Synergetic Mechanism of Multiple Industrial Solid Waste-Based Geopolymer Binder for Soil Stabilization: Optimization Using D-Optimal Mixture Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. D-Optimal Mixture Design
2.4. Compressive Strength Test
2.5. X-ray Powder Diffraction (XRD)
2.6. Thermogravimetric Analysis (TGA)
2.7. Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. Optimization of Mixture Composition for MSWSS
3.1.1. Fitting Model and Response Surface Analysis
3.1.2. Optimization of Mixture Composition
3.2. Compressive Strength Test
3.3. XRD Analysis
3.4. TG–DSC Analysis
3.5. SEM-EDS Analysis
3.6. Discussion
4. Conclusions
- (1)
- Interaction between the five components was modeled mathematically against the responses of 7d UCS. According to the result of the ANOVA and the model reliability analysis, the prediction model showed a lower p-value (<0.0001) and lower absolute relative deviations (1.81%), and a higher F-value (406.92), R2 value (0.9971), and adjusted R2 value (0.9893). This indicated that the model had high reliability and was able to predict 7d UCS relatively accurately.
- (2)
- The D-optimal mixture approach indicated that the optimal ratio of MSWSS should be 5% steel slag (SS), 50% carbide slag (CS), 15% blast furnace slag (BFS), 15% desulfurized gypsum (DG), and 15% fly ash (FA). The UCS of the stabilized soil increased with the curing time. The 7d UCS of soil stabilized using the multiple industrial solid waste-based soil stabilizer was 1.7 MPa and the 180d UCS increased to 3.27 MPa, which all met the requirements for the “Technical Guidelines for Construction of Highway Roadbases”. The UCS of the MSWSS stabilized test soil group was significantly higher than that of the OPC group.
- (3)
- XRD, TG-DSC, and SEM results revealed that the primary hydration products were AFt and C-S-H gel. As the curing progressed, the content of the AFt and C-S-H increased and the microstructure of stabilized soil exhibited a denser structure, leading to better mechanical strength.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Bank Group. Trends in Solid Waste Management; The World Bank: Bretton Woods, NH, USA, 2020; Available online: https://datatopics.worldbank.org/what-a-waste/trends_in_solid_waste_management.html (accessed on 9 February 2024).
- Guo, Y.; Glad, T.; Zhong, Z.Z.; He, R.N.; Tian, J.P.; Chen, L.J. Environmental life-cycle assessment of municipal solid waste incineration stocks in Chinese industrial parks. Resour. Conserv. Recycl. 2018, 139, 387–395. [Google Scholar] [CrossRef]
- Liu, A.; Ren, F.; Lin, W.L.Y.; Wang, J.Y. A review of municipal solid waste environmental standards with a focus on incinerator residues. Int. J. Sustain. Built Environ. 2015, 4, 165–188. [Google Scholar] [CrossRef]
- Wang, X.; Fu, P.; Deng, W.; Shi, J.; Xu, M. Study on Mechanism of MSWI Fly Ash Solidified by Multiple Solid Waste-Based Cementitious Material Using the Rietveld Method. Processes 2023, 11, 2311. [Google Scholar] [CrossRef]
