Barrier, Mechanical, Thermal, and Rheological Properties of Plasticized Biopolymeric Films Manufactured by Co-Extrusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Extrusion of Biopolymeric Blends to Obtain Pellets
2.3. Obtaining Flat Film
2.4. Characterization
2.4.1. Fourier Transformed Infrared Spectroscopy (FTIR)
2.4.2. Rheological Analysis
2.4.3. Thermal Properties
2.4.4. Mechanical Properties
2.4.5. Morphological Analysis
2.4.6. Contact Angle (CA) Analysis
2.4.7. Water Vapor Transmission Rate (WVTR) and Water Vapor Permeability (WVP)
3. Results
3.1. Rheological Analysis
3.2. FTIR Analysis
3.3. Thermal Analysis
3.4. Melt Flow Index (MFI)
3.5. FTIR Analysis for Films
3.6. Contact Angle Analysis
3.7. Water Vapor Permeability
3.8. Mechanical Analysis
3.9. Scanning Electron Microscopy (SEM)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Versino, F.; Ortega, F.; Monroy, Y.; Rivero, S.; López, O.V.; García, M.A. Sustainable and bio-based food packaging: A review on past and current design innovations. Foods 2023, 12, 1057. [Google Scholar] [CrossRef]
- Marsh, K.; Bugusu, B. Food packaging—Roles, materials, and environmental issues. J. Food Sci. 2007, 72, R39. [Google Scholar] [CrossRef]
- Ada, E.; Kazancoglu, Y.; Lafcı, Ç.; Ekren, B.Y.; Çimitay Çelik, C. Identifying the Drivers of Circular Food Packaging: A Comprehensive Review for the Current State of the Food Supply Chain to Be Sustainable and Circular. Sustainability 2023, 15, 11703. [Google Scholar] [CrossRef]
- Babaremu, K.; Oladijo, O.P.; Akinlabi, E. Biopolymers: A suitable replacement for plastics in product packaging. Adv. Ind. Eng. Polym. Res. 2023, 6, 333–340. [Google Scholar] [CrossRef]
- Caicedo, C.; Jasso-Salcedo, A.B.; de Abril Alexandra Soriano-Melgar, L.; Díaz-Cruz, C.A.; Jiménez-Regalado, E.J.; Aguirre-Loredo, R.Y. Biobased and Biodegradable Packaging Plastics for Food Preservation. In Handbook of Bioplastics and Biocomposites Engineering Applications; Wiley: Hoboken, NJ, USA, 2023; pp. 383–424. [Google Scholar]
- Yusoff, N.H.; Pal, K.; Narayanan, T.; de Souza, F.G. Recent trends on bioplastics synthesis and characterizations: Polylactic acid (PLA) incorporated with tapioca starch for packaging applications. J. Mol. Struct. 2021, 1232, 129954. [Google Scholar] [CrossRef]
- Teixeira, E.D.M.; Curvelo, A.A.; Corrêa, A.C.; Marconcini, J.M.; Glenn, G.M.; Mattoso, L.H. Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Ind. Crops Prod. 2012, 37, 61. [Google Scholar] [CrossRef]
- Pulgarin, H.L.C.; Caicedo, C.; López, E.F. Effect of surfactant content on rheological, thermal, morphological and surface properties of thermoplastic starch (TPS) and polylactic acid (PLA) blends. Heliyon 2022, 8, e10833. [Google Scholar] [CrossRef] [PubMed]
- Martinez Villadiego, K.; Arias Tapia, M.J.; Useche, J.; Escobar Macías, D. Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review. J. Polym. Environ. 2021, 30, 75–91. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, K.; Chen, M.; Zhao, P.; Wang, Y.; Wang, X.; Wang, J. Development and characterization of biodegradable bilayer packaging films based on corn starch-polylactic acid as raw material. J. Food Meas. Charact. 2024, 18, 625–639. [Google Scholar] [CrossRef]
- Yoksan, R.; Dang, K.M. The effect of polyethylene glycol sorbitan monostearate on the morphological characteristics and performance of thermoplastic starch/biodegradable polyester blend films. Int. J. Biol. Macromol. 2023, 231, 123332. [Google Scholar] [CrossRef] [PubMed]
