Thermodynamic Modeling of a Solar-Driven Organic Rankine Cycle-Absorption Cooling System for Simultaneous Power and Cooling Production
Abstract
:1. Introduction
1.1. Solar-Thermal Energy Technologies
1.2. Organic Rankine Cycles (ORCs)
- A wider range of working fluids. Such flexibility enables the optimization of the cycle for specific heat source temperatures. Recent research on organic fluids has addressed issues like their thermodynamic performance [4], actual greenhouse effect [5,6], the use of zeotropic mixtures as working fluids [7,8,9,10,11], and the effect of using super dry working fluids on system performance [12,13].
- A more compact design. ORCs require lower operating pressures and, thus, smaller equipment sizes than conventional Rankine cycles. This advantage can lead to more compact and cheaper system designs. This advantage is particularly convenient for limited-space applications.
- Customizable systems: ORCs can be customized and optimized for specific applications and heat source conditions. This flexibility allows engineers to design systems that match the requirements of the particular energy source [3,14,15,16] and heat sink, maximizing efficiency [3,14,15,16,17,18,19,20].
- Modular and Scalable: ORC systems are often modular and can be scaled to suit different power output requirements. This characteristic makes them suitable for various applications, from small-scale distributed power generation to large industrial processes.
- Decentralized Power Generation: ORCs are suitable for decentralized power generation, enabling the utilization of local heat sources to produce electricity. This can improve energy efficiency and reduce transmission losses.
- Combined Heat and Power (CHP) Systems: ORCs can be integrated into combined heat and power systems, allowing the simultaneous generation of electricity and useful heat and increasing the overall energy utilization efficiency. New researchs on combined heat and power systems have utilized ORC, taking advantage of several heat sources [21,22,23,24,25].
1.3. Absorption Cooling Systems (ACS)
- Advanced absorbent materials: Researchers are investigating new materials to enhance vapor capture and release efficiency in absorption cycles. These new materials could lead to more efficient and lower-energy consumption cooling systems. Some of these absorbents are ionic liquids [28,29,30], although other fluids have been studied [31].
- Cycle Efficiency Enhancement: Different techniques to optimize and enhance absorption cycles are being explored to reduce heat losses and improve mass transfer during absorption and desorption processes [32].
1.4. Integrated Cooling and Power Systems
- A deeper analysis of the dynamic behavior of the solar collector for a particular location, including the sizing of the thermal storage.
- A higher capacity for cooling over power production when compared to the Goswami systems, which prioritize power over cooling.
- A benefit of the power production as a result of the lower activation temperatures for the single-effect absorption cycle, regarding those required for double or triple-effect absorption cycles.
- A higher versatility of the proposed system to produce cooling suitable for refrigeration or air-conditioning applications due to the use of NH3–H2O Instead of H2O–LiBr as other studies in the literature.
- A wider range of operating conditions is due to the higher heat source temperatures provided by the PTSC in comparison to other solar technologies proposed in similar studies.
2. System Description
3. Mathematical Model
- The system operates in steady-state conditions.
- The system operates in thermodynamic equilibrium.
- There are no heat losses in components and piping.
- There are no pressure losses in components and piping.
- The process in the valve is isenthalpic.
- The condenser and absorber of the ACS operate at the same temperature.
- There is a constant temperature difference of 10 °C between the temperature of state 3P and states 1 and 9 in the generator of the ACS.
