Thermodynamically Efficient, Low-Emission Gas-to-Wire for Carbon Dioxide-Rich Natural Gas: Exhaust Gas Recycle and Rankine Cycle Intensifications
Abstract
:1. Introduction
1.1. Low-Emission, CO2-Rich Natural Gas Combined Cycle Power Plants
1.2. Exhaust Gas Recycle
1.3. Thermodynamic Analysis of Processes
1.4. The Present Work
2. Methods
2.1. GTW-CONV, GTW-CCS, and GTW-CCS-EGR
2.2. Sub-Systems
2.2.1. NGCC
2.2.2. Direct Contact Column
2.2.3. PCC-MEA
2.2.4. CO2 Compression (CO2-CMP)
2.2.5. TEG Dehydration Unit (TEG) and Stripping CO2 Unit (STR-CO2)
2.2.6. Cooling Water Tower
2.3. Economic Analysis
2.4. Multi-Criteria Sustainability Analysis
2.5. Thermodynamic Analysis of Processes
2.5.1. Maximum Work
2.5.2. Equivalent Power
2.5.3. Thermodynamic Efficiency
2.5.4. Lost Work
3. Results and Discussion
3.1. Technical Results
3.2. Multi-Criteria Sustainability Analysis Results
3.3. Thermodynamic Analysis Results
3.4. Economic Analysis
4. Conclusions
5. Suggestions for Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Nomenclature
AP, GAP | Net and gross annual profits (MMUSD/y) |
COL, COM | Costs of labor and of manufacturing (MMUSD/y) |
CBM | Bare module costs (MMUSD) |
CF | Capacity factor (MW, m2, or m3) |
Isobaric heat capacity of water (J/mol.K) | |
CEPCI | Chemical Engineering Plant Cost Index |
CRM | Cost of raw materials (MMUSD/y) |
CUT, DEPR | Cost of utilities and depreciation (MMUSD/y) |
DPBP | Discounted Payback Time (y) |
Electricity (MW) | |
Fn | nth Feed stream flow rate (kmol/s) |
FCI | Fixed Capital Investment (MMUSD) |
Molar enthalpy (MJ/kmol) | |
HR | Heat Ratio (kJ/kgCO2) |
ITR, i | Income tax rate, annual interest rate (%) |
NEQ | Number of equipment items |
NF, NK | Numbers of feed streams and product streams |
NPV | Net present value (MMUSD) |
Kn | nth product stream flow rate (kmol/s) |
Heat duty (MW) | |
REV | Revenues (MMUSD/y) |
Molar entropy (MJ/kmol.K) | |
T | Absolute temperature (K) |
Power (MW) | |
η | Thermodynamic efficiency (%) |
References
- Kotagodahetti, R.; Hewage, K.; Perera, P.; Sadiq, R. Technology and Policy Options for Decarbonizing the Natural Gas Industry: A Critical Review. Gas Sci. Eng. 2023, 114, 204981. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change (UNFCCC). Kyoto Protocol to the UNFCCC. Available online: https://unfccc.int/resource/docs/convkp/kpeng.pdf (accessed on 13 February 2024).
- Ellerman, A.D.; Buchner, B.K. The European Union Emissions Trading Scheme: Origins, Allocation, and Early Results. Rev. Environ. Econ. Policy 2007, 1, 66–87. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change (UNFCCC). Paris Agreement. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 13 February 2024).