- Kumar, R.A.; Singh, G.; Kumar, T.A. Comparative study of soil stabilization with glass powder, plastic and e-waste: A review. Mater. Today Proc. 2020, 32, 771–776. [Google Scholar] [CrossRef]
- Lu, J.Z.; Jiang, S.; Chen, J.J.; Lee, C.H.; Cai, Z.W.; Ruan, H.D. Fabrication of superhydrophobic soil stabilizers derived from solid wastes applied for road construction: A review. Transp. Geotech. 2023, 40, 100974. [Google Scholar] [CrossRef]
- Soltani-Jigheh, H.; Tahaei, Y.S.N. Effect of liquid polymer on properties of fine-grained soils. Geotech. Eng. 2019, 50, 9–21. [Google Scholar]
- Hassan, N.; Hassan, W.H.W.; Rashid, A.S.A.; Latifi, N.; Yunus, N.Z.M.; Horpibulsuk, S.; Moayedi, H. Microstructural characteristics of organic soils treated with biomass silica stabilizer. Environ. Earth Sci. 2019, 78, 367. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, H.; El-Korchi, T.; Zhang, G.; Tao, M. Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Constr. Build. Mater. 2013, 47, 1468–1478. [Google Scholar] [CrossRef]
- Latifi, N.; Vahedifard, F.; Ghazanfari, E.; Rashid, A.S.A. Sustainable Usage of Calcium Carbide Residue for Stabilization of Clays. J. Mater. Civ. Eng. 2018, 30, 2313. [Google Scholar] [CrossRef]
- Latifi, N.; Vahedifard, F.; Siddiqua, S.; Horpibulsuk, S. Solidification–Stabilization of Heavy Metal–Contaminated Clays Using Gypsum: Multiscale Assessment. Int. J. Géoméch. 2018, 18, 1283. [Google Scholar] [CrossRef]
- Kavak, A.; Akyarlı, A. A field application for lime stabilization. Environ. Geol. 2007, 15, 987–997. [Google Scholar] [CrossRef]
- Ninov, J.; Donchev, I. Lime stabilization of clay from the ‘Mirkovo’ deposit. J. Therm. Anal. Calorim. 2008, 19, 487–490. [Google Scholar] [CrossRef]
- Tayeh, B.A.; Hasaniyah, M.W.; Zeyad, A.M.; Awad, M.M.; Alaskar, A.; Mohamed, A.M.; Alyousef, R. Durability and mechanical properties of seashell partially-replaced cement. J. Build. Eng. 2020, 31, 101328. [Google Scholar] [CrossRef]
- Marvila, M.T.; Alexandre, J.; Azevedo, A.R.G.; Zanelato, E.B.; Xavier, G.C.; Monteiro, S.N. Study on the replacement of the hydrated lime by kaolinitic clay in mortars. Adv. Appl. Ceram. 2019, 118, 373–380. [Google Scholar] [CrossRef]
- Latifi, N.; Vahedifard, F.; Ghazanfari, E.; Horpibulsuk, S.; Marto, A.; Williams, J. Sustainable Improvement of Clays Using Low-Carbon Nontraditional Additive. Int. J. Géoméch. 2018, 18, 1086. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.S.; Tsang, D.C.W.; Poon, C.; Shih, K. Recycling contaminated wood into eco-friendly particleboard using green cement and carbon dioxide curing. J. Clean. Prod. 2016, 137, 861–870. [Google Scholar] [CrossRef]
- Gu, J.; Liu, X.; Zhang, Z. Road base materials prepared by multi-industrial solid wastes in China: A review. Constr. Build. Mater. 2023, 373, 130860. [Google Scholar] [CrossRef]
- Rafiean, A.H.; Kani, E.N.; Haddad, A. Mechanical and Durability Properties of Poorly Graded Sandy Soil Stabilized with Activated Slag. J. Mater. Civ. Eng. 2020, 32, 2990. [Google Scholar]
- Ghaffar, H.; Al-Kheetan, M.; Ewens, P.; Wang, T.; Zhuang, J. Investigation of the interfacial bonding between flax/wool twine and various cementitious matrices in mortar composites. Constr. Build. Mater. 2020, 239, 117833. [Google Scholar] [CrossRef]
