Antioxidant Activity of Total Flavonoids from Persicaria hydropiper (L.) Spach and Their Bacteriostatic Effect on Pathogenic Bacteria of Broiler Origin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.1.1. Materials and Reagents
2.1.2. Bacterial Strains
2.2. Plotting of Rutin Standard Curve
2.3. Calculation of the Extraction Yield of TFs-Ph
- C: the concentration of TFs-Ph (mg/mL);
- V: the volume of extraction solution after calibration (mL);
- X: the dilution times;
- M: the mass of P. hydropiper powder (mg).
2.4. Single-Factor Experiment
2.5. Plackett-Burman (PB) Design
2.6. Box-Behnken (BB) Optimization Design
2.7. Antioxidant Activity Evaluation of TFs-Ph
2.7.1. Determination of •OH Scavenging Activity
2.7.2. Determination of DPPH Scavenging Activity
2.7.3. Determination of •O2− Scavenging Activity
2.7.4. Determination of ABTS Scavenging Activity
2.8. Antibacterial Effect Evaluation of TFs-Ph
2.9. Data Analysis
3. Results and Discussion
3.1. Standard Curve Result
3.2. The Influence of Single-Factor Experiment on TFs-Ph Extraction Yield
3.3. Screening of Main Influencing Factors by PB Design
3.4. Optimization of Significant Factors by BB Design
0.8943A2 − 0.1993B2 − 0.1392C2
3.5. Study on the Antioxidant Activities of TFs-Ph
3.6. Study on the Antibacterial Effects of TFs-Ph
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bairagi, J.; Saikia, P.J.; Boro, F.; Hazarika, A. A review on the ethnopharmacology, phytochemistry and pharmacology of Polygonum hydropiper Linn. J. Pharm. Pharmacol. 2022, 74, 619–645. [Google Scholar] [CrossRef]
- Kong, Y.D.; Qi, Y.; Cui, N.; Zhang, Z.H.; Wei, N.; Wang, C.F.; Zeng, Y.N.; Sun, Y.P.; Kuang, H.X.; Wang, Q.H. The traditional herb Polygonum hydropiper from China: A comprehensive review on phytochemistry, pharmacological activities and applications. Pharm. Biol. 2023, 61, 799–814. [Google Scholar] [CrossRef]
- Ren, C.Z.; Hu, W.Y.; Li, J.C.; Xie, Y.H.; Jia, N.N.; Shi, J.; Wei, Y.Y.; Hu, T.J. Ethyl acetate fraction of flavonoids from Polygonum hydropiper L. modulates pseudorabies virus-induced inflammation in RAW264.7 cells via the nuclear factor-kappa B and mitogen-activated protein kinase pathways. J. Vet. Med. Sci. 2020, 82, 1781–1792. [Google Scholar] [CrossRef]
- Peng, Z.F.; Strack, D.; Baumert, A.; Subramaniam, R.; Goh, N.K.; Chia, T.F.; Tan, S.N.; Chia, L.S. Antioxidant flavonoids from leaves of Polygonum hydropiper L. Phytochemistry 2003, 62, 219–228. [Google Scholar] [CrossRef]
- Nasir, A.; Khan, M.; Rehman, Z.; Khalil, A.A.K.; Farman, S.; Begum, N.; Irfan, M.; Sajjad, W.; Parveen, Z. Evaluation of Alpha-Amylase Inhibitory, Antioxidant, and Antimicrobial Potential and Phytochemical Contents of Polygonum hydropiper L. Plants 2020, 9, 852. [Google Scholar] [CrossRef]
