus food. Ann. Rev. Resour. Econ. 2009, 1, 645–663. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Gerbens-Leenes, P.W.; Vander Meer, T.H. The water footprint of bio-energy. In Climate Change and Water: International Perspectives on Mitigation and Adaptation; Howe, C.J., Smith, B., Henderson, J., Eds.; American Water Works Association: Denver, CO, USA; IWA Publishing: London, UK, 2010; pp. 81–95. [Google Scholar]
- UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development, 21 October 2015; United Nations General Assembly: New York, NY, USA, 2015. [Google Scholar]
- Al, A.R.; Bikić, S.; Radojčin, M. Bioenergy conversion technologies: A review and case study. J. Process. Energy Agric. 2023, 27, 30–38. [Google Scholar] [CrossRef]
- Semenčenko, D.; Semenčenko, V.; Mosurović Ružičić, M. Development in Renewable Energy Production in Serbia with the Emphasis on Bioethanol. In New Business Models and Sustainable Competitiveness: Symposium Proceedings; Marković, A., Barjaktarović Rakočević, S., Eds.; Faculty of Organizational Sciences: Belgrade, Serbia, 2014; pp. 1642–1648. [Google Scholar]
- Lovrić, N.; Ostoić, S.K.; Vuletić, D.; Stevanov, M.; Đorđević, I.; Stojanovski, V.; Curman, M. The future of the forest-based bioeconomy in selected southeast European countries. Futures 2021, 128, 102725. [Google Scholar] [CrossRef]
- Janevski, J.N.; Stojanović, B.V.; Laković, M.S.; Stojiljković, M.M.; Mitrović, D.M. Wood biomass in Serbia–Resources and possibilities of use. Energy Sources Part B Econ. Plan. Policy 2016, 11, 732–738. [Google Scholar] [CrossRef]
- Prvulovic, S.; Josimovic, L.; Matic, M.; Tolmac, D.; Radovanovic, L. Resource potential and scope of the use of renewable energy sources in Serbia. Energy Sources Part B Econ. Plan. Policy 2016, 11, 901–910. [Google Scholar] [CrossRef]
- Vukelić, I.; Milošević, S.; Đurđević, D.; Racić, G.; Tot, V. Sustainable transition of the Republic of Serbia: Measuring capacity for circularity in agriculture and rural areas. Energy Sustain. Soc. 2023, 13, 34. [Google Scholar] [CrossRef]
- Pušić, M.; Narandžić, T.; Ostojić, J.; Grubač, M.; Ljubojević, M. Assessment and potential of ecosystem services of ornamental dendroflora in public green areas. Environ. Sci. Pollut. Res. 2023, 30, 2850–2865. [Google Scholar] [CrossRef]
- Ljubojević, M.; Tomić, M.; Simikić, M.; Savin, L.; Narandžić, T.; Pušić, M.; Grubač, M.; Vejnović, S.; Marinković, M. Koelreuteria paniculata invasiveness, yielding capacity and harvest date influence on biodiesel feedstock properties. J. Environ. Manag. 2021, 25, 113102. [Google Scholar] [CrossRef] [PubMed]
- Constable, C.E. (Ed.) Preface to Transitioning to Affordable and Clean Energy. In Transitioning to Affordable and Clean Energy; Transitioning to Sustainability Series 7; MDPI: Basel, Switzerland, 2022; pp. 1–3. [Google Scholar]
- Ljubojević, M.; Narandžić, T.; Ostojić, J.; Božanić Tanjga, B.; Grubač, M.; Kolarov, R.; Greksa, A.; Pušić, M. Rethinking Horticulture to Meet Sustainable Development Goals—The Case Study of Novi Sad, Serbia. Horticulturae 2022, 8, 1222. [Google Scholar] [CrossRef]
- Krellenberg, K.; Bergsträßer, H.; Bykova, D.; Kress, N.; Tyndall, K. Urban sustainability strategies guided by the SDGs—A tale of four cities. Sustainability 2019, 11, 1116. [Google Scholar] [CrossRef]
- Vijay, V.; Chandra, R.; Subbarao, P.M.V. Biomass as a means of achieving rural energy self-sufficiency: A concept. Built Environ. Proj. Asset Manag. 2021, 12, 382–400. [Google Scholar] [CrossRef]
- Korhonen, J.; Nuur, C.; Feldmann, A.; Birkie, S.E. Circular economy as an essentially contested concept. J. Clean Prod. 2018, 175, 544–552. [Google Scholar] [CrossRef]
- Kakwan, S.N.; Kalbar, P.P. Review of Circular Economy in urban water sector: Challenges and opportunities in India. J. Environ. Manag. 2020, 271, 111010. [Google Scholar] [CrossRef]
- Kumar, S.S.; Kumar, V.; Kumar, R.; Malyan, S.K.; Pugazhendhi, A. Microbial fuelcells as a sustainable platform technology for bioenergy, biosensing, environmentalmonitoring, and other low power device applications. Fuel 2019, 255, 115682. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Kapoor, R.; Ghosh, P.; Kumar, M.; Sengupta, S.; Gupta, A.; Kumar, S.S.; Vijay, V.; Kumar, V.; Vijay, V.K.; Pant, D. Valorization of agricultural waste for biogas based circular economy in India: A research outlook. Bioresource Technol. 2020, 304, 123036. [Google Scholar] [CrossRef] [PubMed]
- Fidélis, T.; Cardoso, A.S.; Riazi, F.; Miranda, A.C.; Abrantes, J.; Teles, F.; Roebeling, P.C. Policy narratives of circular economy in the EU—Assessing the embeddedness of water and land in national action plans. J. Clean Prod. 2021, 288, 125685. [Google Scholar] [CrossRef]
- Fertahi, S.; Elalami, D.; Tayibi, S.; Taarji, N.; Lyamlouli, K.; Bargaz, A.; Oukarroum, A.; Zeroua, Y.; Bouhssini, M.E.; Barakat, A. The current status and challenges of biomass biorefineries in Africa: A critical review and future perspectives for bioeconomic development. Sci. Total Environ. 2023, 870, 162001. [Google Scholar] [CrossRef] [PubMed]
- Addo-Bankas, O.; Zhao, Y.; Gomes, A.; Stefanakis, A. Challenges of urban artificial landscape water bodies: Treatment techniques and restoration strategies towards ecosystem services enhancement. Processes 2022, 10, 2486. [Google Scholar] [CrossRef]
- Calheiros, C.S.; Stefanakis, A.I. Green roofs towards circular and resilient cities. Circ. Econ. Sustain. 2021, 1, 395–411. [Google Scholar] [CrossRef]
- IEA Bioenergy, Technology Collaboration Programme: Bioenergy, a Sustainable Solution. Available online: https://www.ieabioenergy.com/bioenergy-a-sustainable-solution/ (accessed on 4 April 2023).
- REN21. Renewables 2023 Global Status Report Collection, Global Overview. 2023. Available online: https://www.ren21.net/wp-content/uploads/2019/05/GSR2023_GlobalOverview_Full_Report_with_endnotes_web.pdf (accessed on 15 January 2024).