- Ivanič, F.; Kováčová, M.; Chodak, I. The effect of plasticizer selection on properties of blends poly (butylene adipate-co-terephthalate) with thermoplastic starch. Eur. Polym. J. 2019, 116, 99–105. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Arai, S.; Arai, N. Molecular insight into toughening induced by core-shell structure formation in starch-blended bioplastic composites. Carbohydr. Polym. 2023, 315, 120974. [Google Scholar] [CrossRef]
- Beluci, N.D.C.L.; dos Santos, J.; de Carvalho, F.A.; Yamashita, F. Reactive biodegradable extruded blends of thermoplastic starch and polyesters. Carbohydr. Polym. Technol. Appl. 2023, 5, 100274. [Google Scholar] [CrossRef]
- Moghaddam, M.R.A.; Hesarinejad, M.A.; Javidi, F. Characterization and optimization of polylactic acid and polybutylene succinate blend/starch/wheat straw biocomposite by optimal custom mixture design. Polym. Test. 2023, 121, 108000. [Google Scholar] [CrossRef]
- Rudabadi, M.S.; Ghasemi, F.A.; Fasihi, M.; Rajaee, P. An experimental study on the microstructural, tensile, and fracture properties of biodegradable polylactic acid blended with thermoplastic corn starch filled with halloysite nanotubes. Ind. Crops Prod. 2023, 201, 116922. [Google Scholar] [CrossRef]
- Serra-Parareda, F.; Delgado-Aguilar, M.; Espinach, F.X.; Mutjé, P.; Boufi, S.; Tarrés, Q. Sustainable plastic composites by polylactic acid-starch blends and bleached kraft hardwood fibers. Compos. Part B Eng. 2022, 238, 109901. [Google Scholar] [CrossRef]
- Roy Goswami, S.; Sudhakaran Nair, S.; Zhang, X.; Tanguy, N.; Yan, N. Starch maleate/epoxidized soybean oil/polylactic acid films with improved ductility and biodegradation potential for packaging fatty foods. ACS Sustain. Chem. Eng. 2022, 10, 14185–14194. [Google Scholar] [CrossRef]
- Fonseca-García, A.; Osorio, B.H.; Aguirre-Loredo, R.Y.; Calambas, H.L.; Caicedo, C. Miscibility study of thermoplastic starch/polylactic acid blends: Thermal and superficial properties. Carbohydr. Polym. 2022, 293, 119744. [Google Scholar] [CrossRef] [PubMed]
- Gálvez, J.; Correa Aguirre, J.P.; Hidalgo Salazar, M.A.; Vera Mondragón, B.; Wagner, E.; Caicedo, C. Effect of extrusion screw speed and plasticizer proportions on the rheological, thermal, mechanical, morphological and superficial properties of PLA. Polymers 2020, 12, 2111. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, G.; Touil, I.; Masghouni, E.; Maazouz, A.; Lamnawar, K. Multi-micro/nanolayer films based on polyolefins: New approaches from eco-design to recycling. Polymers 2021, 13, 413. [Google Scholar] [CrossRef]
- Alias, A.R.; Wan, M.K.; Sarbon, N.M. Emerging materials and technologies of multi-layer film for food packaging applications: A review. Food Control 2022, 136, 108875. [Google Scholar] [CrossRef]
- Lozano, A.B.; Álvarez, S.H.; Isaza, C.V.; Montealegre-Rubio, W. Analysis and advances in additive manufacturing as a new technology to make polymer injection molds for world-class production systems. Polymers 2022, 14, 1646. [Google Scholar] [CrossRef]
- DIN EN ISO 1133-1:2012-03; Determination of the Melt Mass-Flow Rate (MFR) and melt Volume-Flow Rate (MVR) of Thermoplastics: Part 1: Standard Method (ISO 1133-1:2011). Beuth Verlag: Berlin, Germany, 2012.
- ASTM D1238-13; Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer. ASTM International: West Conshohocken, PA, USA, 2013.