- Ayaz, M.; Junaid, M.; Ahmed, J.; Ullah, F.; Sadiq, A.; Ahmad, S.; Imran, M. Phenolic contents, antioxidant and anticholinesterase potentials of crude extract, subsequent fractions and crude saponins from Polygonum hydropiper L. BMC Complement. Altern. Med. 2014, 14, 145. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, Y.; Sun, G.; Yu, S.; Xu, Y.; He, C.; Li, Z.; Jin, S.; Qin, X. Polygonum perfoliatum L., an Excellent Herbal Medicine Widely Used in China: A Review. Front. Pharmacol. 2020, 11, 581266. [Google Scholar] [CrossRef]
- Ren, C.Z.; Hu, W.Y.; Song, M.L.; Wei, Y.Y.; Hu, T.J. An ethyl acetate fraction of flavonoids from Polygonum hydropiper L. exhibits an anti-inflammatory activity in PCV2-infected porcine alveolar macrophages via PI3K/Akt and NF-κB pathways. Vet. Res. Forum 2022, 13, 339–347. [Google Scholar]
- Shen, S.; Qian, J.; Ren, J. Ethnoveterinary plant remedies used by Nu people in NW Yunnan of China. J. Ethnobiol. Ethnomed. 2010, 6, 24. [Google Scholar] [CrossRef]
- Nath, A.; Joshi, S.R. Endophytic fungi from tropical ethnoveterinary plants and their antibacterial efficacy against Pasteurella multocida Capsular Type A strain. Rev. Biol. Trop. 2016, 64, 733–745. [Google Scholar] [CrossRef]
- Hao, L.; Xiaolin, Z.; Quanli, X.; Xizhong, Z.; Changfen, Y. Pros and cons analysis of company-type, professional household-type and farmer-type poultry farms. China Poult. 2005, 17, 22–24. [Google Scholar]
- Ailian, G.; Baoming, L.; Furong, Z.; Gang, C. Investigation and study of broiler breeders’ health and welfare under intensive production systems. China Poult. 2009, 31, 10–15. [Google Scholar]
- Jeżak, K.; Kozajda, A. Occurrence and spread of antibiotic-resistant bacteria on animal farms and in their vicinity in Poland and Ukraine-review. Environ. Sci. Pollut. Res. Int. 2022, 29, 9533–9559. [Google Scholar] [CrossRef]
- Lutful Kabir, S.M. Avian colibacillosis and salmonellosis: A closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. Int. J. Environ. Res. Public Health 2010, 7, 89–114. [Google Scholar] [CrossRef]
- Tan, M.F.; Li, H.Q.; Yang, Q.; Zhang, F.F.; Tan, J.; Zeng, Y.B.; Wei, Q.P.; Huang, J.N.; Wu, C.C.; Li, N.; et al. Prevalence and antimicrobial resistance profile of bacterial pathogens isolated from poultry in Jiangxi Province, China from 2020 to 2022. Poult. Sci. 2023, 102, 102830. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Alagawany, M.; Shaheen, H.; Samak, D.; Othman, S.I.; Allam, A.A.; Taha, A.E.; Khafaga, A.F.; Arif, M.; Osman, A.; et al. Ginger and its derivatives as promising alternatives to antibiotics in poultry feed. Animals 2020, 10, 452. [Google Scholar] [CrossRef]
- Lillehoj, H.; Liu, Y.; Calsamiglia, S.; Fernandez-Miyakawa, M.E.; Chi, F.; Cravens, R.L.; Oh, S.; Gay, C.G. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Vet. Res. 2018, 49, 76. [Google Scholar] [CrossRef]