Model Validation
4. Results
4.1. Solar System
4.2. Integrated Cooling and Power System
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
ACS | Absorption Cooling Systems |
COP | Coefficient of Performance |
DNI | Direct Normal Irradiance |
ERC | Ejector Refrigeration Cycles |
EUF | Energy Utilization Factor |
HTF | Heat Transfer Fluid |
ORC | Organic Rankine Cycle |
PTSC | Parabolic Trough Solar Collector |
SAM | System Advisor Model |
SM | Solar Multiple |
TMY | Typical Meteorological Year |
VCRC | Vapor Compression Refrigeration Cycles |
Subscripts
A | Absorber |
C | Condenser |
conc | Relative to the NH3-H2O concentrated solution |
dil | Relative to the NH3-H2O diluted solution |
E | Evaporator |
EC | Economizer |
G | Generator |
P | Pump |
Symbols
Mass flow rate | |
Thermal load | |
Efficiency | |
T | Temperature |
Ammonia concentration in the liquid-phase | |
Ammonia concentration in the vapor-phase | |
Power |
References
- BP. Statistical Review of World Energy; BP: London, UK, 2022. [Google Scholar]
- Ahmed, S.F.; Khalid, M.; Vaka, M.; Walvekar, R.; Numan, A.; Rasheed, A.K.; Mubarak, N.M. Recent progress in solar water heaters and solar collectors: A comprehensive review. Therm. Sci. Eng. Prog. 2021, 25, 100981. [Google Scholar] [CrossRef]
- Zhai, H.; An, Q.; Shi, L.; Lemort, V.; Quoilin, S. Categorization and analysis of heat sources for organic Rankine cycle systems. Renew. Sustain. Energy Rev. 2016, 64, 790–805. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, C.; He, M.; Wang, J. Selection and Evaluation of Dry and Isentropic Organic Working Fluids Used in Organic Rankine Cycle Based on the Turning Point on Their Saturated Vapor Curves. J. Therm. Sci. 2019, 28, 643–658. [Google Scholar] [CrossRef]
- Bianchi, M.; Branchini, L.; De Pascale, A.; Melino, F.; Ottaviano, S.; Peretto, A.; Torricelli, N. Performance and total warming impact assessment of pure fluids and mixtures replacing HFCs in micro-ORC energy systems. Appl. Therm. Eng. 2021, 203, 117888. [Google Scholar] [CrossRef]
- Bahrami, M.; Pourfayaz, F.; Kasaeian, A. Low global warming potential (GWP) working fluids (WFs) for Organic Rankine Cycle (ORC) applications. Energy Rep. 2022, 8, 2976–2988. [Google Scholar] [CrossRef]
- Blondel, Q.; Tauveron, N.; Lhermet, G.; Caney, N. Zeotropic mixtures study in plate heat exchangers and ORC systems. Appl. Therm. Eng. 2023, 219, 119418. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, J.; Chen, S.; Pu, Y. Analysis of organic Rankine cycles using zeotropic mixtures as working fluids under different restrictive conditions. Energy Convers. Manag. 2016, 126, 704–716. [Google Scholar] [CrossRef]
- Geng, D.; Du, Y.; Yang, R. Performance analysis of an organic Rankine cycle for a reverse osmosis desalination system using zeotropic mixtures. Desalination 2016, 381, 38–46. [Google Scholar] [CrossRef]
- Sadeghi, M.; Nemati, A.; Ghavimi, A.; Yari, M. Thermodynamic analysis and multi-objective optimization of various ORC (organic Rankine cycle) configurations using zeotropic mixtures. Energy 2016, 109, 791–802. [Google Scholar] [CrossRef]
- Luo, X.; Huang, R.; Yang, Z.; Chen, J.; Chen, Y. Performance investigation of a novel zeotropic organic Rankine cycle coupling liquid separation condensation and multi-pressure evaporation. Energy Convers. Manag. 2018, 161, 112–127. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Imre, A.R. Investigation of thermal efficiency for subcritical ORC and TFC using super dry working fluids. Energy Sci. Eng. 2023, 11, 711–726. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y. An examination of super dry working fluids used in regenerative organic Rankine cycles. Energy 2023, 263, 125931. [Google Scholar] [CrossRef]