- Thirumalai, R.; Babu, S.S.; Naveennayak, V.; Nirmal, R.; Lokesh, G. A Review on Stabilization of Expansive Soil Using Industrial Solid Wastes. Engineering 2017, 9, 1008–1017. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Li, Z. Investigation the synergistic effects in quaternary binder containing red mud, blast furnace slag, steel slag and flue gas desulfurization gypsum based on artificial neural networks. J. Clean. Prod. 2020, 273, 122972. [Google Scholar] [CrossRef]
- Traven, K.; Češnovar, M.; Ducman, V. Particle size manipulation as an influential parameter in the development of mechanical properties in electric arc furnace slag-based AAM. Ceram. Int. 2019, 45, 22632–22641. [Google Scholar] [CrossRef]
- Li, W.; Yi, Y. Use of carbide slag from acetylene industry for activation of ground granulated blast-furnace slag. Constr. Build. Mater. 2020, 238, 117713. [Google Scholar] [CrossRef]
- Gao, D.; Zhang, Z.; Meng, Y.; Tang, J.; Yang, L. Effect of Flue Gas Desulfurization Gypsum on the Properties of Calcium Sulfoaluminate Cement Blended with Ground Granulated Blast Furnace Slag. Materials 2021, 14, 382. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fu, H.; Yan, X.; Wang, L.; Wang, P. Research status of comprehensive utilization of steel slag. China Nonferr. Metall. 2021, 50, 77–82. [Google Scholar]
- Wang, S.J.; Bu, H.T.; Chen, H.J.; Hu, T.; Chen, W.Z.; Wu, J.H.; Hu, H.J.; Lin, M.Z.; Li, Y.T.; Jiang, G.B. Floatable magnetic aerogel based on alkaline residue used for the convenient removal of heavy metals from wastewater. Chem. Eng. J. 2020, 399, 125760. [Google Scholar] [CrossRef]
- Nan, J.K.; Chen, X.M.; Wang, X.Y.; Lashari, M.S.; Wang, Y.M.; Guo, Z.C.; Du, Z.J. Effects of applying flue gas desulfurization gypsum and humic acid on soil physicochemical properties and rapeseed yield of a saline-sodic cropland in the eastern coastal area of China. J. Soils Sediments 2016, 16, 38–50. [Google Scholar] [CrossRef]
- Wang, X.; Kim, S.; Wu, Y.; Liu, Y.; Liu, T.; Wang, Y. Study on the optimization and performance of GFC soil stabilizer based on response surface methodology in soft soil stabilization. Soils Found. 2023, 63, 101278. [Google Scholar] [CrossRef]
- Amran, M.; Debbarma, S.; Ozbakkaloglu, T. Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Constr. Build. Mater. 2021, 270, 121857. [Google Scholar] [CrossRef]
- Makarichi, L.; Jutidamrongphan, W.; Techato, K.A. The evolution of waste-toenergy incineration: A review. Renew. Sustain. Energy Rev. 2018, 91, 812–821. [Google Scholar] [CrossRef]
- Mao, Y.; Wu, H.; Wang, W.; Jia, M.; Che, X. Pretreatment of municipal solid waste incineration fly ash and preparation of solid waste source sulphoaluminate cementitious material. J. Hazard. Mater. 2020, 385, 121580. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, R.; Han, H. Climate neutral in agricultural production system: A regional case from China. Environ. Sci. Pollut. Res. 2021, 28, 33682–33697. [Google Scholar] [CrossRef]