- REN21. Renewables 2023 Global Status Report Collection, Renewables in Energy Supply. 2023. Available online: https://www.ren21.net/wp-content/uploads/2019/05/GSR-2023_Energy-Supply-Module.pdf (accessed on 15 January 2024).
- Statistical Office of the Republic of Serbia. Share of Renewable Energy in Gross Final Energy Consumption. Available online: https://data.stat.gov.rs/Home/Result/SDGUN070201?languageCode=en-US (accessed on 17 January 2024).
- Ali, G.; Nitivattananon, V.; Abbas, S.; Sabir, M. Green waste to biogas: Renewable energy possibilities for Thailand’s green markets. Renew. Sustain. Energy Rev. 2012, 16, 5423–5429. [Google Scholar] [CrossRef]
- Dodić, S.; Zekić, V.; Rodić, V.; Tica, N.; Dodić, J.; Popov, S. Situation and perspectives of waste biomass application as energy source in Serbia. Renew. Sustain. Energy Rev. 2010, 14, 3171–3177. [Google Scholar] [CrossRef]
- Dodić, S.; Vučurović, D.; Popov, S.; Dodić, J.; Zavargo, Z. Concept of cleaner production in Vojvodina. Renew. Sustain. Energy Rev. 2010, 14, 1629–1634. [Google Scholar] [CrossRef]
- Bajić, Ž.B.; Dodić, N.S.; Vučurović, G.D.; Dodić, M.J.; Grahovac, A.J. Waste-to-energy status in Serbia. Renew. Sustain. Energy Rev. 2015, 50, 1437–1444. [Google Scholar] [CrossRef]
- Tomić, M.; Ljubojević, M.; Mićić, R.; Simikić, M.; Dulić, J.; Narandžić, T.; Čukanović, J.; Sentić, I.; Dedović, N. Oil from Koelreuteria paniculata Laxm. 1772 as possible feedstock for biodiesel production. Fuel 2020, 277, 118162. [Google Scholar] [CrossRef]
- Statistical Pocketbook of the Republic of Serbia. 2023. Available online: https://publikacije.stat.gov.rs/G2023/PdfE/G202317016.pdf (accessed on 17 January 2024).
- The Energy Development Strategy of the Republic of Serbia NARS (National Assembly of the Republic of Serbia), Ministry of Mining and Energy, Republic of Serbia. Energy Sector Development Strategy of the Republic of Serbia for the Period by 2025 with Projections by 2030. 2016. Available online: https://meemp-serbia.com/wp-content/uploads/2018/09/Legislative-Energy-Sector-Development-Strategy-of-the-Republic-of-Serbia-for-the-period-by-2025-with-projections-by-2030.pdf (accessed on 17 January 2024).
- Jovanović, B.; Parović, M. Status and Development of Biomass in Serbia, Jefferson Institute, Belgrade. 2009. Available online: http://www.jeffersoninst.org/sites/default/files/Biomass.pdf (accessed on 21 January 2024).
- Radojević, U.; Ninković, M.; Milovanović, J. Identification of marginal land suitable for biofuel production in Serbia. Acta Reg. Environ. 2015, 12, 51–55. [Google Scholar] [CrossRef]
- Djordjevic, J.S.; Djordjevic-Milošević, B.S.; Milošević, M.S. Assessment of Conditions and Experience for Plantation of Agro-Energy Crops on Degraded Agricultural Land in Serbia. Int. J. Agric. Biosyst. Eng. 2016, 10, 447–450. [Google Scholar]
- Nonhebel, S. Energy yields in intensive and extensive biomass production systems. Biomass Bioenergy 2002, 22, 159–167. [Google Scholar] [CrossRef]
- Statistical Office of the Republic of Serbia. Energy Balances. 2021. Available online: https://publikacije.stat.gov.rs/G2023/PdfE/G20235693.pdf (accessed on 17 January 2024).
- Brunner, P.H.; Rechberger, H. Waste to energy—Key element for sustainable waste management. Waste Manag. 2015, 37, 3–12. [Google Scholar] [CrossRef]
- Bloomberg New Energy Finance. Bioenergy Leadership Forum Results Book; Bloomberg NEF Publishing: London, UK, 2012. [Google Scholar]
- Đurišić-Mladenović, N.; Kiss, F.; Škrbić, B.; Tomić, M.; Mićić, R.; Predojević, Z. Current state of the biodiesel production and the indigenous feedstock potential in Serbia. Renew. Sustain. Energy Rev. 2018, 81, 280–291. [Google Scholar] [CrossRef]
- Demirbas, A. Progress and recent trends in biodiesel fuels. Energy Convers. Manag. 2009, 50, 14–34. [Google Scholar] [CrossRef]
- Gui, M.M.; Lee, K.T.; Bhatia, S. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 2008, 33, 1646–1653. [Google Scholar] [CrossRef]
- Latinović, L. Production and mandatory use of biodiesel in Serbia from the aspect of economic impact on the population. Serbian J. Eng. Manag. 2019, 4, 29–38. [Google Scholar] [CrossRef]
- Babović, V.N.; Dražić, G.D.; Đorđević, M.A. Potential uses of biomass from fast-growing crop Miscanthus x giganteus. Chem. Ind. 2012, 66, 223–233. (In Serbian) [Google Scholar] [CrossRef]
- Đurić, N.; Mladenović Glamočlija, M.; Đokić, M.; Spasić, M.; Glamočlija, Đ. Introduction of tall grasses in Serbia agricultural production and using biomass as alternative fuel. In Thematic Proceedings: International Scientific Conference Sustainable Agriculture and Rural Development; Institute of Agricultural Economics: Belgrade, Serbia, 2021; pp. 259–269. Available online: http://RIVeC.institut-palanka.rs/handle/123456789/344 (accessed on 3 April 2023).
- Važić, T.; Svirčev, Z.; Dulić, T.; Krstić, K.; Obreht, I. Potential for energy production from reed biomass in the Vojvodina region (north Serbia). Renew. Sustain. Energy Rev. 2015, 48, 670–680. [Google Scholar] [CrossRef]
- Nikolić, M.; Tomasević, V.; Ugrinov, D. Energy plants as biofuel source and as accumulators of heavy metals. Chem. Ind. 2022, 76, 209–225. [Google Scholar] [CrossRef]
- Khan, I.U.; Yan, Z.; Chen, J. Production and characterization of biodiesel derived from a novel source Koelreuteria paniculata seed oil. Energies 2020, 13, 791. [Google Scholar] [CrossRef]
- Filipčić, P. Use of Biomass Invasive Plant Type of Japanese Knotweed (Reynoutria japonica) in Energy Production. Ph.D. Thesis, University of Zagreb, Faculty of Agriculture, Department of Agricultural Technology, Storage and Transport, Zagreb, Croatia, 2018. Available online: https://urn.nsk.hr/urn:nbn:hr:204:149547 (accessed on 8 November 2023). (In Croatian).