- Kozlowski, M. Recycling of Food Packaging Materials. In Functional Polymers in Food Science: From Technology to Biology; Wiley: Hoboken, NJ, USA, 2015; pp. 355–399. [Google Scholar]
- Caicedo, C.; Pulgarin, H.L.C. Study of the physical and mechanical properties of thermoplastic starch/poly (lactic acid) blends modified with acid agents. Processes 2021, 9, 578. [Google Scholar] [CrossRef]
- de Araujo, J.P.; de Oliveira, A.D.; Cavalcanti, S.N.; Agrawal, P.; de Melo, T.J. Combined effect of copolymers and of the mixing sequence on the rheological properties and morphology of poly (lactic acid) matrix blends. Mater. Chem. Phys. 2019, 237, 121818. [Google Scholar] [CrossRef]
- Kizil, R.; Irudayaraj, J.; Seetharaman, K. Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J. Agric. Food Chem. 2002, 50, 3912–3918. [Google Scholar] [CrossRef]
- Kister, G.; Cassanas, G.; Vert, M.; Pauvert, B.; Terol, A. Vibrational analysis of poly (L-lactic acid). J. Raman Spectrosc. 1995, 26, 307–311. [Google Scholar] [CrossRef]
- Zhu, Z.; Bian, Y.; Zhang, X.; Zeng, R.; Yang, B. Study of crystallinity and conformation of poly(lactic acid) by terahertz Spectroscopy. Anal. Chem. 2022, 94, 11104–11111. [Google Scholar] [CrossRef] [PubMed]
- Bernard, M.; Costa, V.; Joiret, S. Assessing indoor lead corrosion using Raman spectroscopy during electrochemical reduction. In Proceedings of the 8th international conference of the Infrared and Raman Users’ Group (IRUG), Vienna, Austria, 26–29 March 2008; Volume 6, pp. 101–106. [Google Scholar]
- Schmitz, L.; Harada, J.; Ribeiro, W.B.; Rosa, D.S.; Brandalise, R.N. Toughening of poly(lactic acid) (PLA) with poly (butylene adipate-co-terephthalate) (PBAT): A morphological, thermal, mechanical, and degradation evaluation in a simulated marine environment. Colloid Polym. Sci. 2023, 301, 1405–1419. [Google Scholar] [CrossRef]
- Eriksen, M.K.; Christiansen, J.D.; Daugaard, A.E.; Astrup, T.F. Closing the loop for PET, PE and PP waste from households: Influence of material properties and product design for plastic recycling. Waste Manag. 2019, 96, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Zheng, Y.; Tian, J. Study on the biodegradability of modified starch/polylactic acid (PLA) composite materials. RSC Adv. 2020, 10, 26298. [Google Scholar] [CrossRef] [PubMed]
- Eslami, H.; Grady, M.; Mekonnen, T.H. Biobased and compostable trilayer thermoplastic films based on poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and thermoplastic starch (TPS). Int. J. Biol. Macromol. 2022, 220, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.I.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Physical and microstructural properties of biodegradable films based on pea starch and PVA. J. Food Eng. 2015, 167, 59–64. [Google Scholar] [CrossRef]
- Calambas, H.L.; Fonseca, A.; Adames, D.; Aguirre-Loredo, Y.; Caicedo, C. Physical-mechanical behavior and water-barrier properties of biopolymers-clay nanocomposites. Molecules 2021, 26, 6734. [Google Scholar] [CrossRef] [PubMed]
- Nazrin, A.; Sapuan, S.M.; Zuhri, M.Y.M. Mechanical, Physical and Thermal Properties of Sugar Palm Nanocellulose Reinforced Thermoplastic Starch (TPS)/Poly (Lactic Acid) (PLA) Blend Bionanocomposites. Polymers 2020, 12, 2216. [Google Scholar] [CrossRef]
- Garavand, Y.; Taheri-Garavand, A.; Garavand, F.; Shahbazi, F.; Khodaei, D.; Cacciotti, I. Starch-polyvinyl alcohol-based films reinforced with chitosan nanoparticles: Physical, mechanical, structural, thermal and antimicrobial properties. Appl. Sci. 2022, 12, 1111. [Google Scholar] [CrossRef]
- Trinh, B.M.; Tadele, D.T.; Mekonnen, T.H. Robust and high barrier thermoplastic starch–PLA blend films using starch-graft-poly (lactic acid) as a compatibilizer. Mater. Adv. 2022, 3, 6208–6221. [Google Scholar] [CrossRef]