- Maali, R.; Khir, T. Thermodynamic analysis and optimization of an ORC hybrid geothermal–solar power plant. Euro-Mediterranean J. Environ. Integr. 2023, 8, 341–352. [Google Scholar] [CrossRef]
- Boukelia, T.; Arslan, O.; Djimli, S.; Kabar, Y. ORC fluids selection for a bottoming binary geothermal power plant integrated with a CSP plant. Energy 2023, 265, 126186. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, Y.; Cheng, Z.; Wang, J.; Zhao, P.; Dai, Y. Thermodynamic Optimization of a Double-pressure Organic Rankine Cycle Driven by Geothermal Heat Source. Energy Procedia 2017, 129, 591–598. [Google Scholar] [CrossRef]
- Neto, R.d.O.; Sotomonte, C.A.R.; Coronado, C.J. Off-design model of an ORC system for waste heat recovery of an internal combustion engine. Appl. Therm. Eng. 2021, 195, 117188. [Google Scholar] [CrossRef]
- Ping, X.; Yang, F.; Zhang, H.; Xing, C.; Yu, M.; Wang, Y. Investigation and multi-objective optimization of vehicle engine-organic Rankine cycle (ORC) combined system in different driving conditions. Energy 2023, 263, 125672. [Google Scholar] [CrossRef]
- Lee, H.; Ryu, B.; Anh, D.P.; Roh, G.; Lee, S.; Kang, H. Thermodynamic analysis and assessment of novel ORC- DEC integrated PEMFC system for liquid hydrogen fueled ship application. Int. J. Hydrogen Energy 2023, 48, 3135–3153. [Google Scholar] [CrossRef]
- Wang, E.; Zhang, M.; Meng, F.; Zhang, H. Zeotropic working fluid selection for an organic Rankine cycle bottoming with a marine engine. Energy 2022, 243, 123097. [Google Scholar] [CrossRef]
- Yağlı, H.; Koç, Y.; Kalay, H. Optimisation and exergy analysis of an organic Rankine cycle (ORC) used as a bottoming cycle in a cogeneration system producing steam and power. Sustain. Energy Technol. Assess. 2021, 44, 100985. [Google Scholar] [CrossRef]
- Eyerer, S.; Dawo, F.; Wieland, C.; Spliethoff, H. Advanced ORC architecture for geothermal combined heat and power generation. Energy 2020, 205, 117967. [Google Scholar] [CrossRef]
- Pan, M.; Lu, F.; Zhu, Y.; Huang, G.; Yin, J.; Huang, F.; Chen, G.; Chen, Z. Thermodynamic, exergoeconomic and multi-objective optimization analysis of new ORC and heat pump system for waste heat recovery in waste-to-energy combined heat and power plant. Energy Convers. Manag. 2020, 222, 113200. [Google Scholar] [CrossRef]
- Schifflechner, C.; Dawo, F.; Eyerer, S.; Wieland, C.; Spliethoff, H. Thermodynamic comparison of direct supercritical CO2 and indirect brine-ORC concepts for geothermal combined heat and power generation. Renew. Energy 2020, 161, 1292–1302. [Google Scholar] [CrossRef]
- Lu, X.; Du, B.; Zhu, W.; Yang, Y.; Xie, C.; Tu, Z.; Zhao, B.; Zhang, L.; Song, J.; Deng, Z. Thermodynamic and dynamic analysis of a hybrid PEMFC-ORC combined heat and power (CHP) system. Energy Convers. Manag. 2023, 292, 117408. [Google Scholar] [CrossRef]
- Dinçer, I.; Kanoğlu, M. Kanoglu, Refrigeration Systems and Applications, 2nd ed.; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2010; ISBN 9780470661093. [Google Scholar]
- The Economist Intelligence Unit. The Cooling Imperative Forecasting the Size and Source of Future Cooling Demand; Economist Intelligence Unit: London, UK, 2019. [Google Scholar]