- Jan, H.A.; Al-Fatesh, A.S.; Osman, A.I.; Surina, I.; Rahim, F.; Sher, A. Assessment of Ailanthus altissima seed oil as a potential source for biodiesel production using nickel oxide nanoparticles catalyst. J. King Saud Univ. Sci. 2024, 36, 103084. [Google Scholar]
- Domínguez, E.; Romaní, A.; Domingues, L.; Garrote, G. Evaluation of strategies for second generation bioethanol production from fast growing biomass Paulownia within a biorefinery scheme. Appl. Energy 2017, 187, 777–789. [Google Scholar] [CrossRef]
- Reyes, Y.A.; Pérez, M.; Barrera, E.L.; Martínez, Y.; Cheng, K.K. Thermochemical conversion processes of Dichrostachys cinerea as a biofuel: A review of the Cuban case. Renew. Sustain. Energy Rev. 2022, 160, 112322. [Google Scholar] [CrossRef]
- Reza, M.S.; Ahmed, A.; Caesarendra, W.; Bakar, M.S.A.; Shams, S.; Saidur, R.; Aslfattahi, N.; Azad, A.K. Acacia holosericea: An Invasive Species for Bio-char, Bio-oil, and Biogas Production. Bioengineering 2019, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Latinović, L.; Stojić, N.; Latinović, J. Important factors in the revival of the biodiesel industry in Serbia: Progress or pitfall? Serbian J. Eng. Manag. 2020, 5, 1–19. [Google Scholar] [CrossRef]
- Latinović, L. Biodiesel in Serbia—Benefit or trap? In International Scientific-Practical Conference on Circular and Bio-Economy; CIBEK: Belgrade, Serbia, 2019; pp. 280–294. [Google Scholar]
- Tolmač, D.; Prvulović, S.; Štrbac, N.; Radovanović, L. Materially and energy balance production of biodiesel. Savrem. Poljopr. Teh. 2009, 35, 185–190. [Google Scholar]
- Furman, T. Biodizel, Alternativno i Ekološko tečno Gorivo; Poljoprivredni Fakultet: Novi Sad, Serbia, 2005; p. 212. ISBN 86-7520-090-0; 978-86-7520-090-1. [Google Scholar]
- Samardžija, M.; Furman, T.; Tomić, M.; Savin, L.; Nikolić, R.; Simikić, M. Prednosti proizvodnje biodizela u malim postrojenjima. Savrem. Poljopr. Teh. 2007, 33, 196–204. [Google Scholar]
- Mojović, L.; Nikolić, S.; Pejin, D.; Pejin, J.; Djukić-Vuković, A.; Kocić-Tanackov, S.; Semenčenko, V. The potential for sustainable bioethanol production in Serbia: Available biomass and new production approaches, Materials and processes for energy: Communicating current research and technological developments (A. Méndez-Vilas, Ed.). Formatex 2013, 380–392. Available online: http://www.formatex.info/energymaterialsbook/book/380-392.pdf (accessed on 21 January 2024).
- Nikolić, V.; Žilić, S.; Radosavljević, M.; Simić, M. The role of maize hybrids in current trends of bioethanol production. Sel. Semen. 2021, 26, 21–29. [Google Scholar] [CrossRef]
- Dodić, J.; Grahovac, J.; Rončević, Z.; Pajović-Šćepanović, R.; Dodić, S.; Bajić, B.; Vučurović, D. Challenges in bioethanol production from intermediate and by-products of the sugar beet processing in the Republic of Serbia. J. Process. Energy Agric. 2018, 22, 34–39. [Google Scholar] [CrossRef]
- Simić, A.; Dželetović, Ž. Perspektive gajenja energetskih useva u Srbiji. Savetov. Poljopr. Agron. Srb. 2018, 34–38. [Google Scholar]
- Kostić, M.; Stamenković, O.; Veljković, V. Oil Recovery from Roadside Pennycress (Thlaspi alliaceum L.) Seeds and its Application for Biodiesel Production. In Proceedings of the 22th International Conference Meeting Point of the Science and Practice in the Fields of Corrosion, Materials and Environmental Protection, Tara Mountain, Serbia, 13–16 September 2021; pp. 183–194. [Google Scholar]
- Martinov, M.; Scarlat, N.; Djatkov, D.; Dallemand, J.F.; Viskovic, M.; Zezelj, B. Assessing sustainable biogas potentials—Case study for Serbia. Biomass Convers. Biorefinery 2020, 10, 367–381. [Google Scholar] [CrossRef]
- Angelidaki, I.; Treu, L.; Tsapekos, P.; Luo, G.; Campanaro, S.; Wenzel, H.; Kougias, P.G. Biogas upgrading and utilization: Current status and perspectives. Biotechnol. Adv. 2018, 36, 452–466. [Google Scholar] [CrossRef] [PubMed]
- Petravić-Tominac, V.; Nastav, N.; Buljubašić, M.; Šantek, B. Current state of biogas production in Croatia. Energy Sustain. Soc. 2020, 10, 8. [Google Scholar] [CrossRef]
- Šarac, V.; Milić, D.; Vukelić, N.; Novaković, T.; Novaković, D.; Ljubojević, M.; Rodić, V. Assessment of Beef Manure Economic Value by the Method of Equivalent Green and Mineral Fertilizer Substitution. Horticulturae 2024, 10, 125. [Google Scholar] [CrossRef]
- Horváth, S.I.; Tabatabaei, M.; Karimi, K.; Kumar, R. Recent updates on biogas production—A review. BRJ 2016, 3, 394–402. [Google Scholar] [CrossRef]
- Flach, B.; Lieberz, S.; Rossetti, A.; Phillips, S. EU-28 Biofuels Annual 2017; GAIN Report Number: NL7015; USDA Foreign Agricultural Service: Washington, DC, USA, 2017. Available online: https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_The%20Hague_EU-28_6-19-2017.pdf (accessed on 30 January 2023).
- Cvetković, S.; Radoičić, T.K.; Vukadinović, B.; Kijevčanin, M. Potentials and status of biogas as energy source in the Republic of Serbia. Renew. Sustain. Energy Rev. 2014, 31, 407–416. [Google Scholar] [CrossRef]
- Rakašćan, N. Cirkularni Model Proizvodnje Biogasa iz Silaže Sirka (Sorghum bicolor) Proizvedenog na Degradiranom Zemljištu uz Primenu Digestata kao Organskog đubriva. Ph.D. Thesis, Singidunum University, Belgrade, Serbia, 2023. Available online: https://nardus.mpn.gov.rs/handle/123456789/21160 (accessed on 10 January 2024).
- Cvetkovic, S.M.; Radoičić, T.K.; Kijevcanin, M. Perspective of using biogas in Serbia in European context. Energy Sources Part B Econ. Plan. Policy 2017, 12, 372–376. [Google Scholar] [CrossRef]
- Djatkov, D.; Viskovic, M.; Golub, M.; Bojic, S.; Martinov, M. Potentials, opportunities and barriers for biogas production and utilization in Autonomous Province of Vojvodina. In Proceedings of the 42nd International Symposium on Agricultural Engineering, Actual Tasks on Agricultural Engineering, Opatija, Croatia, 25–28 February 2014; pp. 415–425. [Google Scholar]
- Eurostat. Available online: https://ec.europa.eu/eurostat/en/web/main/data/database (accessed on 10 January 2023).