- Budinis, S.; Krevor, S.; Dowell, N.M.; Brandon, N.; Hawkes, A. An Assessment of CCS Costs, Barriers and Potential. Energy Strateg. Rev. 2018, 22, 61–81. [Google Scholar] [CrossRef]
- Guo, J.-X.; Huang, C.; Wang, J.-L.; Meng, X.-Y. Integrated Operation for the Planning of CO2 Capture Path in CCS–EOR Project. J. Pet. Sci. Eng. 2020, 186, 106720. [Google Scholar] [CrossRef]
- Rao, A.D. Natural Gas-Fired Combined Cycle (NGCC) Systems. In Combined Cycle Systems for Near-Zero Emission Power Generation; Elsevier: Amsterdam, The Netherlands, 2012; pp. 103–128. ISBN 978-0-85709-013-3. [Google Scholar]
- Hekmatmehr, H.; Esmaeili, A.; Pourmahdi, M.; Atashrouz, S.; Abedi, A.; Ali Abuswer, M.; Nedeljkovic, D.; Latifi, M.; Farag, S.; Mohaddespour, A. Carbon Capture Technologies: A Review on Technology Readiness Level. Fuel 2024, 363, 130898. [Google Scholar] [CrossRef]
- Carapellucci, R.; Giordano, L.; Vaccarelli, M. Study of a Natural Gas Combined Cycle with Multi-Stage Membrane Systems for CO2 Post-Combustion Capture. Energy Procedia 2015, 81, 412–421. [Google Scholar] [CrossRef]
- Khan, B.A.; Ullah, A.; Saleem, M.W.; Khan, A.N.; Faiq, M.; Haris, M. Energy Minimization in Piperazine Promoted MDEA-Based CO2 Capture Process. Sustainability 2020, 12, 8524. [Google Scholar] [CrossRef]
- Ab Rahim, A.H.; Yunus, N.M.; Bustam, M.A. Ionic Liquids Hybridization for Carbon Dioxide Capture: A Review. Molecules 2023, 28, 7091. [Google Scholar] [CrossRef] [PubMed]
- Grasa, G.S.; Abanades, J.C. CO2 Capture Capacity of CaO in Long Series of Carbonation/Calcination Cycles. Ind. Eng. Chem. Res. 2006, 45, 8846–8851. [Google Scholar] [CrossRef]
- Theo, W.L.; Lim, J.S.; Hashim, H.; Mustaffa, A.A.; Ho, W.S. Review of Pre-Combustion Capture and Ionic Liquid in Carbon Capture and Storage. Appl. Energy 2016, 183, 1633–1663. [Google Scholar] [CrossRef]
- Darabkhani, H.G.; Varasteh, H.; Bazooyar, B. Oxyturbine Power Cycles and Gas-CCS Technologies. In Carbon Capture Technologies for Gas-Turbine-Based Power Plants; Darabkhani, H.G., Varasteh, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 39–74. ISBN 978-0-12-818868-2. [Google Scholar]
- Davoodi, S.; Al-Shargabi, M.; Wood, D.A.; Rukavishnikov, V.S.; Minaev, K.M. Review of Technological Progress in Carbon Dioxide Capture, Storage, and Utilization. Gas Sci. Eng. 2023, 117, 205070. [Google Scholar] [CrossRef]
- Wang, M.; Lawal, A.; Stephenson, P.; Sidders, J.; Ramshaw, C. Post-Combustion CO2 Capture with Chemical Absorption: A State-of-the-Art Review. Chem. Eng. Res. Des. 2011, 89, 1609–1624. [Google Scholar] [CrossRef]
- Plaza, J.M.; Van Wagener, D.; Rochelle, G.T. Modeling CO2 Capture with Aqueous Monoethanolamine. Int. J. Greenh. Gas Control 2010, 4, 161–166. [Google Scholar] [CrossRef]
- Valenti, G.; Bonalumi, D.; Macchi, E. Energy and Exergy Analyses for the Carbon Capture with the Chilled Ammonia Process (CAP). Energy Procedia 2009, 1, 1059–1066. [Google Scholar] [CrossRef]