- Wang, M.; Becker, T.M.; Ferreira, C.A.I. Assessment of vapor–liquid equilibrium models for ionic liquid based working pairs in absorption cycles. Int. J. Refrig. 2018, 87, 10–25. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Hou, K.; Wang, S.; He, M. New environment friendly working pairs of dimethyl ether and ionic liquids for absorption refrigeration with high COP. Int. J. Refrig. 2022, 134, 159–167. [Google Scholar] [CrossRef]
- Kallitsis, K.; Koulocheris, V.; Pappa, G.; Voutsas, E. Evaluation of water + imidazolium ionic liquids as working pairs in absorption refrigeration cycles. Appl. Therm. Eng. 2023, 233, 121201. [Google Scholar] [CrossRef]
- Haghbakhsh, R.; Peyrovedin, H.; Raeissi, S.; Duarte, A.R.C.; Shariati, A. Energy Conservation in Absorption Refrigeration Cycles Using DES as a New Generation of Green Absorbents. Entropy 2020, 22, 409. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Kaushik, S.C.; Tyagi1, S.K. Performance enhancement of absorption refrigeration systems: An overview. J. Therm. Eng. 2023, 9, 1100–1113. [Google Scholar] [CrossRef]
- Gomri, R. Simulation study on the performance of solar/natural gas absorption cooling chillers. Energy Convers. Manag. 2013, 65, 675–681. [Google Scholar] [CrossRef]
- Shirazi, A.; Pintaldi, S.; White, S.D.; Morrison, G.L.; Rosengarten, G.; Taylor, R.A. Solar-assisted absorption air-conditioning systems in buildings: Control strategies and operational modes. Appl. Therm. Eng. 2016, 92, 246–260. [Google Scholar] [CrossRef]
- Kerme, E.D.; Chafidz, A.; Agboola, O.P.; Orfi, J.; Fakeeha, A.H.; Al-Fatesh, A.S. Energetic and exergetic analysis of solar-powered lithium bromide-water absorption cooling system. J. Clean. Prod. 2017, 151, 60–73. [Google Scholar] [CrossRef]
- Li, N.; Luo, C.; Su, Q. A working pair of CaCl2–LiBr–LiNO3/H2O and its application in a single-stage solar-driven absorption refrigeration cycle. Int. J. Refrig. 2018, 86, 1–13. [Google Scholar] [CrossRef]
- Ravikumar, T.; Suganthi, L.; Samuel, A.A. Exergy analysis of solar assisted double effect absorption refrigeration system. Renew. Energy 1998, 14, 55–59. [Google Scholar] [CrossRef]
- Babaei, S.M.; Razmi, A.R.; Soltani, M.; Nathwani, J. Quantifying the effect of nanoparticles addition to a hybrid absorption/recompression refrigeration cycle. J. Clean. Prod. 2020, 260, 121084. [Google Scholar] [CrossRef]
- Mohammadi, K.; Jiang, Y.; Borjian, S.; Powell, K. Thermo-economic assessment and optimization of a hybrid triple effect absorption chiller and compressor. Sustain. Energy Technol. Assess. 2020, 38, 100652. [Google Scholar] [CrossRef]
- Goswami, D.Y.; Xu, F. Analysis of a New Thermodynamic Cycle for Combined Power and Cooling Using Low and Mid Temperature Solar Collectors. J. Sol. Energy Eng. 1999, 121, 91–97. [Google Scholar] [CrossRef]
- Leveni, M.; Cozzolino, R. Energy, exergy, and cost comparison of Goswami cycle and cascade organic Rankine cycle/absorption chiller system for geothermal application. Energy Convers. Manag. 2021, 227, 113598. [Google Scholar] [CrossRef]
- Karimi, M.; Dutta, A.; Kaushik, A.; Bansal, H.; Haque, S. A review of organic Rankine, Kalina and Goswami cycle. Int. J. Eng. Technol. Manag. Appl. Sci. 2015, 3, 90–105. [Google Scholar]
- Fontalvo, A.; Pinzon, H.; Duarte, J.; Bula, A.; Quiroga, A.G.; Padilla, R.V. Exergy analysis of a combined power and cooling cycle. Appl. Therm. Eng. 2013, 60, 164–171. [Google Scholar] [CrossRef]
- Rivera, W.; Sánchez-Sánchez, K.; Hernández-Magallanes, J.A.; Jiménez-García, J.C.; Pacheco, A. Modeling of Novel Thermodynamic Cycles to Produce Power and Cooling Simultaneously. Processes 2020, 8, 320. [Google Scholar] [CrossRef]