- Babić, I.; Petrović, M. Development of legal framework for bigger usage of renewable energy sources in Serbia from 2013 to 2020. KGH—Klim. Grej. Hlađenje 2017, 42, 47–50. Available online: https://izdanja.smeits.rs/index.php/kgh/article/view/1444 (accessed on 21 January 2024). (In Serbian).
- Spasojević, N. The role of the Energy agency of the Republic of Serbia in the regulation of energy from renewable sources—Case study of “Čibuk 1”. Adm. Public Policy 2022, 17, 33–56. (In Serbian) [Google Scholar] [CrossRef]
- Kovačević, B.L.; Kuzman, M. Development of energy regulations of the European Union and impact on the legal system of the Republic of Serbia. In 65 Godina od Rimskih Ugovora: Evropska unija i Perspektive Evropskih Integracija Srbije; The Institute of Comparative Law: Belgrade, Serbia, 2022; pp. 275–293. (In Serbian) [Google Scholar] [CrossRef]
- Đurić, O.E.; Kreculj, D.; Živojinović, D.; Vorkapić, M. Potencijal poljoprivredne biomase u sistemima proizvodnje biogasa u Republici Srbiji. Zb. Međunarodne Konf. Obnov. Izvorima Električne Energ.–MKOIEE 2020, 8, 63–70. (In Serbian) [Google Scholar] [CrossRef]
- Milosevic Law Firm. New Incentives for Investment into Renewable Energy Sources. Available online: https://milosevic-law.com/new-incentives-for-investment-into-renewable-energy-sources/ (accessed on 28 January 2024).
- Mishra, A.; Shetti, N.P.; Basu, S.; Reddy, K.R.; Aminabhavi, T.M. Recent developments in ionic liquid-based electrolytes for energy storage super-capacitors and rechargeable batteries. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, The Netherlands, 2020; pp. 199–221. [Google Scholar]
- Šućur, J.; Konstantinović, B.; Crnković, M.; Bursić, V.; Samardžić, N.; Malenčić, Đ.; Prvulović, D.; Popov, M.; Vuković, G. Chemical composition of Ambrosia trifida L. and its allelopathic influence on crops. Plants 2021, 10, 2222. [Google Scholar] [CrossRef] [PubMed]
- Bedini, S.; Cosci, F.; Tani, C.; Pierattini, E.C.; Venturi, F.; Lucchi, A.; Ioriatti, C.; Ascrizzi, R.; Flamini, G.; Ferroni, G.; et al. Essential Oils as Post-Harvest Crop Protectants against the Fruit Fly Drosophila suzukii: Bioactivity and Organoleptic Profile. Insects 2020, 11, 508. [Google Scholar] [CrossRef]
- Hanie Amin, H. Ulva lactuca as a cheap and safe biopesticide in fields and its chemical composition (in vitro). Egypt. J. Aquat. Biol. Fish. 2019, 23, 415–428. [Google Scholar] [CrossRef]
- Gruľová, D.; Caputo, L.; Elshafie, H.S.; Baranová, B.; De Martino, L.; Sedlák, V.; Gogaľová, Z.; Poráčová, J.; Camele, I.; De Feo, V. Thymol Chemotype Origanum vulgare L. Essential Oil as a Potential Selective Bio-Based Herbicide on Monocot Plant Species. Molecules 2020, 25, 595. [Google Scholar] [CrossRef]
- Synowiec, A.; Możdżeń, K.; Krajewska, A.; Landi, M.; Araniti, F. Carum carvi L. essential oil: A promising candidate for botanical herbicide against Echinochloa crus-galli (L.) P. Beauv. in maize cultivation. Ind. Crops Prod. 2019, 140, 111652. [Google Scholar] [CrossRef]
- Golawska, S.; Kapusta, I.; Lukasik, I.; Wojcicka, A. Effect of phenolics on the pea aphid, Acyrthosiphon pisum (Harris) population on Pisum sativum L. (Fabaceae). Pestycydy/Pestic. 2008, 3–4, 71–77. [Google Scholar]
- Di Ilio, V.; Cristofaro, M. Polyphenolic extracts from the olive mill wastewater as a source of biopesticides and their effects on the life cycle of the Mediterranean fruit fly Ceratitis capitata (Diptera, Tephriditae). Int. J. Trop. Insect. Sci. 2021, 41, 359–366. [Google Scholar] [CrossRef]
- Official Journal of the European Union. Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009; European Parliament, Council of the European Union: Bruxelles/Brussel, Belgium, 24 November 2009; p. L 309/71. [Google Scholar]
- Sundh, I.; Goettel, M.S. Regulating biocontrol agents: A historical perspective and a critical examination comparing microbial and microbial agents. BioControl 2013, 58, 575–593. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Water Management and Forestry. List of Products for Plant Protection in Organic Agricultural Production. Available online: https://uzb.minpolj.gov.rs/wp-content/uploads/2023/05/Lista_sredstva_za_zastitu_bilja_za_organsku_proizvodnju_na_30maj2023.pdf (accessed on 30 January 2024).
- Milić, D.; Novaković, T.; Grahovac, M.; Budakov, D.; Grahovac, J.; Vlajkov, V.; Loc, M.; Tekić, D. The Pesticide Market in Serbia. Contemp. Agric. 2023, 72, 6–13. [Google Scholar] [CrossRef]
- Vlajkov, V.; Grahovac, M.; Budakov, D.; Loc, M.; Pajčin, I.; Milić, D.; Novaković, T.; Grahovac, J. Distribution, Genetic Diversity and Biocontrol of Aflatoxigenic Aspergillus flavus in Serbian Maize Fields. Toxins 2021, 13, 687. [Google Scholar] [CrossRef] [PubMed]
- Galanakis, C.M. Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 2012, 26, 68–87. [Google Scholar]
- Ballardo, C.; Barrena, R.; Artola, A.; Sánchez, A. A novel strategy for producing compost with enhanced biopesticide properties through solid-state fermentation of biowaste and inoculation with Bacillus thuringiensis. Waste Manag. 2017, 70, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Leccese, F.; Cagnetti, M.; Giarnetti, S.; Petritoli, E.; Orioni, B.; Luisetto, I.; Tuti, S.; Leccisi, M.; Pecora, A.; Maiolo, L.; et al. Electronic Nose For Pesticides: The First Study towards A Smart Analysis. Contemp. Agric. 2019, 68, 17–22. [Google Scholar] [CrossRef]
- Šunjka, D.; Mechora, Š. An alternative source of biopesticides and improvement in their formulation—Recent advances. Plants 2022, 11, 3172. [Google Scholar] [CrossRef] [PubMed]
- Golijan-Pantović, J.; Sečanski, M. Biopesticides in organic agriculture. Contemp. Agric. 2022, 71, 141–154. [Google Scholar] [CrossRef]
- Samada, L.H.; Tambunan, U.S.F. Biopesticides as Promising Alternatives to Chemical Pesticides: A Review of Their Current and Future Status. J. Biol. Sci. 2020, 20, 66–76. [Google Scholar] [CrossRef]
- Tanović, B.; Milijašević, S.; Obradović, A.; Todorović, B.; Rekanović, E.; Milikić, S. In vitro efekti etarskih ulja iz začinskihi lekovitih biljaka na patogene koji se prenose zemljištem. Pestic. Fitomed. 2004, 19, 233–240. [Google Scholar]
- European Commission. A new Circular Economy Action Plan For a Cleaner and More Competitive Europe. 2020. Available online: https://eur-lex.europa.eu/legalcontent/EN/TXT/?qid=1583933814386&uri=COM:2020:98:FIN (accessed on 5 May 2023).