- Marieta, C.; Guerrero, A.; Leon, I. Municipal solid waste incineration fly ash to produce eco-friendly binders for sustainable building construction. Waste Manag. 2021, 120, 114–124. [Google Scholar] [CrossRef]
- Wang, N.N.; Sun, X.Y.; Zhao, Q.; Yang, Y.; Wang, P. Leachability and adverse effects of coal fly ash: A review. J. Hazard. Mater. 2020, 396, 122725. [Google Scholar] [CrossRef]
- Ren, C.; Wang, W.; Li, G. Preparation of high-performance cementitious materials from industrial solid waste. Constr. Build. Mater. 2017, 152, 39–47. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, J.; He, X.; Zhang, Y.; Su, Y.; Tan, H. Sustainable clinker-free solid waste binder produced from wet-ground granulated blast-furnace slag, phosphogypsum and carbide slag. Constr. Build. Mater. 2022, 330, 127218. [Google Scholar] [CrossRef]
- Kampala, A.; Horpibulsuk, S. Engineering Properties of Silty Clay Stabilized with Calcium Carbide Residue. J. Mater. Civ. Eng. 2013, 25, 632–644. [Google Scholar] [CrossRef]
- Yi, Y.; Gu, L.; Liu, S.; Puppala, A.J. Carbide slag–activated ground granulated blastfurnace slag for soft clay stabilization. Can. Geotech. J. 2015, 52, 656–663. [Google Scholar] [CrossRef]
- He, J.; Shi, X.K.; Li, Z.X.; Zhang, L.; Feng, X.Y.; Zhou, L.R. Strength properties of dredged soil at high water content treated with soda residue, carbide slag, and ground granulated blast furnace slag. Constr. Build. Mater. 2020, 242, 118126. [Google Scholar] [CrossRef]
- Ren, P.; Ling, T.C. Roles of chlorine and sulphate in MSWIFA in GGBFS binder: Hydration, mechanical properties and stabilization considerations. Environ. Pollut. 2021, 284, 117175. [Google Scholar] [CrossRef]
- Wen, N.; Zhao, Y.; Yu, Z.; Liu, M. A sludge and modified rice husk ash-based geopolymer: Synthesis and characterization analysis. J. Clean. Prod. 2019, 226, 805–814. [Google Scholar] [CrossRef]
- Phummiphan, I.; Horpibulsuk, S.; Phoongernkham, T.; Arulrajah, A.; Shen, S.L. Marginal Lateritic Soil Stabilized with Calcium Carbide Residue and Fly Ash Geopolymers as a Sustainable Pavement Base Material. J. Mater. Civ. Eng. 2017, 29, 1708. [Google Scholar] [CrossRef]
- Venkatesan, M.; Zaib, Q.; Shah, I.H.; Park, H.S. Optimum utilization of waste foundry sand and fly ash for geopolymerconcrete synthesis using D-optimal mixture design of experiments. Resour. Conserv. Recycl. 2019, 148, 114–123. [Google Scholar] [CrossRef]
- Lei, B.; Fu, P.; Wang, X.; Ni, W.; Zhang, S.; Wang, X.; Shi, J.; Xu, M. The Hydration Mechanisms of Co-Stabilization Saline Soils by Using Multiple Solid Wastes. Processes 2023, 11, 2679. [Google Scholar] [CrossRef]
- Asadzadeh, S.; Khoshbayan, S. Multi-objective optimization of influential factors on production process of foamed concrete using Box-Behnken approach. Constr. Build. Mater. 2018, 170, 101–110. [Google Scholar] [CrossRef]
- Xu, C.; Ni, W.; Li, K.; Zhang, S.; Xu, D. Activation mechanisms of three types of industrial by-product gypsums on steel slag–granulated blast furnace slag-based binders. Constr. Build. Mater. 2021, 288, 123111. [Google Scholar] [CrossRef]