- Hasan, A.A.; Goswami, D.Y. Exergy Analysis of a Combined Power and Refrigeration Thermodynamic Cycle Driven by a Solar Heat Source. J. Sol. Energy Eng. 2003, 125, 55–60. [Google Scholar] [CrossRef]
- López-Villada, J.; Ayou, D.S.; Bruno, J.C.; Coronas, A. Modelling, simulation and analysis of solar absorption power-cooling systems. Int. J. Refrig. 2014, 39, 125–136. [Google Scholar] [CrossRef]
- Alshammari, S.; Kadam, S.T.; Yu, Z. Assessment of single rotor expander-compressor device in combined organic Rankine cycle (ORC) and vapor compression refrigeration cycle (VCR). Energy 2023, 282, 128763. [Google Scholar] [CrossRef]
- Kim, M.-H. Energy and Exergy Analysis of Solar Organic Rankine Cycle Coupled with Vapor Compression Refrigeration Cycle. Energies 2022, 15, 5603. [Google Scholar] [CrossRef]
- Grauberger, A.; Young, D.; Bandhauer, T. Experimental validation of an organic rankine-vapor compression cooling cycle using low GWP refrigerant R1234ze(E). Appl. Energy 2022, 307, 118242. [Google Scholar] [CrossRef]
- Nasir, M.T.; Ekwonu, M.C.; Esfahani, J.A.; Kim, K.C. Performance assessment and multi-objective optimization of an organic Rankine cycles and vapor compression cycle based combined cooling, heating, and power system. Sustain. Energy Technol. Assess. 2021, 47, 101457. [Google Scholar] [CrossRef]
- Ghorbani, S.; Deymi-Dashtebayaz, M.; Dadpour, D.; Delpisheh, M. Parametric study and optimization of a novel geothermal-driven combined cooling, heating, and power (CCHP) system. Energy 2023, 263, 126143. [Google Scholar] [CrossRef]
- Tao, J.; Wang, H.; Wang, J.; Feng, C. Exergoeconomic and Exergoenvironmental Analysis of a Novel Power and Cooling Cogeneration System Based on Organic Rankine Cycle and Ejector Refrigeration Cycle. Energies 2022, 15, 7945. [Google Scholar] [CrossRef]
- Chowdhury, T.; Mokheimer, E.M.A. Performance Assessment of Solar Parabolic Trough Collector-Assisted Combined Organic Rankine Cycle and Triple Pressure Level Ejector-Absorption Refrigeration Cycle. J. Energy Resour. Technol. 2022, 144, 4053893. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, Y.; Yang, M.; Peng, B.-Y.; Qian, F. A trigeneration application based on compressed air energy storage integrated with organic Rankine cycle and absorption refrigeration: Multi-objective optimisation and energy, exergy and economic analysis. J. Energy Storage 2022, 55, 105803. [Google Scholar] [CrossRef]
- Sharifishourabi, M.; Chadegani, E.A. Performance assessment of a new organic Rankine cycle based multi-generation system integrated with a triple effect absorption system. Energy Convers. Manag. 2017, 150, 787–799. [Google Scholar] [CrossRef]
- Anvari, S.; Saray, R.K.; Bahlouli, K. Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production. Energy 2015, 91, 925–939. [Google Scholar] [CrossRef]
- Pashapour, M.; Jafarmadar, S.; Arya, S.K. Exergy Analysis of a Novel Combined System Consisting of a Gas Turbine, an Organic Rankine Cycle and an Absorption Chiller to Produce Power, Heat and Cold. Int. J. Eng. 2019, 32, 1320–1326. [Google Scholar] [CrossRef]
- Jiménez-García, J.C.; Moreno-Cruz, I.; Rivera, W. Modeling of an Organic Rankine Cycle Integrated into a Double-Effect Absorption System for the Simultaneous Production of Power and Cooling. Processes 2023, 11, 667. [Google Scholar] [CrossRef]
- Grosu, L.; Marin, A.; Dobrovicescu, A.; Queiros-Conde, D. Exergy analysis of a solar combined cycle: Organic Rankine cycle and absorption cooling system. Int. J. Energy Environ. Eng. 2016, 7, 449–459. [Google Scholar] [CrossRef]