- Simberloff, D.; Martin, J.L.; Genovesi, P.; Maris, V.; Wardle, D.A.; Aronson, J.; Courchamp, F.; Galil, B.; García-Berthou, E.; Pascal, M. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 2013, 28, 58–66. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Kraus, F. Risk of biological invasions is concentrated in biodiversity hotspots. Front. Ecol. Environ. 2016, 14, 411–417. [Google Scholar] [CrossRef]
- Pathak, R.; Negi, V.S.; Rawal, R.S.; Bhatt, I.D. Alien plant invasion in the Indian Himalayan Region: State of knowledge and research priorities. Biodivers. Conserv. 2019, 28, 3073–3102. [Google Scholar] [CrossRef]
- Convention on Biological Diversity (CBD). Alien Species That Threaten Ecosystems, Habitats or Species; United Nations Article 2008, 8(h). Convention on Biological Diversity (CBD) COP 6 Decision: Alien species that threaten ecosystems, habitats or species. VI/23. In Sixth Meeting of the Confer-ence of the Parties to the Convention on Biological Diversity. The Hague, Netherlands. 7–19 April 2002. Available online: http://www.cbd.int/decision/cop/default.shtml?id=7197 (accessed on 23 March 2023).
- Pyšek, P.; Richardson, D.M. Invasive species, environmental change and management: And health. Annu. Rev. Environ. Res. 2010, 35, 25–55. [Google Scholar] [CrossRef]
- Pyšek, P.; Richardson, D.M.; Rejmánek, M.; Webster, G.L.; Williamson, M.; Kirschner, J. Alien plants in checklists and floras: Towards better communication between taxonomists and ecologists. Taxon 2004, 53, 131–143. [Google Scholar] [CrossRef]
- Richardson, D.M.; Pysek, P.; Rejmánek, M.; Barbour, M.G.; Panetta, F.D.; West, C.J. Naturalization and invasion of alien plants: Concepts and definitions. Divers. Distrib. 2000, 6, 93–107. [Google Scholar] [CrossRef]
- Seebens, H.; Blackburn, T.M.; Dyer, E.E.; Genovesi, P.; Hulme, P.E.; Jeschke, J.M.; Pagad, S.; Pyšek, P.; van Kleunen, M.; Winter, M.; et al. Global rise in emerging alien species results from accessibility of new source pools. Proc. Natl. Acad. Sci. USA 2018, 115, 2264–2273. [Google Scholar] [CrossRef]
- van Kleunen, M.; Essl, F.; Pergl, J.; Brundu, G.; Carboni, M.; Dullinger, S.; Early, R.; Gonzalez-Moreno, P.; Groom, J.Q.; Hulme, P.E.; et al. The changing role of ornamental horticulture in alien plant invasions. Biol. Rev. 2018, 93, 1421–1437. [Google Scholar] [CrossRef]
- Raud, M.; Mitt, M.; Oja, T.; Olt, J.; Orupold, K.; Kikas, T. The utilisation potential of urban greening waste: Tartu case study. Urban For. Urban Green. 2017, 21, 96–101. [Google Scholar] [CrossRef]
- Pyšek, P.; Hulme, P.E.; Simberloff, D.; Bacher, S.; Blackburn, T.M.; Carlton, T.J.; Dawson, W.; Essl, F.; Foxcroft, C.L.; Genovesi, P.; et al. Scientists’ warning on invasive alien species. Biol. Rev. 2020, 95, 1511–1534. [Google Scholar] [CrossRef]
- Vrabič-Brodnjak, U.; Možina, K. Invasive Alien Plant Species for Use in Paper and Packaging Materials. Fibers 2022, 10, 94. [Google Scholar] [CrossRef]
- Boršić, I.; Kutleša, P.; Desnica, S.; Slivar, S. Invasive Potential of Golden Rain Tree (Koelreuteria Paniculata Laxm., Sapindaceae)—A Case Study from the City of Zagreb. In Proceedings of the 2nd Croatian Symposium on Invasive Species with International Participation, Zagreb, Croatia, 21–22 November 2016. [Google Scholar]
- Ghermandi, A.; Fichtman, E. Cultural ecosystem services of multifunctional constructed treatment wetlands and waste stabilization ponds: Time to enter the mainstream? J. Ecol. Eng. 2015, 84, 615–623. [Google Scholar] [CrossRef]
- Sladonja, B.; Sušek, M.; Guillermic, J. Review on invasive tree of heaven (Ailanthus altissima (Mill.) Swingle) conflicting values: Assessment of its ecosystem services and potential biological threat. Environ. Manag. 2015, 56, 1009–1034. [Google Scholar] [CrossRef]
- Bradley, B.A.; Oppenheimer, M.; Wilcove, D.S. Climate change and plant invasions: Restoration opportunities ahead? Global Chang. Biol. 2009, 15, 1511–1521. [Google Scholar] [CrossRef]
- Bellard, C.; Cassey, P.; Blackburn, T.M. Alien species as a driver of recent extinctions. Biol. Lett.-UK 2016, 12, 20150623. [Google Scholar] [CrossRef]
- Hellmann, J.J.; Byers, J.E.; Bierwagen, B.G.; Dukes, J.S. Five potential consequences of climate change for invasive species. Conserv. Biol. 2008, 22, 534–543. [Google Scholar] [CrossRef]
- Larson, B.M.H. The war of the roses: Demilitarizing invasion biology. Front. Ecol. Environ. 2005, 3, 495–500. [Google Scholar] [CrossRef]
- Rinella, M.J.; Maxwell, B.D.; Fay, P.K.; Weaver, T.; Sheley, R.L. Control effort exacerbates invasive-species problem. Ecol. Appl. 2009, 19, 155–162. [Google Scholar] [CrossRef]
- Shackleton, C.M.; McGarry, D.; Fourie, S.; Gambiza, J.; Shackleton, S.E.; Fabricius, C. Assessing the effects of invasive alien species on rural livelihoods: Case examples and a framework from South Africa. Hum. Ecol. 2007, 35, 113–127. [Google Scholar] [CrossRef]
- Mwangi, E.; Swallow, B. Prosopis juliflora invasion and rural livelihoods in the Lake Baringo area of Kenya. Conserv. Soc. 2008, 6, 130–140. [Google Scholar]
- Palmer, S.; Martin, D.; DeLauer, V.; Rogan, J. Vulnerability and adaptive capacity in response to the Asian long horned beetle infestation in Worcester, Massachusetts. Hum. Ecol. 2014, 42, 265–977. [Google Scholar] [CrossRef]
- Brandner, R.; Schickhofer, G. Tree-of-Heaven (Ailanthus altissima): Enormous and wide potential neglected by the western civilisation. In Proceedings of the WCTE 2010 Conference, Trento, Italy, 20–24 June 2010; pp. 1576–1582. [Google Scholar]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef]