- Song, Z.T.; Zhu, M.J. Feed additive production by fermentation of herb Polygonum hydropiper L. and cassava pulp with simultaneous flavonoid dissolution. Biotechnol. Appl. Biochem. 2017, 64, 290–300. [Google Scholar] [CrossRef]
- Zhu, Q.; Sun, P.; Zhang, B.; Kong, L.; Xiao, C.; Song, Z. Progress on gut health maintenance and antibiotic alternatives in broiler chicken production. Front. Nutr. 2021, 8, 692839. [Google Scholar] [CrossRef]
- Cherian, S.; Hacisayidli, K.M.; Kurian, R.; Mathews, A. Therapeutically important bioactive compounds of the genus Polygonum L. and their possible interventions in clinical medicine. J. Pharm. Pharmacol. 2023, 75, 301–327. [Google Scholar] [CrossRef]
- Zhao, T.; Ding, Y.; Sun, W.; Turghun, C.; Han, B. Ultrasonic-assisted extraction of flavonoids from Nitrariasibirica leaf using response surface methodology and their anti-proliferative activity on 3T3-L1 preadipocytes and antioxidant activities. J. Food Sci. 2023, 88, 2325–2338. [Google Scholar] [CrossRef]
- Miao, M.; Chen, X.; Wu, Z.; Liu, J.; Xu, C.; Zhang, Z.; Wang, J. Extraction, composition, and antioxidant activity of flavonoids from Xanthoceras sorbifolium bunge leaves. J. AOAC Int. 2023, 106, 769–777. [Google Scholar] [CrossRef]
- Ożarowski, M.; Karpiński, T.M. Extracts and flavonoids of Passiflora species as promising anti-inflammatory and antioxidant substances. Curr. Pharm. Des. 2021, 27, 2582–2604. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, Z.; Guo, Y.; Lu, S.; Du, H.; Cao, Y. Antioxidant capacity of flavonoids from Folium Artemisiae Argyi and the molecular mechanism in Caenorhabditis elegans. J. Ethnopharmacol. 2021, 279, 114398. [Google Scholar] [CrossRef]
- Lu, J.; Huang, Z.; Liu, Y.; Wang, H.; Qiu, M.; Qu, Y.; Yuan, W. The optimization of extraction process, antioxidant, whitening and antibacterial effects of Fengdan Peony flavonoids. Molecules 2022, 27, 506. [Google Scholar] [CrossRef]
- El-Zahar, K.M.; Al-Jamaan, M.E.; Al-Mutairi, F.R.; Al-Hudiab, A.M.; Al-Einzi, M.S.; Mohamed, A.A. Antioxidant, antibacterial, and antifungal activities of the ethanolic extract obtained from Berberis vulgaris roots and leaves. Molecules 2022, 27, 6114. [Google Scholar] [CrossRef]
- Rafińska, K.; Pomastowski, P.; Rudnicka, J.; Krakowska, A.; Maruśka, A.; Narkute, M.; Buszewski, B. Effect of solvent and extraction technique on composition and biological activity of Lepidium sativum extracts. Food Chem. 2019, 289, 16–25. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Sheng, L.; Wang, N.; Ren, S.Z. Optimization of Extraction Process of Total Flavonoids from Polygonum hydropiper by Response Surface Methodology and Its Antioxidant Activity. Chin. J. Vet. Drug 2019, 53, 49–56. [Google Scholar]