- Gupta, P.R.; Tiwari, A.K.; Said, Z. Solar organic Rankine cycle and its poly-generation applications—A review. Sustain. Energy Technol. Assess. 2022, 49, 101732. [Google Scholar] [CrossRef]
- NREL. System Advisor Model, SAM; NREL: Golden, CO, USA, 2023. [Google Scholar]
- Herath, H.; Wijewardane, M.; Ranasinghe, R.; Jayasekera, J. Working fluid selection of Organic Rankine Cycles. Energy Rep. 2020, 6, 680–686. [Google Scholar] [CrossRef]
- Dai, B.; Zhu, K.; Wang, Y.; Sun, Z.; Liu, Z. Evaluation of organic Rankine cycle by using hydrocarbons as working fluids: Advanced exergy and advanced exergoeconomic analyses. Energy Convers. Manag. 2019, 197, 111876. [Google Scholar] [CrossRef]
- Pezzuolo, A.; Benato, A.; Stoppato, A.; Mirandola, A. The ORC-PD: A versatile tool for fluid selection and Organic Rankine Cycle unit design. Energy 2016, 102, 605–620. [Google Scholar] [CrossRef]
- Roy, J.P.; Mishra, M.K.; Misra, A. Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions. Appl. Energy 2011, 88, 2995–3004. [Google Scholar] [CrossRef]
- Wang, E.H.; Zhang, H.G.; Fan, B.Y.; Ouyang, M.G.; Zhao, Y.; Mu, Q.H. Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy 2011, 36, 3406–3418. [Google Scholar] [CrossRef]
- Desai, N.B.; Bandyopadhyay, S. Process integration of organic Rankine cycle. Energy 2009, 34, 1674–1686. [Google Scholar] [CrossRef]
- Maizza, V.; Maizza, A. Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems. Appl. Therm. Eng. 2001, 21, 381–390. [Google Scholar] [CrossRef]
- Wagner, M.J.; Mehos, M.S.; Kearney, D.W.; McMahan, A.C. Modeling of a Parabolic Trough Solar Field for Acceptance Testing: A Case Study. In Proceedings of the ASME 2011 5th International Conference on Energy Sustainability, Washington, DC, USA, 7–10 August 2011; pp. 595–603. [Google Scholar]
- Mohammadi, A.; Kasaeian, A.; Pourfayaz, F.; Ahmadi, M.H. Thermodynamic analysis of a combined gas turbine, ORC cycle and absorption refrigeration for a CCHP system. Appl. Therm. Eng. 2017, 111, 397–406. [Google Scholar] [CrossRef]
- Clerx, M.; Trezek, G. Performance of an aqua-ammonia absorption solar refrigerator at sub-freezing evaporator conditions. Sol. Energy 1987, 39, 379–389. [Google Scholar] [CrossRef]
- Merchán, R.; Santos, M.; Medina, A.; Hernández, A.C. High temperature central tower plants for concentrated solar power: 2021 overview. Renew. Sustain. Energy Rev. 2022, 155, 111828. [Google Scholar] [CrossRef]
Fluid | Critical Temperature (°C) | Temperature on Turning Point (°C) | ORC Thermal Efficiency | ODP | GWP |
---|---|---|---|---|---|
Benzene | 288.9 | 263.35 | 28.92 | 0 | Low |
Cyclohexane | 280.49 | 268.85 | 26.33 | 0 | Low |
Toluene | 318.6 | 299.85 | 29.77 | 0 | 0 |
R123 | 183.68 | 150.35 | 18.48 | 0.02 | 93 |
Consideration | Equation | Equation No. |
---|---|---|
Isentropic efficiency of pumps: | (2) | |
Turbine isentropic efficiency: | (3) | |
Effectiveness of the economizer: | (4) | |
Temperature at the output of the power cycle condenser | (5) | |
Generation heat (known from the power cycle): | (6) | |
Generation temperature: | (7) | |
Condensing temperature: | (8) | |
Evaporation temperature: | (9) | |
Ammonia concentration after rectifier: | (10) | |
Ammonia concentration after evaporator: | (11) |
Component | Mass Balance | Equation No. | Ammonia Balance | Equation No. |
---|---|---|---|---|
ORC | (12) | / | / | |
Generator | (13) | (14) | ||
Rectifier | (15) | (16) | ||
Condenser | (17) | (18) | ||
Valve 1 | (19) | (20) | ||
Evaporator | (21) | (22) | ||
Absorber | (23) | (24) | ||
Pump | (25) | (26) | ||
Valve 2 | (27) | (28) |