- Velasco-Jiménez, J.M.; Alcázar, P.; Cariñanos, P.; Galán, C. Allergenicity of the urban green areas in the city of Córdoba (Spain). Urban For. Urban Green. 2020, 49, 126600. [Google Scholar] [CrossRef]
- Leichenko, R. Climate change and urban resilience. Curr. Opin. Environ. Sustain. 2011, 3, 164–168. [Google Scholar] [CrossRef]
- Mudryk, K. Quality assessment for briquettes made of biomass from maple [Acer negundo L.] and black locust [Robinia pseudoacacia L.]. Inżynieria Rol. 2011, 15, 115–121. [Google Scholar]
- Hoseini, S.S.; Najafi, G.; Ghobadian, B.; Mamat, R.; Ebadi, M.T.; Yusaf, T. Ailanthus altissima (tree of heaven) seed oil: Characterisation and optimisation of ultrasonication-assisted biodiesel production. Fuel 2018, 220, 621–630. [Google Scholar] [CrossRef]
- Hoseini, S.S.; Najafi, G.; Ghobadian, B.; Mamat, R.; Ebadi, M.T.; Yusaf, T. Novel environmentally friendly fuel: The effects of nanographene oxide additives on the performance and emission characteristics of diesel engines fuelled with Ailanthus altissima biodiesel. Renew. Energy 2018, 125, 283–294. [Google Scholar] [CrossRef]
- Jabeen, M.; Munir, M.; Abbas, M.M.; Ahmad, M.; Waseem, A.; Saeed, M.; Kalam, M.A.; Zafar, M.; Sultana, S.; Mohamed, A.; et al. Sustainable production of biodiesel from novel and non-edible Ailanthus altissima (Mill.) seed oil from green and recyclable potassium hydroxide activated Ailanthus cake and cadmium sulfide catalyst. Sustainability 2022, 14, 10962. [Google Scholar] [CrossRef]
- Khan, I.U.; Chen, H.; Yan, Z.; Chen, J. Extraction and quality evaluation of biodiesel from six familiar non-edible plants seeds. Processes 2021, 9, 840. [Google Scholar] [CrossRef]
- Kozuharova, E.; Benbassat, N.; Berkov, S.; Ionkova, I. Ailanthus altissima and Amorpha fruticosa–invasive arboreal alien plants as cheap sources of valuable essential oils. Pharmacia 2020, 67, 71–81. [Google Scholar] [CrossRef]
- Terzopoulou, P.; Kamperidou, V.; Barboutis, I. Utilization Potential of Tree-of-Heaven Species Biomass—A Review. Appl. Sci. 2023, 13, 9185. [Google Scholar] [CrossRef]
- Xiong, S.; Zhang, Q.G.; Zhang, D.Y.; Olsson, R. Influence of harvest time on fuel characteristics of five potential energy crops in northern China. Bioresource Technol. 2008, 99, 479–485. [Google Scholar] [CrossRef]
- Krpan, A.P.; Tomašić, Ž.; Zečić, Ž.; Vuletić, D. Bioproductivity of indigobush (Amorpha fruticosa L.) in one-year, two-year and four-year rotation. Šumarski List. 2015, 139, 123–134. [Google Scholar]
- Jakovljević, T.; Halambek, J.; Radošević, K.; Hanousek, K.; Gradečki-Poštenjak, M.; Gaurina Srček, V.; Radojčić Redovniković, I.; De Marco, A. The potential use of Indigobush (Amorpha fruticosa L.) as natural resource of biologically active compounds. South-East Eur. For. SEEFOR 2015, 6, 171–178. [Google Scholar] [CrossRef]
- Grabić, J.; Ljevnaić-Mašić, B.; Zhan, A.; Benka, P.; Heilmeier, H. A review on invasive false indigo bush (Amorpha fruticosa L.): Nuisance plant with multiple benefits. Ecol. Evol. 2022, 12, e9290. [Google Scholar] [CrossRef]
- Anjum, S.I.; Husain, S.; Khan, H.U.; Attaullah, M.; Rajput, S.; Shah, A.H.; Buneri, I.D.; Shah, A.H. Toxicity assessment of the methanol extract from Elaeagnus angustifolia against larvae of Drosophila melanogaster meign (Diptera/Drosophilidae). J. Entomol. Zool. Stud. 2017, 5, 217–220. [Google Scholar]
- Hennequin, L.M.; Polizzi, K.; Fennell, P.S.; Hallett, J.P. Rhododendron and Japanese Knotweed: Invasive species as innovative crops for second generation biofuels for the ionoSolv process. RSC Adv. 2021, 11, 18395–18403. [Google Scholar] [CrossRef]
- Brunerova, A.; Muller, M.; Brozek, M. Potential of wild growing Japanese knotweed (Reynoutria japonica) for briquette production. In Proceedings of the 16th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 24–26 May 2017; pp. 24–26. [Google Scholar]
- Van Meerbeek, K.; Muys, B.; Hermy, M. Lignocellulosic biomass for bioenergy beyond intensive cropland and forests. Renew. Sustain. Energy Rev. 2019, 102, 139–149. [Google Scholar] [CrossRef]
- Wens, A.; Geuens, J. In vitro and in vivo antifungal activity of plant extracts against common phytopathogenic fungi. J. Biosci. Biotechnol. 2022, 11, 15–21. [Google Scholar]
- Ljubojević, M.; Pušić, M. Review on ornamental Rose of sharon (Hibiscus syriacus L.): Assessment of decorativeness, invasiveness and ecosystem services in public. In Sustainable Practices in Horticulture and Landscape Architecture; Ostojić, J., Cig, A., Eds.; Iksad: Ankara, Turkey, 2022; pp. 71–144. ISBN 978-625-8323-13-9. [Google Scholar]
- Rodríguez-Seoane, P.; Díaz-Reinoso, B.; Moure, A.; Domínguez, H. Potential of Paulownia sp. for biorefinery. Ind. Crops Prod. 2020, 155, 112739. [Google Scholar] [CrossRef]
- Angelova-Romova, M.; Koleva, A.; Antova, G.; Zlatanov, M.; Stoyanova, M.; Dobreva, K.; Denev, P.; Damianova, S.; Angelov, B.; Stoyanova, A. Lipid composition of Paulownia seeds grown in Bulgaria. Trak. Üniv. Fen Bilim. Derg. 2011, 12, 101–111. [Google Scholar]
- Del Río, P.G.; Domínguez, V.D.; Domínguez, E.; Gullón, P.; Gullón, B.; Garrote, G.; Romaní, A. Comparative study of biorefinery processes for the valorization of fast-growing Paulownia wood. Bioresource Technol. 2020, 314, 123722. [Google Scholar] [CrossRef]
- Khan, I.U.; Yan, Z.; Chen, J. Optimization, transesterification and analytical study of Rhus typhina non-edible seed oil as biodiesel production. Energies 2019, 12, 4290. [Google Scholar] [CrossRef]