- Dong, J.; Zhou, K.; Ge, X.; Xu, N.; Wang, X.; He, Q.; Zhang, C.; Chu, J.; Li, Q. Effects of extraction technique on the content and antioxidant activity of flavonoids from Gossypium Hirsutum linn. flowers. Molecules 2022, 27, 5627. [Google Scholar] [CrossRef]
- Xie, J.H.; Dong, C.J.; Nie, S.P.; Li, F.; Wang, Z.J.; Shen, M.Y.; Xie, M.Y. Extraction, chemical composition and antioxidant activity of flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja leaves. Food Chem. 2015, 186, 97–105. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, X.; Duan, X.; Zhou, C.; Zhao, Z.; Chen, H.; Tang, Z.; Wan, Y.; Xiao, Y.; Chen, H. Optimal extraction, purification and antioxidant activity of total flavonoids from endophytic fungi of Conyza blini H. Lév. PeerJ 2021, 9, e11223. [Google Scholar] [CrossRef]
- Taghizadeh, M.; Jalili, S. Phytochemical content, antioxidant properties, and antibacterial activities of Centella asiatica L. Nat. Prod. Res. 2023, 1–6. [Google Scholar] [CrossRef]
- Awolola, G.V.; Koorbanally, N.A.; Chenia, H.; Shode, F.O.; Baijnath, H. Antibacterial and anti-biofilm activity of flavonoids and triterpenes isolated from the extracts of Ficus sansibarica Warb. subsp. sansibarica (Moraceae) extracts. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 124–131. [Google Scholar] [CrossRef]
- Zhang, P.; Song, Y.; Wang, H.; Fu, Y.; Zhang, Y.; Pavlovna, K.I. Optimization of flavonoid extraction from Salix babylonica L. buds, and the antioxidant and antibacterial activities of the extract. Molecules 2022, 27, 5695. [Google Scholar] [CrossRef]
- Huang, H.S.; Liaw, E.T. Extraction optimization of flavonoids from Hypericum formosanum and matrix metalloproteinase-1 inhibitory activity. Molecules 2017, 22, 2172. [Google Scholar] [CrossRef]
- Mirzadeh, M.; Arianejad, M.R.; Khedmat, L. Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: A review. Carbohydr. Polym. 2020, 229, 115421. [Google Scholar] [CrossRef]
- Zhang, K.; Han, M.; Zhao, X.; Chen, X.; Wang, H.; Ni, J.; Zhang, Y. Hypoglycemic and antioxidant properties of extracts and fractions from Polygoni Avicularis Herba. Molecules 2022, 27, 3381. [Google Scholar] [CrossRef]
- Cui, L.; Ma, Z.; Wang, D.; Niu, Y. Ultrasound-assisted extraction, optimization, isolation, and antioxidant activity analysis of flavonoids from Astragalus membranaceus stems and leaves. Ultrason. Sonochem. 2022, 90, 106190. [Google Scholar] [CrossRef]
- Niu, Q.; Gao, Y.; Liu, P. Optimization of microwave-assisted extraction, antioxidant capacity, and characterization of total flavonoids from the leaves of Alpinia oxyphylla Miq. Prep. Biochem. Biotechnol. 2020, 50, 82–90. [Google Scholar] [CrossRef]
