Mechanical Analysis of the Forces Involved in a Pilot-Scale Blast Furnace Raceway Formation by Means of CFD/DEM Simulations
Abstract
:1. Introduction
2. Configuration and Reference Results of Pilot Experiment
3. Numerical Model Description
3.1. Particle Flow Model
3.2. CFD/DEM Model
3.3. Coke Consumption Model
3.4. Parameters of Simulation and Initiation
4. Role of Cohesive Forces in the Raceway Stability
4.1. Effect of Cohesive Forces without Coke Consumption Model
4.2. Raceway Dynamics by Adding Coke Consumption Model
5. Effect of Gas Mass Flow Rate on the Raceway Shape
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nishi, T.; Haraguchi, H.; Miura, Y.; Sakurai, S.; Ono, K.; Kanoshima, H. Relationship between Shape of Raceway and Productivity of Blast Furnace Taking Account of Properties of Coke Sampled at Tuyere Level. Trans. Iron Steel Inst. Jpn. 1982, 22, 287–296. [Google Scholar] [CrossRef]
- Nomura, S. A simple treatment on the geometry of raceway zone. Trans. Iron Steel Inst. Jpn. 1986, 26, 107–113. [Google Scholar] [CrossRef]
- Flint, P.J.; Burgess, J.M. A fundamental study of raceway size in two dimensions. Metall. Mater. Trans. B 1992, 23, 267–283. [Google Scholar] [CrossRef]
- Danloy, G.; Lectard, E.; Blacknik, W.; Mülheims, K. Optimisation of Blast Furnace Raceway at High Injection Rates; European Commission and Directorate-General for Research and Innovation, Publications Office: Brussels, Belgium, 2005. [Google Scholar]
- Ghosh, S.; Viswanathan, N.N.; Ballal, N.B. Flow Phenomena in the Dripping Zone of Blast Furnace—A Review. Steel Res. Int. 2017, 88, 1600440. [Google Scholar] [CrossRef]
- Abhale, P.B.; Viswanathan, N.N.; Saxén, H. Numerical modelling of blast furnace—Evolution and recent trends. Miner. Process. Extr. Metall. 2020, 129, 166–183. [Google Scholar] [CrossRef]
- Yu, W.; Fede, P.; Yazdanpanah, M.; Amblard, B.; Euzenat, F.; Simonin, O. Gas-solid fluidized bed simulations using the filtered approach: Validation against pilot-scale experiments. Chem. Eng. Sci. 2020, 217, 115472. [Google Scholar] [CrossRef]
- Bennani, L.; Neau, H.; Baudry, C.; Laviéville, J.; Fede, P.; Simonin, O. Numerical Simulation of Unsteady Dense Granular Flows with Rotating Geometries. Chem. Eng. Res. Des. 2017, 120, 333–347. [Google Scholar] [CrossRef]
- Mondal, S.S.; Som, S.K.; Dash, S.K. Numerical predictions on the influences of the air blast velocity, initial bed porosity and bed height on the shape and size of raceway zone in a blast furnace. J. Phys. D Appl. Phys. 2005, 38, 1301–1307. [Google Scholar] [CrossRef]
- Rangarajan, D.; Shiozawa, T.; Shen, Y.; Curtis, J.S.; Yu, A. Influence of Operating Parameters on Raceway Properties in a Model Blast Furnace Using a Two-Fluid Model. Ind. Eng. Chem. Res. 2013, 53, 4983–4990. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhu, H.; Wright, B.; Yu, A.; Zulli, P. Gas–solid flow in an ironmaking blast furnace-II: Discrete particle simulation. Powder Technol. 2011, 208, 72–85. [Google Scholar] [CrossRef]
- Bambauer, F.; Wirtz, S.; Scherer, V.; Bartusch, H. Transient DEM-CFD simulation of solid and fluid flow in a three dimensional blast furnace model. Powder Technol. 2018, 334, 53–64. [Google Scholar] [CrossRef]
- Li, X.; Pang, K.; Liang, C.; Liu, D.; Ma, J.; Chen, X. Particle attrition-breakage model for CFD-DEM simulation based on FRM and WPM: Application in blast furnace raceway. Powder Technol. 2023, 414, 118105. [Google Scholar] [CrossRef]
- Kuang, S.; Li, Z.; Yu, A. Review on Modeling and Simulation of Blast Furnace. Steel Res. Int. 2017, 89, 1700071. [Google Scholar] [CrossRef]