- Durdziński, P.T. Hydration of Multi-Component Cements Containing Cement Clinker, Slag, Calcareous Fly Ash and Limestone; EPFL: Lausanne, Switzerland, 2016; p. 189. [Google Scholar]
- Zhang, N.; Li, H.; Liu, X. Hydration mechanism and leaching behavior of bauxitecalcination-method red mud-coal gangue based cementitious materials. J. Hazard. Mater. 2016, 314, 172–180. [Google Scholar] [CrossRef]
Natural Water Content /% | Optimum Water Content/% | Maximum Dry Density/g·cm−3 | Plastic Limit /% | Liquid Limit /% | Plasticity Index |
---|---|---|---|---|---|
7.22 | 14.40 | 1.85 | 25.10 | 40.28 | 15.18 |
SiO2 | Al2O3 | CaO | Fe2O3 | MgO | K2O | Na2O | Cl | TiO2 | SO3 | LOI | |
---|---|---|---|---|---|---|---|---|---|---|---|
test soil | 52.93 | 18.55 | 10.86 | 7.94 | 3.45 | 3.66 | 0.88 | 0.08 | 0.94 | 0.1 | 1.21 |
SS | 15.04 | 2.36 | 39.92 | 27.26 | 7.84 | 0.03 | 0.44 | 0.23 | 0.82 | 0.23 | 2.92 |
CS | 2.46 | 1.71 | 93.83 | 0.30 | 0 | 0 | 0.53 | 0.67 | 0.05 | 0.36 | 26.84 |
BFS | 39.83 | 30.33 | 14.52 | 7.92 | 1.01 | 1.42 | 1.06 | 0 | 1.49 | 1.12 | 2.15 |
DG | 3.19 | 1.21 | 47.43 | 1.19 | 1.42 | 0.29 | 0.39 | 0.84 | 0.11 | 43.32 | 20.27 |
FA | 28.06 | 15.73 | 41.82 | 1.60 | 7.91 | 0.36 | 0.35 | 0.04 | 1.17 | 2.47 | 3.49 |
Variables | Name | Content/wt. % | |
---|---|---|---|
Low | High | ||
A | Steel slag | 5 | 20 |
B | Carbide slag | 20 | 50 |
C | Blast furnace slag | 5 | 15 |
D | Desulfurized gypsum | 5 | 20 |
E | Fly ash | 10 | 25 |
Number | The Ratio of Each Component/wt. % | 7d UCS/MPa | ||||
---|---|---|---|---|---|---|
A | B | C | D | E | ||
1 | 12.6 | 50.0 | 10.3 | 9.2 | 17.9 | 1.28 |
2 | 13.0 | 47.7 | 9.3 | 20.0 | 10.0 | 1.23 |
3 | 12.6 | 50.0 | 10.3 | 9.2 | 17.9 | 1.23 |
4 | 20.0 | 32.4 | 10.1 | 12.5 | 25.0 | 1.35 |
5 | 13.8 | 31.4 | 15.0 | 18.3 | 21.5 | 1.15 |
6 | 20.0 | 50.0 | 15.0 | 5.0 | 10.0 | 1.17 |
7 | 8.2 | 37.7 | 11.6 | 17.5 | 25.0 | 1.28 |
8 | 8.2 | 37.7 | 11.6 | 17.5 | 25.0 | 1.27 |
9 | 12.6 | 50.0 | 10.3 | 9.2 | 17.9 | 1.26 |
10 | 13.8 | 41.7 | 8.6 | 11.0 | 25.0 | 1.27 |
11 | 17.5 | 41.5 | 15.0 | 5.0 | 21.0 | 1.22 |
12 | 5.0 | 50.0 | 5.0 | 17.3 | 22.8 | 1.19 |
13 | 20.0 | 32.8 | 11.6 | 20.0 | 15.6 | 1.10 |
14 | 5.0 | 45.5 | 14.8 | 20.0 | 14.8 | 1.59 |
15 | 17.3 | 23.0 | 15.0 | 19.7 | 25.0 | 1.01 |
16 | 15.3 | 42.7 | 15.0 | 15.2 | 11.7 | 1.58 |
17 | 20.0 | 41.0 | 10.5 | 11.4 | 17.1 | 1.15 |
18 | 20.0 | 40.5 | 8.6 | 20.0 | 10.9 | 1.12 |
19 | 15.3 | 42.7 | 15.0 | 15.2 | 11.7 | 1.53 |
20 | 20.0 | 47.8 | 5.0 | 13.0 | 14.2 | 1.05 |
21 | 15.6 | 35.7 | 5.0 | 20.0 | 23.6 | 0.95 |
22 | 17.5 | 41.5 | 15.0 | 5.0 | 21.0 | 1.21 |
23 | 5.0 | 50.0 | 15.0 | 5.0 | 25.0 | 1.25 |
24 | 5.0 | 44.4 | 15.0 | 12.9 | 22.7 | 1.63 |
25 | 20.0 | 45.0 | 5.0 | 5.0 | 25.0 | 1.30 |
26 | 20.0 | 25.0 | 10.0 | 20.0 | 25.0 | 1.06 |
27 | 12.8 | 40.0 | 9.4 | 20.0 | 17.8 | 1.28 |
28 | 11.7 | 50.0 | 5.0 | 8.3 | 25.0 | 1.03 |
29 | 10.0 | 40.0 | 15.0 | 10.0 | 25.0 | 1.33 |
30 | 20.0 | 50.0 | 8.3 | 5.0 | 16.7 | 1.12 |
31 | 12.8 | 40.0 | 9.4 | 20.0 | 17.8 | 1.26 |
32 | 5.0 | 50.0 | 15.0 | 15.0 | 15.0 | 1.64 |
33 | 18.3 | 41.7 | 5.0 | 10.0 | 25.0 | 1.19 |