- Li, N.; Liu, J.H.; Zhang, J.; Yu, B.Y. Comparative evaluation of cytotoxicity and antioxidative activity of 20 flavonoids. J. Agric. Food Chem. 2008, 56, 3876–3883. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, X.; Liu, Q.; Lin, Y.; Zhang, Z.; Li, S. Study on extraction and antioxidant activity of flavonoids from Hemerocallis fulva (Daylily) leaves. Molecules 2022, 27, 2916. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.J.; Yu, H.W.; Yang, Y.Z.; Wu, W.Y.; Chen, T.Y.; Jia, K.K.; Kang, L.L.; Jiao, R.Q.; Kong, L.D. Polydatin prevents fructose-induced liver inflammation and lipid deposition through increasing miR-200a to regulate Keap1/Nrf2 pathway. Redox Biol. 2018, 18, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Chen, B.; Ma, Z.; Hu, H.; Xie, Y. Polygonum hydropiper extract attenuates ethanol-induced gastric damage through antioxidant and anti-inflammatory pathways. Braz. J. Med. Biol. Res. 2021, 54, e10841. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Junaid, M.; Ullah, F.; Sadiq, A.; Ovais, M.; Ahmad, W.; Ahmad, S.; Zeb, A. Chemical profiling, antimicrobial and insecticidal evaluations of Polygonum hydropiper L. BMC Complement. Altern. Med. 2016, 16, 502. [Google Scholar] [CrossRef] [PubMed]
- Kovács, D.; Karancsi, Z.; Farkas, O.; Jerzsele, Á. Antioxidant activity of flavonoids in LPS-treated IPEC-J2 porcine intestinal epithelial cells and their antibacterial effect against bacteria of swine origin. Antioxidants 2020, 9, 1267. [Google Scholar] [CrossRef]
No. | Strain Type | Accession Number | Strain Origin | Age of Broiler (d) |
---|---|---|---|---|
E1 | E. coli | OQ891220 | dead broiler liver | 15 |
E2 | E. coli | OQ919470 | dead broiler liver | 4 |
E3 | E. coli | OQ891222 | diseased broiler spleen | 14 |
E4 | E. coli | OQ891223 | dead broiler embryo | 0 |
E5 | E. coli | OQ891224 | dead broiler liver | 2 |
E6 | E. coli | OQ891225 | dead broiler liver | 297 |
E7 | E. coli | OQ919469 | diseased broiler brain | 197 |
E8 | E. coli | OQ891227 | diseased broiler liver | 404 |
E9 | E. coli | OQ891228 | dead broiler brain | 10 |
E10 | E. coli | OQ891229 | dead broiler liver | 214 |
ATCC25922 | E. coli | -- | China Microbial Resource Center | -- |
S1 | Salmonella | OQ915457 | dead chicken embryo | 0 |
S2 | Salmonella | OQ915458 | dead chick | 1 |
S3 | Salmonella | OQ915459 | dead chicken embryo | 0 |
S4 | Salmonella | OQ915460 | diseased broiler liver | 7 |
S5 | Salmonella | OQ916428 | dead chick | 3 |
S6 | Salmonella | OQ916429 | dead broiler caecum | 7 |
S7 | Salmonella | OQ916430 | dead chick | 2 |
S8 | Salmonella | OQ915464 | dead chick | 2 |
S9 | Salmonella | OQ915465 | dead broiler caecum | 14 |
S10 | Salmonella | OQ915456 | diseased broiler liver | 4 |
ATCC14028 | Salmonella | -- | China Microbial Resource Center | -- |
Factors | Levels | |
---|---|---|
−1 | 1 | |
X1: Ethanol concentration (%) | 40 | 60 |
X2: Solid-liquid ratio (g/mL) | 1:20 | 1:30 |
X3: Heating reflux time (min) | 30 | 90 |
X4: Heating reflux temperature (°C) | 60 | 80 |
X5: Extraction times (times) | 2 | 4 |
Factors | Levels | ||