- Roeplal, R.; Pang, Y.; Adema, A.; van der Stel, J.; Schott, D. Modelling of phenomena affecting blast furnace burden permeability using the Discrete Element Method (DEM)—A review. Powder Technol. 2023, 415, 118161. [Google Scholar] [CrossRef]
- Nogami, H.; Yamaoka, H.; Takatani, K. Raceway Design for the Innovative Blast Furnace. ISIJ Int. 2004, 44, 2150–2158. [Google Scholar] [CrossRef]
- Wang, S.; Shen, Y. CFD-DEM modelling of raceway dynamics and coke combustion in an ironmaking blast furnace. Fuel 2021, 302, 121167. [Google Scholar] [CrossRef]
- Dianyu, E.; Zhou, P.; Guo, S.; Zeng, J.; Xu, Q.; Guo, L.; Hou, Q.; Yu, A. Particle-scale study of coke combustion in the raceway of an ironmaking blast furnace. Fuel 2022, 311, 122490. [Google Scholar]
- E, D.; Zhou, P.; Ji, L.; Cui, J.; Xu, Q.; Guo, L.; Yu, A. Particle-scale modelling of injected hydrogen and coke co-combustion in the raceway of an ironmaking blast furnace. Fuel 2023, 336, 126778. [Google Scholar] [CrossRef]
- Wei, G.; Zhang, H.; An, X.; Xiong, B.; Jiang, S. CFD-DEM study on heat transfer characteristics and microstructure of the blast furnace raceway with ellipsoidal particles. Powder Technol. 2019, 346, 350–362. [Google Scholar] [CrossRef]
- Wei, G.; Zhang, H.; An, X.; Jiang, S. Influence of particle shape on microstructure and heat transfer characteristics in blast furnace raceway with CFD-DEM approach. Powder Technol. 2020, 361, 283–296. [Google Scholar] [CrossRef]
- Wei, G.; Zhang, H.; An, X.; Hou, Q. Effect of particle shape on raceway size and pressure drop in a blast furnace: Experimental, numerical and theoretical analyses. Adv. Powder Technol. 2022, 33, 103455. [Google Scholar] [CrossRef]
- Aminnia, N.; Adhav, P.; Darlik, F.; Mashhood, M.; Saraei, S.H.; Besseron, X.; Peters, B. Three-dimensional CFD-DEM simulation of raceway transport phenomena in a blast furnace. Fuel 2023, 334, 126574. [Google Scholar] [CrossRef]
- Cui, J.; Hou, Q.; Shen, Y. CFD-DEM study of coke combustion in the raceway cavity of an ironmaking blast furnace. Powder Technol. 2020, 362, 539–549. [Google Scholar] [CrossRef]
- Umekage, T.; Yuu, S.; Kadowaki, M. Numerical Simulation of Blast Furnace Raceway Depth and Height, and Effect of Wall Cohesive Matter on Gas and Coke Particle Flows. ISIJ Int. 2005, 45, 1416–1425. [Google Scholar] [CrossRef]
- Xu, D.; Wang, S.; Shen, Y. An improved CFD-DEM modelling of raceway dynamics and coke combustion in an industrial-scale blast furnace. Chem. Eng. J. 2023, 455, 140677. [Google Scholar] [CrossRef]
- Xu, D.; Wang, S.; Shen, Y. Numerical investigation of the reacting flows of three adjunct raceways in an industrial-scale blast furnace. Fuel 2023, 354, 129339. [Google Scholar] [CrossRef]
- Romano, F.; Izard, E.; Fede, P. Toward CFD-DEM simulations of the blast furnace raceway. In Proceedings of the VII International Conference on Particle-based Methods (PARTICLES 2021), Hamburg, Germany, 4–6 October 2021; CIMNE: Catalonia, Spain, 2021. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Géotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Hertz, H. On the Contact of Elastic Solids. Crelle’s J. 1881, 92, 156–171. [Google Scholar]
- Mindlin, R.D. Compliance of Elastic Bodies in Contact. J. Appl. Mech. 1949, 16, 259–268. [Google Scholar] [CrossRef]
- Mindlin, R.D.; Deresiewicz, H. Elastic Spheres in Contact Under Varying Oblique Forces. J. Appl. Mech. 1953, 20, 327–344. [Google Scholar] [CrossRef]
- Tsuji, Y.; Tanaka, T.; Ishida, T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 1992, 71, 239–250. [Google Scholar] [CrossRef]