34 | 12.5 | 50.0 | 15.0 | 12.5 | 10.0 | 1.54 |
35 | 13.2 | 46.8 | 8.7 | 13.2 | 18.2 | 1.29 |
Model | Sequential p-Value | Lack of Fit p-Value | Adjusted R2 | Predicted R2 | Evaluate |
---|---|---|---|---|---|
Linear | 0.0002 | <0.0001 | 0.4607 | 0.2808 | |
Quadratic | 0.0002 | 0.0008 | 0.8162 | 0.5376 | |
Special Cubic | <0.0001 | 0.8173 | 0.9893 | 0.8363 | Suggested |
Cubic | 0.8173 | 0.9862 | Aliased |
Source | Sum of Squares | Free Degree | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 1.07 | 24 | 0.0445 | 128.53 | <0.0001 | significant |
Linear Mixture | 0.5633 | 4 | 0.1408 | 406.92 | <0.0001 | |
AB | 0.0436 | 1 | 0.0436 | 125.97 | <0.0001 | |
AC | 0.0083 | 1 | 0.0083 | 24.05 | 0.0008 | |
AD | 0.0174 | 1 | 0.0174 | 50.15 | <0.0001 | |
AE | 0.0543 | 1 | 0.0543 | 156.97 | <0.0001 | |
BC | 0.0068 | 1 | 0.0068 | 19.72 | 0.0016 | |
BD | 0.0028 | 1 | 0.0028 | 7.95 | 0.0200 | |
BE | 0.0112 | 1 | 0.0112 | 32.42 | 0.0003 | |
CD | 0.0001 | 1 | 0.0001 | 0.2386 | 0.6369 | |
CE | 0.0002 | 1 | 0.0002 | 0.4495 | 0.5194 | |
DE | 0.0012 | 1 | 0.0012 | 3.45 | 0.0960 | |
ABC | 0.0171 | 1 | 0.0171 | 49.50 | <0.0001 | |
ABD | 0.0099 | 1 | 0.0099 | 28.74 | 0.0005 | |
ABE | 0.0658 | 1 | 0.0658 | 190.23 | <0.0001 | |
ACD | 0.0004 | 1 | 0.0004 | 1.30 | 0.2841 | |
ACE | 0.0014 | 1 | 0.0014 | 4.11 | 0.0733 | |
ADE | 0.0284 | 1 | 0.0284 | 82.04 | <0.0001 | |
BCD | 0.0038 | 1 | 0.0038 | 10.86 | 0.0093 | |
BCE | 0.0000 | 1 | 0.0000 | 0.1022 | 0.7565 | |
BDE | 0.0037 | 1 | 0.0037 | 10.83 | 0.0094 |
Model | Std. Dev. | Mean /MPa | C.V./% | R2 | Adjusted R2 | Predicted R2 | Adequate Precision |
---|---|---|---|---|---|---|---|
Y7d UCS | 0.0186 | 1.26 | 1.48 | 0.9971 | 0.9893 | 0.8363 | 43.2860 |
Proportion of Components/wt. % | 7d UCS/MPa | Absolute Relative Deviations/% | |||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | Predicted Value | Observed Value | |
5 | 50 | 15 | 15 | 15 | 1.65 | 1.62 | 1.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, X.; Fu, P.; Lei, B.; Shi, J.; Xu, M. Synergetic Mechanism of Multiple Industrial Solid Waste-Based Geopolymer Binder for Soil Stabilization: Optimization Using D-Optimal Mixture Design. Processes 2024, 12, 436. https://doi.org/10.3390/pr12030436
Wang X, Wang X, Fu P, Lei B, Shi J, Xu M. Synergetic Mechanism of Multiple Industrial Solid Waste-Based Geopolymer Binder for Soil Stabilization: Optimization Using D-Optimal Mixture Design. Processes. 2024; 12(3):436. https://doi.org/10.3390/pr12030436
Chicago/Turabian StyleWang, Xiaoli, Xiancong Wang, Pingfeng Fu, Bolan Lei, Jinjin Shi, and Miao Xu. 2024. "Synergetic Mechanism of Multiple Industrial Solid Waste-Based Geopolymer Binder for Soil Stabilization: Optimization Using D-Optimal Mixture Design" Processes 12, no. 3: 436. https://doi.org/10.3390/pr12030436
APA StyleWang, X., Wang, X., Fu, P., Lei, B., Shi, J., & Xu, M. (2024). Synergetic Mechanism of Multiple Industrial Solid Waste-Based Geopolymer Binder for Soil Stabilization: Optimization Using D-Optimal Mixture Design. Processes, 12(3), 436. https://doi.org/10.3390/pr12030436