---|---|---|---|
−1 | 0 | 1 | |
Ethanol concentration (%) | 40 | 50 | 60 |
Solid-liquid ratio (g/mL) | 1:20 | 1:25 | 1:30 |
Heating reflux time (min) | 30 | 60 | 90 |
No. | X1: Ethanol Concentration (%) | X2: Solid-Liquid Ratio (g/mL) | X3: Heating Reflux Time (min) | X1: Heating Reflux Temperature (°C) | X5: Extraction Times (times) | Extraction Yield (%) |
---|---|---|---|---|---|---|
1 | 40 | 1:20 | 30 | 60 | 2 | 5.06 |
2 | 40 | 1:30 | 30 | 80 | 4 | 5.51 |
3 | 60 | 1:20 | 90 | 80 | 4 | 5.53 |
4 | 60 | 1:20 | 30 | 60 | 4 | 5.92 |
5 | 60 | 1:30 | 90 | 60 | 2 | 5.41 |
6 | 60 | 1:20 | 90 | 80 | 2 | 5.22 |
7 | 60 | 1:30 | 30 | 80 | 4 | 6.3 |
8 | 40 | 1:30 | 90 | 60 | 4 | 5.52 |
9 | 40 | 1:20 | 90 | 60 | 4 | 5 |
10 | 60 | 1:30 | 30 | 60 | 2 | 6.34 |
11 | 40 | 1:20 | 30 | 80 | 2 | 4.7 |
12 | 40 | 1:30 | 90 | 80 | 2 | 4.78 |
Factor | Effect Value | SS | DF | MS | F Value | p Value | Significance |
---|---|---|---|---|---|---|---|
Model | -- | 2.95 | 5 | 0.5894 | 15.85 | 0.0021 | ** |
X1 | 0.692 | 1.44 | 1 | 1.44 | 38.60 | 0.0008 | ** |
X2 | 0.405 | 0.4921 | 1 | 0.4921 | 13.23 | 0.0109 | * |
X3 | −0.395 | 0.4681 | 1 | 0.4681 | 12.59 | 0.0121 | * |
X4 | −0.202 | 0.1220 | 1 | 0.1220 | 3.28 | 0.1200 | -- |
X5 | 0.378 | 0.4294 | 1 | 0.4294 | 11.55 | 0.0145 | * |
Residual | -- | 0.2231 | 6 | 0.0372 | -- | -- | -- |
Cor total | -- | 3.17 | 11 | -- | -- | -- | -- |
R2 = 0.9296 R2adj = 0.8710 CV% = 3.54 |
No. | A: Ethanol Concentration | B: Solid-Liquid Ratio | C: Heating Reflux Time | Y: Extraction Yield (%) |
---|---|---|---|---|
1 | 0 | −1 | 1 | 6.20 |
2 | 0 | 0 | 0 | 6.44 |
3 | 1 | 1 | 0 | 5.28 |
4 | 0 | 0 | 0 | 6.44 |
5 | 0 | 1 | −1 | 6.11 |
6 | 1 | 0 | 1 | 5.98 |
7 | 0 | 1 | 1 | 6.04 |
8 | 1 | −1 | 0 | 5.43 |
9 | −1 | 0 | −1 | 5.66 |
10 | 0 | 0 | 0 | 6.47 |
11 | 1 | 0 | −1 | 4.96 |
12 | −1 | 1 | 0 | 5.37 |
13 | 0 | 0 | 0 | 6.36 |
14 | −1 | −1 | 0 | 5.25 |
15 | 0 | 0 | 0 | 6.42 |
16 | 0 | −1 | −1 | 6.00 |
17 | −1 | 0 | 1 | 4.97 |
Factor | SS | DF | MS | F Value | p Value | Significance |
---|---|---|---|---|---|---|
Model | 4.6100 | 9 | 0.5119 | 201.10 | <0.0001 | *** |
A | 0.0200 | 1 | 0.0200 | 7.86 | 0.0264 | * |
B | 0.0008 | 1 | 0.0008 | 0.31 | 0.5926 | -- |
C | 0.0265 | 1 | 0.0265 | 10.39 | 0.0146 | * |
AB | 0.0182 | 1 | 0.0182 | 7.16 | 0.0317 | * |
AC | 0.7310 | 1 | 0.7310 | 287.16 | <0.0001 | *** |
BC | 0.0182 | 1 | 0.0182 | 7.16 | 0.0317 | * |
A2 | 3.3700 | 1 | 3.3700 | 1322.65 | <0.0001 | *** |
B2 | 0.1672 | 1 | 0.1672 | 65.66 | <0.0001 | *** |
C2 | 0.0816 | 1 | 0.0816 | 32.07 | 0.0008 | ** |
Residual | 0.0178 | 7 | 0.0025 | -- | -- | -- |
Lack of fit | 0.0111 | 3 | 0.0037 | 2.20 | 0.2303 | -- |
Pure Error | 0.0067 | 4 | 0.0017 | -- | -- | -- |
Cor total | 4.6300 | 16 | -- | -- | -- | -- |
R2 = 0.9961 R2adj = 0.9912 CV% = 0.8631 |