- Johnson, K.; Kendall, K.; Roberts, A. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 1971, 324, 301–313. [Google Scholar] [CrossRef]
- Anderson, T.B.; Jackson, R. Fluid Mechanical Description of Fluidized Beds. Equations of Motion. Ind. Eng. Chem. Fundam. 1967, 6, 527–539. [Google Scholar] [CrossRef]
- Gobin, A.; Neau, H.; Simonin, O.; Llinas, J.R.; Reiling, V.; Sélo, J.L. Fluid dynamic numerical simulation of a gas phase polymerization reactor. Int. J. Numer. Methods Fluids 2003, 43, 1199–1220. [Google Scholar] [CrossRef]
- Wen, Y.; Yu, Y. Mechanics of Fluidization. Chem. Eng. Symp. Ser. 1965, 62, 100–111. [Google Scholar]
- Ergun, S. Fluid flow through packed columns. Chem. Eng. Prog. 1952, 48, 89–94. [Google Scholar]
- Nallasamy, M. Turbulence models and their applications to the prediction of internal flows: A review. Comput. Fluids 1987, 15, 151–194. [Google Scholar] [CrossRef]
- Ren, Y.; Mahinpey, N.; Freitag, N. Kinetic model for the combustion of coke derived at different coking temperatures. Energy Fuels 2007, 21, 82–87. [Google Scholar] [CrossRef]
- Agnolin, I.; Roux, J.N. Internal states of model isotropic granular packings. II. Compression and pressure cycles. Phys. Rev. E 2007, 76, 061303. [Google Scholar] [CrossRef]
- Miao, Z.; Zhou, Z.; Yu, A.; Shen, Y. CFD-DEM simulation of raceway formation in an ironmaking blast furnace. Powder Technol. 2017, 314, 542–549. [Google Scholar] [CrossRef]
- Hilton, J.; Cleary, P. Raceway formation in laterally gas-driven particle beds. Chem. Eng. Sci. 2012, 80, 306–316. [Google Scholar] [CrossRef]
- Zong, Y.; Guo, Z.; Zhang, J.; Liu, Y.; Wang, C.; Xiao, Z.; Zhang, Y.; Jiao, K. Formation and modification of cinder in tuyere bird’s nest area of blast furnace: A review. Fuel 2024, 358, 130236. [Google Scholar] [CrossRef]
- Shen, Y.; Shiozawa, T.; Austin, P.; Yu, A. Model study of the effect of bird’s nest on transport phenomena in the raceway of an ironmaking blast furnace. Miner. Eng. 2014, 63, 91–99. [Google Scholar] [CrossRef]
Particle diameter min/max | / |
Particle density | |
Restitution coefficient | 0.2 |
Particle/particle static friction | 0.4 |
Particle/wall static friction | 1 |
Rolling friction | 0.01 |
Young’s modulus | |
Poisson ratio | 0.3 |
Particle time step | |
Fluid density | |
Fluid viscosity | |
Fluid time step, | |
Coke reduction characteristic time, | |
Consumption rate, |
Case | Gas Flow Rate | Prebuilt Raceway | Coke Consumption Model | |
---|---|---|---|---|
A | Yes | No | ||
B | Yes | No | ||
C | No | Yes | ||
D | No | Yes | ||
E | No | Yes | ||
F | No | Yes | ||
G | No | Yes | ||
H | No | Yes | ||
I | No | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, F.; Izard, E.; Fede, P. Mechanical Analysis of the Forces Involved in a Pilot-Scale Blast Furnace Raceway Formation by Means of CFD/DEM Simulations. Processes 2024, 12, 637. https://doi.org/10.3390/pr12040637
Romano F, Izard E, Fede P. Mechanical Analysis of the Forces Involved in a Pilot-Scale Blast Furnace Raceway Formation by Means of CFD/DEM Simulations. Processes. 2024; 12(4):637. https://doi.org/10.3390/pr12040637
Chicago/Turabian StyleRomano, Francis, Edouard Izard, and Pascal Fede. 2024. "Mechanical Analysis of the Forces Involved in a Pilot-Scale Blast Furnace Raceway Formation by Means of CFD/DEM Simulations" Processes 12, no. 4: 637. https://doi.org/10.3390/pr12040637
APA StyleRomano, F., Izard, E., & Fede, P. (2024). Mechanical Analysis of the Forces Involved in a Pilot-Scale Blast Furnace Raceway Formation by Means of CFD/DEM Simulations. Processes, 12(4), 637. https://doi.org/10.3390/pr12040637