- Ruan, C.J.; Xing, W.H.; da Silva, J.A.T. Potential of five plants growing on unproductive agricultural lands as biodiesel resources. Renew. Energy 2012, 41, 191–199. [Google Scholar] [CrossRef]
- Manzone, M.; Bergante, S.; Facciotto, G. Energy and economic sustainability of woodchip production by black locust (Robinia pseudoacacia L.) plantations in Italy. Fuel 2015, 140, 555–560. [Google Scholar] [CrossRef]
- Paczkowski, S.; Sauer, C.; Anetzberger, A.; Jaeger, D.; Pelz, S. Utilization of black locust (Robinia pseudoacacia) sawdust as an alternative pelletization raw material. Biomass Conv. Bioref. 2023, 1–15. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, J.; Song, L.I.; Cao, X.; Yao, X.I.; Tang, F.; Yue, Y. Chemical composition of an insecticidal extract from Robinia pseudacacia L. seeds and it’s efficacy against aphids in oilseed rape. Crop Prot. 2018, 104, 1–6. [Google Scholar] [CrossRef]
- Devi, A.; Das, V.K.; Deka, D. A green approach for enhancing oxidation stability including long storage periods of biodiesel via Thuja oreantalis L. as an antioxidant additive. Fuel 2019, 253, 1264–1273. [Google Scholar] [CrossRef]
- Longanesi, L.; Pereira, A.P.; Johnston, N.; Chuck, C.J. Oxidative stability of biodiesel: Recent insights. Biofuels Bioprod. Biorefining 2022, 16, 265–289. [Google Scholar] [CrossRef]
- Mozaffari, F.; Abbasipour, H.; Garjan, A.S.; Saboori, A.; Mahmoudvand, M. Efficacy of Thuja orientalis L.(Cupressaceae) essential oil on the two spotted spider mite, Tetranychus urticae Koch (Acari: Teteranychidae). J. Essent. Oil Bear. Pl. 2012, 15, 550–556. [Google Scholar] [CrossRef]
- Stojanović, V.; Jovanović, I. Pregled invazivnih i potencijalno invazivnih vrsta biljaka u Republici Srbiji i okruženju u cilju utvrđivanja njihovog statusa na nacionalnom nivou/The survey of invasive and potentially invasive plant species in serbia and neighbouring countries for the purpose of determining their status at the national level. Zaštita Prir./Nat. Prot. 2018, 68, 41–59. (In Serbian) [Google Scholar]
- Anačkov, G.T.; Rat, M.M.; Radak, B.D.; Igić, R.S.; Vukov, D.M.; Rućando, M.M.; Krstivojević, M.M.; Radulović, B.S.; Milič, M.D.; Panjković, I.B.; et al. Alien invasive neophytes of the Southeastern part of the Pannonian Plain. Cent. Eur. J. Biol. 2013, 8, 1032–1043. [Google Scholar] [CrossRef]
- Lugli, L.; Mezzalira, G.; Lambardi, M.; Zhang, H.; La Porta, N. Paulownia spp.: A Bibliometric Trend Analysis of a Global Multi-Use Tree. Horticulturae 2023, 9, 1352. [Google Scholar] [CrossRef]
- Lee, J.W.; Seo, K.H.; Ryu, H.W.; Yuk, H.J.; Park, H.A.; Lim, Y.; Ahn, K.S.; Oh, S.R. Anti-inflammatory effect of stem bark of Paulownia tomentosa Steud. in lipopolysaccharide (LPS)-stimulated RAW264. 7 macrophages and LPS-induced murine model of acute lung injury. J. Ethnopharmacol. 2018, 210, 23–30. [Google Scholar] [CrossRef]
- Móricz, Á.M.; Ott, P.G.; Knaś, M.; Długosz, E.; Krüzselyi, D.; Kowalska, T.; Sajewicz, M. Antibacterial potential of the phenolics extracted from the Paulownia tomentosa L. leaves as studied with use of high-performance thin-layer chromatography combined with direct bioautography. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 282–289. [Google Scholar] [CrossRef]
- Zhang, J.K.; Li, M.; Li, M.; Du, K.; Lv, J.; Zhang, Z.G.; Zheng, X.K.; Feng, W.S. Four C-geranyl flavonoids from the flowers of Paulownia fortunei and their anti-inflammatory activity. Nat. Prod. Res. 2020, 34, 3189–3198. [Google Scholar] [CrossRef] [PubMed]
- Adach, W.; Żuchowski, J.; Moniuszko-Szajwaj, B.; Szumacher-Strabel, M.; Stochmal, A.; Olas, B.; Cieslak, A. In vitro antiplatelet activity of extract and its fractions of Paulownia Clone in Vitro 112 leaves. Biomed. Pharmacother. 2021, 137, 111301. [Google Scholar] [CrossRef]
- Macel, M.; de Vos, R.C.H.; Jansen, J.J.; van der Putten, W.H.; van Dam, N.M. Novel chemistry on invasive plants: Exotic species have more unique metabolomic profiles than native congeners. Ecol. Evol. 2014, 4, 2777–2786. [Google Scholar] [CrossRef]
- Negrea, B.-M.; Stoilov-Linu, V.; Pop, C.-E.; Deák, G.; Crăciun, N.; Făgăraș, M.M. Expansion of the Invasive Plant Species Reynoutria japonica Houtt in the Upper Bistrița Mountain River Basin with a Calculus on the Productive Potential of a Mountain Meadow. Sustainability 2022, 14, 5737. [Google Scholar] [CrossRef]
- Božin, B.; Gavrilović, M.; Kladar, N.; Rat, M.; Anačkov, G.; Gavarić, N. Highly invasive alien plant Reynoutria japonica Houtt. represents a novel source for pharmaceutical industry–Evidence from phenolic profile and biological activity. J. Serb. Chem. Soc. 2017, 82, 803–813. [Google Scholar] [CrossRef]
- Zhang, X.G.; Ma, G.Y.; Kou, F.; Liu, W.J.; Sun, Q.Y.; Guo, G.J.; Ma, X.D.; Guo, S.J.; Zhu, J.N. Reynoutria Japonica from Traditional Chinese Medicine: A Source of Competitive Adenosine Deaminase Inhibitors for Anticancer. Comb. Chem. High Throughput Screen. 2019, 22, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Mdee, L.K.; Masoko, P.; Eloff, J.N. The activity of extracts of seven common invasive plant species on fungal phytopathogens. S. Afr. J. Bot. 2009, 75, 375–379. [Google Scholar] [CrossRef]
- Popov, M.; Grahovac, M.; Loc, M.; Prvulović, D.; Budakov, D.; Konstantinović, B.; Samardžić, N.; Stojanović, T. Antimicrobial activity of the Asclepias syriaca L. root extract. Rom. Agric. Res. 2023, 40, 1–7. [Google Scholar] [CrossRef]