Strain No. | Dosage of TFs-Ph (mg/mL) | AMP Positive Control | Sterile Normal Saline Negative Control | ||
---|---|---|---|---|---|
Low Dosage (20) | Medium Dosage (40) | High Dosage (60) | |||
E1 | -- | -- | -- | -- | -- |
E2 | I (11.46 ± 0.02) | S (15.16 ± 0.03) | S (17.58 ± 0.02) | -- | -- |
E3 | I (10.40 ± 0.02) | I (12.52 ± 0.02) | S (18.76 ± 0.05) | -- | -- |
E4 | R (7.20 ± 0.03) | I (13.70 ± 0.02) | S (16.10 ± 0.02) | I (15.44 ± 0.03) | -- |
E5 | R (9.50 ± 0.03) | I (13.18 ± 0.03) | S (16.64 ± 0.04) | -- | -- |
E6 | -- | -- | -- | -- | -- |
E7 | -- | -- | -- | -- | -- |
E8 | -- | -- | -- | -- | -- |
E9 | I (10.04 ± 0.05) | I (12.18 ± 0.02) | I (14.38 ± 0.05) | I (14.34 ± 0.04) | -- |
E10 | R (7.70 ± 0.02) | I (11.84 ± 0.07) | S (15.34 ± 0.03) | -- | -- |
ATCC25922 | R (7.66 ± 0.03) | I (12.22 ± 0.03) | S (16.24 ± 0.02) | S (19.30 ± 0.02) | -- |
S1 | I (10.80 ± 0.04) | I (13.00 ± 0.02) | S (15.72 ± 0.03) | I (13.26 ± 0.06) | -- |
S2 | R (8.22 ± 0.04) | I (10.62 ± 0.03) | S (15.86 ± 0.02) | R (11.74 ± 0.03) | -- |
S3 | -- | -- | -- | S (22.52 ± 0.05) | -- |
S4 | I (10.10 ± 0.03) | I (13.86 ± 0.04) | S (16.76 ± 0.03) | S (26.60 ± 0.05) | -- |
S5 | -- | -- | -- | S (24.46 ± 0.03) | -- |
S6 | R (8.62 ± 0.03) | I (12.34 ± 0.03) | S (16.78 ± 0.05) | -- | -- |
S7 | -- | -- | -- | R (12.36 ± 0.02) | -- |
S8 | -- | -- | -- | I (15.68 ± 0.04) | -- |
S9 | -- | -- | -- | -- | -- |
S10 | R (9.18 ± 0.03) | I (11.44 ± 0.05) | S (15.34 ± 0.03) | R (11.00 ± 0.03) | -- |
ATCC14028 | I (10.12 ± 0.04) | I (11.34 ± 0.05) | S (16.98 ± 0.05) | S (17.54 ± 0.07) | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, T.; Hua, Y.; Zhou, Y.; Xu, H.; Tian, W.; Luo, Z.; Huang, B.; Chen, L.; Fan, L. Antioxidant Activity of Total Flavonoids from Persicaria hydropiper (L.) Spach and Their Bacteriostatic Effect on Pathogenic Bacteria of Broiler Origin. Processes 2024, 12, 557. https://doi.org/10.3390/pr12030557
Zhao T, Hua Y, Zhou Y, Xu H, Tian W, Luo Z, Huang B, Chen L, Fan L. Antioxidant Activity of Total Flavonoids from Persicaria hydropiper (L.) Spach and Their Bacteriostatic Effect on Pathogenic Bacteria of Broiler Origin. Processes. 2024; 12(3):557. https://doi.org/10.3390/pr12030557
Chicago/Turabian StyleZhao, Taixia, Yongshi Hua, Yuanyuan Zhou, Haixia Xu, Wenxin Tian, Zhongbao Luo, Baoqin Huang, Lanming Chen, and Li Fan. 2024. "Antioxidant Activity of Total Flavonoids from Persicaria hydropiper (L.) Spach and Their Bacteriostatic Effect on Pathogenic Bacteria of Broiler Origin" Processes 12, no. 3: 557. https://doi.org/10.3390/pr12030557
APA StyleZhao, T., Hua, Y., Zhou, Y., Xu, H., Tian, W., Luo, Z., Huang, B., Chen, L., & Fan, L. (2024). Antioxidant Activity of Total Flavonoids from Persicaria hydropiper (L.) Spach and Their Bacteriostatic Effect on Pathogenic Bacteria of Broiler Origin. Processes, 12(3), 557. https://doi.org/10.3390/pr12030557