Component | Energy Balance | Equation No. |
---|---|---|
Generator | (29) | |
Rectifier | (30) | |
Condenser ACS | (31) | |
Valve 1 | (32) | |
Evaporator ACS | (33) | |
Absorber | (34) | |
Pump ACS | (35) | |
Valve 2 | (36) | |
Evaporator ORC | (37) | |
Turbine | (38) | |
Condenser ORC | (39) | |
Pump ORC | (40) |
System | Parameter | Present Work | Mohammadi et al. [70] | Units | Relative Error (%) |
---|---|---|---|---|---|
ORC | Turbine power | 7.42 | 7.317 | kW | 1.41 |
Pump power | 0.1519 | 0.156 | kW | 2.63 | |
Efficiency | 34.19 | 32.27 | % | 5.95 | |
System | Parameter | Present work | Clerk and Trezek [71] | Units | Relative error (%) |
Absorption cycle | Cooling load | 10.5 | 10.51 | kW | 0.10 |
Generation load | 21.78 | 21.66 | kW | 0.55 | |
0.44 | 0.41 | -- | 7.32 | ||
0.29 | 0.28 | -- | 3.57 | ||
COP | 0.48 | 0.47 | -- | 2.13 |
State (See Figure 1) | Mass Flow Rate (kg/s) | T (°C) | P (kPa) | Composition (%) | Specific Enthalpy (kJ/kg) |
---|---|---|---|---|---|
Solar system | |||||
1S | 1 | 168.1 | 2300 | 100 | 711.84 |
2S | 1 | 197.1 | 2300 | 100 | 839.79 |
3S | 0.6135 | 197.1 | 2300 | 100 | 839.79 |
3S’ | 0.3864 | 197.1 | 2300 | 100 | 839.79 |
4S | 0.6135 | 170 | 2300 | 100 | 720.13 |
4S’ | 0.3864 | 170 | 2300 | 100 | 720.13 |
Organic Rankine Cycle | |||||
1P | 0.1415 | 100.5 | 1162 | 100 | 40.17 |
2P | 0.1415 | 187.1 | 1162 | 100 | 524.6 |
3P | 0.1415 | 129.4 | 180.2 | 100 | 459.7 |
4P | 0.1415 | 100 | 180.2 | 100 | 38.71 |
Absorption Cooling Cycle | |||||
1 | 0.03486 | 119.4 | 857.2 | 0.8081 | 1752 |
2 | 0.026 | 109.4 | 857.2 | 0.9996 | 1516 |
3 | 0.026 | 20 | 857.2 | 0.9996 | 93.37 |
4 | 0.026 | −26.8 | 139.3 | 0.9996 | 93.37 |
5 | 0.026 | −5 | 139.3 | 0.9996 | 1284 |
6 | 0.1069 | 20 | 139.3 | 0.3981 | −138.3 |
7 | 0.1069 | 20 | 857.2 | 0.3981 | −137.4 |
8 | 0.1069 | 86.2 | 857.2 | 0.3981 | 272.8 |
9 | 0.08091 | 119.4 | 857.2 | 0.2049 | 375.3 |
10 | 0.008866 | 109.4 | 857.2 | 0.2465 | 310.3 |
11 | 0.08091 | −6.7 | 857.2 | 0.2049 | −166.6 |
12 | 0.08091 | −6.5 | 139.3 | 0.2049 | −166.6 |
Power | |||||
System | Location | Thermal load | Units | ||
Solar energy | DNI | 168.26 | |||
Solar system | PTSC | 127.94 | |||
Solar system | 73.41 | ||||
ORC | 68.51 | ||||
ORC | 59.55 | ||||
ORC | 9.17 | ||||
ACS | 59.55 | ||||
ACS | 36.98 | ||||
ACS | 34.69 | ||||
ACS | 30.96 | ||||
Performance | |||||
Parameter | Value | Units | |||
13.08 | % | ||||
COP | 51.9 | % | |||
EUF | 58.31 | % | |||
44.3 | % |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-García, J.C.; Moreno-Cruz, I.; Rivera, W. Thermodynamic Modeling of a Solar-Driven Organic Rankine Cycle-Absorption Cooling System for Simultaneous Power and Cooling Production. Processes 2024, 12, 427. https://doi.org/10.3390/pr12030427
Jiménez-García JC, Moreno-Cruz I, Rivera W. Thermodynamic Modeling of a Solar-Driven Organic Rankine Cycle-Absorption Cooling System for Simultaneous Power and Cooling Production. Processes. 2024; 12(3):427. https://doi.org/10.3390/pr12030427
Chicago/Turabian StyleJiménez-García, José C., Isaías Moreno-Cruz, and Wilfrido Rivera. 2024. "Thermodynamic Modeling of a Solar-Driven Organic Rankine Cycle-Absorption Cooling System for Simultaneous Power and Cooling Production" Processes 12, no. 3: 427. https://doi.org/10.3390/pr12030427
APA StyleJiménez-García, J. C., Moreno-Cruz, I., & Rivera, W. (2024). Thermodynamic Modeling of a Solar-Driven Organic Rankine Cycle-Absorption Cooling System for Simultaneous Power and Cooling Production. Processes, 12(3), 427. https://doi.org/10.3390/pr12030427