- Mkindi, A.G.; Mpumi, N.; Tembo, Y.L.; Stevenson, P.C.; Ndakidemi, P.; Mtei, K.; Machunda, R.L.; Belmain, S.R. Invasive weeds with pesticidal properties as potential new crops. Ind. Crops Prod. 2017, 110, 113–122. [Google Scholar] [CrossRef]
- Tanasković, S.; Gvozdenac, S.; Kolarov, R.; Bursić, V.; Konstantinović, B.; Prvulović, D. Antifeeding and insecticidal activity of Ailanthus altissima and Morus alba extracts against gipsy moth (Lymantia dispar (L.), Lepidoptera, Lymantridae) larvae under laboratory conditions. J. Entomol. Res. Soc. 2021, 23, 197–212. [Google Scholar]
- Bhadoriya, S.S.; Ganeshpurkar, A.; Narwaria, J.; Rai, G.; Jain, A.P. Tamarindus indica: Extent of explored potential. Pharmacogn. Rev. 2011, 5, 73. [Google Scholar]
- Mushtaq, M.; Akram, S. Ionic Liquid for the Extraction of Plant Phenolics. In Nanotechnology-Based Industrial Applications of Ionic Liquids; Inamuddin, A.A., Ed.; Nanotechnology in the Life Sciences; Springer International Publishing: Cham, Switzerland, 2020; pp. 81–97. [Google Scholar] [CrossRef]
- Balah, M.A.; Hassany, W.M.; Mousa, E.E.D.A. Response of invasive Solanum elaeagnifolium Cav. seed germination and growth to different conditions and environmental factors. Biologia 2021, 76, 1409–1418. [Google Scholar] [CrossRef]
- Amri, I.; Hanana, M.; Jamoussi, B.; Hamrouni, L. Chemical composition of Thuja orientalis L. essential oils and study of their allelopathic potential on germination and seedling growth of weeds. Arch. Phytopathol. Plant Prot. 2015, 48, 18–27. [Google Scholar]
- Amri, I.; Khammassi, M.; Ben Ayed, R.; Khedhri, S.; Mansour, M.B.; Kochti, O.; Pieracci, Y.; Flamini, G.; Mabrouk, Y.; Gargouri, S.; et al. Essential Oils and Biological Activities of Eucalyptus falcata, E. sideroxylon and E. citriodora Growing in Tunisia. Plants 2023, 12, 816. [Google Scholar] [CrossRef] [PubMed]
Year | Total | Sector of Electricity | Sector of Transport | Sector of Heating and Cooling |
---|---|---|---|---|
2017 | 20.29 | 27.45 | 1.21 | 24.90 |
2018 | 20.32 | 28.66 | 1.18 | 24.29 |
2019 | 21.44 | 30.11 | 1.14 | 26.65 |
2020 | 26.30 | 30.70 | 1.17 | 35.68 |
2021 | 25.28 | 29.90 | 0.62 | 35.47 |
Wood Fuels (Including Charcoal) * | Firewood | Wood Residual and Wood Chips | Wood Briquettes | Wood Pellets | Charcoal | |
---|---|---|---|---|---|---|
Primary production | 66,938 | 64,506 | 2432 | - | - | - |
Import | 1761 | 118 | - | 82 | 1506 | 55 |
Export | 1664 | 243 | - | 119 | 1024 | 278 |
Gross available energy | 68,999 | 65,655 | 2744 | −42 | 854 | −212 |
Final energy consumption | 68,003 | 61,343 | - | 568 | 6073 | 19 |
Industry ** | 7282 | 5148 | - | 360 | 1756 | 18 |
Households | 59,793 | 55,728 | - | 166 | 3899 | 0 |
Agriculture | 80 | 40 | - | - | 40 | - |
Other users | 848 | 427 | - | 42 | 378 | 1 |
Country | Share of Renewable Fuels (%) |
---|---|
Bulgaria | 16.99 |
Croatia | 31.32 |
Hungary | 14.09 |
Romania | 23.85 |
Slovenia | 25.00 |
Bosnia and Herzegovina | 36.56 |
Montenegro | 39.89 |
North Macedonia | 17.29 |
Albania | 41.39 |
Serbia | 25.28 |
Species Common Name | Species Latin Name | Invasive Potential * | Biomass | Biofuel | Biodiesel | Biogas | Biopesticides | References |
---|---|---|---|---|---|---|---|---|
Box elder | Acer negundo L. | High | ✓ ** | ✓ | ✓ | [151] | ||
Tree of heaven | Ailanthus altisima (Mill.) Swingle. | High | ✓ | ✓ | ✓ | ✓ | ✓ | [152,153,154,155,156,157] |
False indigo-bush | Amorpha fruticosa L. | High | ✓ | ✓ | ✓ | ✓ | ✓ | [156,158,159,160,161] |
Russian olive | Elaengus angustifolia L. | Moderate | ✓ | ✓ | ✓ | ✓ | [162] | |
Japanese knotweed | Falopia japonica (Houtt.) Ronse Decr. | High | ✓ | ✓ | ✓ | ✓ | [163,164,165,166] | |
Rose of Sharon | Hibiscus syriacus L. | Moderate | ✓ | ✓ | ✓ | [30,32,167] | ||
Chinese golden rain | Koelreuteria paniculata Laxm. | High | ✓ | ✓ | ✓ | ✓ | [30,32,53,71] | |
Foxglove tree | Paulownia tomentosa Siebold & Zucc. | High | ✓ | ✓ | ✓ | ✓ | ✓ | [168,169,170] |
Virginia creeper | Partenocissus quenquefolia (L.) Planch. | High | ✓ | ✓ | ✓ | [29,32] | ||
Staghorn sumac | Rhus typhina L. | High | ✓ | ✓ | ✓ | [171,172] | ||
Black locust | Robinia pseudoacacia L. | High | ✓ | ✓ | ✓ | ✓ | ✓ | [151,173,174,175] |
Oriental cedar | Thuja orientalis L. | Moderate | ✓ | ✓ | ✓ | ✓ | [32,176,177,178,179] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pušić, M.; Ljubojević, M.; Prvulović, D.; Kolarov, R.; Tomić, M.; Simikić, M.; Vejnović, S.; Narandžić, T. Bioenergy and Biopesticides Production in Serbia—Could Invasive Alien Species Contribute to Sustainability? Processes 2024, 12, 407. https://doi.org/10.3390/pr12020407
Pušić M, Ljubojević M, Prvulović D, Kolarov R, Tomić M, Simikić M, Vejnović S, Narandžić T. Bioenergy and Biopesticides Production in Serbia—Could Invasive Alien Species Contribute to Sustainability? Processes. 2024; 12(2):407. https://doi.org/10.3390/pr12020407
Chicago/Turabian StylePušić, Magdalena, Mirjana Ljubojević, Dejan Prvulović, Radenka Kolarov, Milan Tomić, Mirko Simikić, Srđan Vejnović, and Tijana Narandžić. 2024. "Bioenergy and Biopesticides Production in Serbia—Could Invasive Alien Species Contribute to Sustainability?" Processes 12, no. 2: 407. https://doi.org/10.3390/pr12020407
APA StylePušić, M., Ljubojević, M., Prvulović, D., Kolarov, R., Tomić, M., Simikić, M., Vejnović, S., & Narandžić, T. (2024). Bioenergy and Biopesticides Production in Serbia—Could Invasive Alien Species Contribute to Sustainability? Processes, 12(2), 407. https://doi.org/10.3390/pr12020407