- Duan, Z.; Thomas, N.L. Water vapour permeability of poly(lactic acid): Crystallinity and the tortuous path model. J. Appl. Phys. 2014, 115, 064903. [Google Scholar] [CrossRef]
- Michaels, A.S.; Vieth, W.R.; Barrie, J.A. Solution of gases in polyethylene terephthalate. J. Appl. Phys. 1963, 34, 1–12. [Google Scholar] [CrossRef]
- Michaels, S.; Vieth, W.R.; Barrie, J.A. Diffusion of gases in polyethylene terephthalate. J. Appl. Phys. 1963, 34, 13–20. [Google Scholar] [CrossRef]
- Palai, B.; Biswal, M.; Mohanty, S.; Nayak, S.K. In situ reactive compatibilization of polylactic acid (PLA) and thermoplastic starch (TPS) blends; synthesis and evaluation of extrusion blown films thereof. Ind. Crops Prod. 2019, 141, 111748. [Google Scholar] [CrossRef]
Sample | Starch (%) | Plasticizers | PLA (%) | ||
---|---|---|---|---|---|
Gly (%) | Tween 20 (%) | ATBC (%) | |||
TPSS75-PLA25-T10 | 45 | 27 | 3 | 0 | 25 |
TPS75-PLA25-T10-A10 | 45 | 25.5 | 3 | 1.5 | 25 |
TPS75-PLA25-T5 | 45 | 28.5 | 1,5 | 0 | 25 |
TPS75-PLA25-T5-A10 | 45 | 27 | 1.5 | 1.5 | 25 |
TPS50-PLA50-T10 | 30 | 17 | 3 | 0 | 50 |
TPS50-PLA50-T10-A10 | 30 | 15.5 | 3 | 1.5 | 50 |
TPS50-PLA50-T5 | 30 | 18.5 | 1.5 | 0 | 50 |
TPS50-PLA50-T5-A10 | 30 | 17 | 1.5 | 1.5 | 50 |
TPSS75-PLA25-T10 | 45 | 27 | 3 | 0 | 25 |
TPS75-PLA25-T10-A10 | 45 | 25.5 | 3 | 1.5 | 25 |
Sample | T10 (°C) | Td1 (°C) | Td2 (°C) |
---|---|---|---|
PLA | -- | 367.7 | -- |
TPS | 97.0 | 300.1 | -- |
TPS75-PLA25 | 58.2 | 304.0 | 363.4 |
TPS75-PLA25-T5 | 69.6 | 318.2 | 402.3 |
TPS75-PLA25-T10 | 92.1 | 326.4 | 395.9 |
TPS75-PLA25-T5-A10 | 125.3 | 325.7 | 399.8 |
TPS75-PLA25-T10-A10 | 69.5 | 322.4 | 401.1 |
TPS50-PLA50 | 51.9 | 306.2 | 366.7 |
TPS50-PLA50-T5 | 143.1 | 312.7 | 405.8 |
TPS50-PLA50-T10 | 82.6 | 309.4 | 404.6 |
TPS50-PLA50-T5-A10 | 85.1 | 299.8 | 407.3 |
TPS50-PLA50-T10-A10 | 128.6 | 297.7 | 406.1 |
Sample | MFI (g/10 min) | Sample | MFI (g/10 min) |
---|---|---|---|
PLA | 3.00 ± 0.21 | TPS | 0.48 ± 0.03 |
TPS75-PLA25-T10 * | 0 | TPS75-PLA25-T10-A10 * | 0 |
TPS75-PLA25-T5 | 0.63 ± 0.04 | TPS75-PLA25-T5-A10 | 1.72 ± 0.11 |
TPS50-PLA50-T10 * | 0 | TPS50-PLA50-T10-A10 * | 0 |
TPS 50-PLA50-T5 | 2.27 ± 0.13 | TPS50-PLA50-T5-A10 | 6.61 ± 0.31 |
Sample | WVTR g·mm/(m2-Day) | WVP g/(m2-Day) |
---|---|---|
TPS75-PLA25-T5-A10-F1 | 0.00572 | 0.00505 |
TPS 75-PLA25-T5-A10-F2 | 0.02157 | 0.02208 |
TPS 50-PLA50-T5-F1 | 0.00072 | 0.00090 |
TPS 50-PLA50-T5-F2 | 0.00063 | 0.00075 |
Sample | Meaning of the Test | Tensile Strength (MPa) | Strain at Break (%) | Young’s Modulus (MPa) |
---|---|---|---|---|
TPS75-PLA25-T5-A10 | Lengthwise | 3.603 ± 0.495 | 2.59 ± 0.36 | 436.54 ± 46.28 |
Cross | 3.490 ± 0.321 | 2.56 ± 0.33 | 436.72 ± 46.17 | |
TPS50-PLA50-T5 | Lengthwise | 4.276 ± 1.035 | 2.63 ± 0.13 | 329.96 ± 52.93 |
Cross | 3.308 ± 0.919 | 1.98 ± 0.65 | 245.61 ± 42.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calambás Pulgarin, H.L.; Caicedo, C. Barrier, Mechanical, Thermal, and Rheological Properties of Plasticized Biopolymeric Films Manufactured by Co-Extrusion. Processes 2024, 12, 524. https://doi.org/10.3390/pr12030524
Calambás Pulgarin HL, Caicedo C. Barrier, Mechanical, Thermal, and Rheological Properties of Plasticized Biopolymeric Films Manufactured by Co-Extrusion. Processes. 2024; 12(3):524. https://doi.org/10.3390/pr12030524
Chicago/Turabian StyleCalambás Pulgarin, Heidy Lorena, and Carolina Caicedo. 2024. "Barrier, Mechanical, Thermal, and Rheological Properties of Plasticized Biopolymeric Films Manufactured by Co-Extrusion" Processes 12, no. 3: 524. https://doi.org/10.3390/pr12030524
APA StyleCalambás Pulgarin, H. L., & Caicedo, C. (2024). Barrier, Mechanical, Thermal, and Rheological Properties of Plasticized Biopolymeric Films Manufactured by Co-Extrusion. Processes, 12(3), 524. https://doi.org/10.3390/pr12030524