- Peeters, A.N.M.; Faaij, A.P.C.; Turkenburg, W.C. Techno-Economic Analysis of Natural Gas Combined Cycles with Post-Combustion CO2 Absorption, Including a Detailed Evaluation of the Development Potential. Int. J. Greenh. Gas Control 2007, 1, 396–417. [Google Scholar] [CrossRef]
- Tait, P.; Buschle, B.; Ausner, I.; Valluri, P.; Wehrli, M.; Lucquiaud, M. A Pilot-Scale Study of Dynamic Response Scenarios for the Flexible Operation of Post-Combustion CO2 Capture. Int. J. Greenh. Gas Control 2016, 48, 216–233. [Google Scholar] [CrossRef]
- Schach, M.-O.; Schneider, R.; Schramm, H.; Repke, J.-U. Techno-Economic Analysis of Postcombustion Processes for the Capture of Carbon Dioxide from Power Plant Flue Gas. Ind. Eng. Chem. Res. 2010, 49, 2363–2370. [Google Scholar] [CrossRef]
- Luo, X.; Wang, M. Optimal Operation of MEA-Based Post-Combustion Carbon Capture for Natural Gas Combined Cycle Power Plants under Different Market Conditions. Int. J. Greenh. Gas Control 2016, 48, 312–320. [Google Scholar] [CrossRef]
- Bao, J.; Zhang, L.; Song, C.; Zhang, N.; Guo, M.; Zhang, X. Reduction of Efficiency Penalty for a Natural Gas Combined Cycle Power Plant with Post-Combustion CO2 Capture: Integration of Liquid Natural Gas Cold Energy. Energy Convers. Manag. 2019, 198, 111852. [Google Scholar] [CrossRef]
- Cormos, C.-C. Assessment of Chemical Absorption/Adsorption for Post-Combustion CO2 Capture from Natural Gas Combined Cycle (NGCC) Power Plants. Appl. Therm. Eng. 2015, 82, 120–128. [Google Scholar] [CrossRef]
- Garcia, S.; Fernandez, E.S.; Stewart, A.J.; Maroto-Valer, M.M. Process Integration of Post-Combustion CO2 Capture with Li4SiO4/Li2CO3 Looping in a NGCC Plant. Energy Procedia 2017, 114, 2611–2617. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, C.; Snape, C.E.; Sun, X.; Liu, H. Cyclic Performance Evaluation of a Polyethylenimine/Silica Adsorbent with Steam Regeneration Using Simulated NGCC Flue Gas and Actual Flue Gas of a Gas-Fired Boiler in a Bubbling Fluidized Bed Reactor. Int. J. Greenh. Gas Control 2020, 95, 102975. [Google Scholar] [CrossRef]
- Roussanaly, S.; Aasen, A.; Anantharaman, R.; Danielsen, B.; Jakobsen, J.; Heme-De-Lacotte, L.; Neji, G.; Sødal, A.; Wahl, P.E.; Vrana, T.K.; et al. Offshore Power Generation with Carbon Capture and Storage to Decarbonise Mainland Electricity and Offshore Oil and Gas Installations: A Techno-Economic Analysis. Appl. Energy 2019, 233–234, 478–494. [Google Scholar] [CrossRef]
- Brito, T.L.F.; Galvão, C.; Fonseca, A.F.; Costa, H.K.M.; Moutinho dos Santos, E. A Review of Gas-to-Wire (GtW) Projects Worldwide: State-of-Art and Developments. Energy Policy 2022, 163, 112859. [Google Scholar] [CrossRef]
- Flórez-Orrego, D.; Albuquerque, C.; da Silva, J.A.M.; Freire, R.L.A.; de Oliveira Junior, S. Optimal Design of Power Hubs for Offshore Petroleum Platforms. Energy 2021, 235, 121353. [Google Scholar] [CrossRef]
- Orisaremi, K.K.; Chan, F.T.S.; Chung, N.S.H. Potential Reductions in Global Gas Flaring for Determining the Optimal Sizing of Gas-to-Wire (GTW) Process: An Inverse DEA Approach. J. Nat. Gas Sci. Eng. 2021, 93, 103995. [Google Scholar] [CrossRef]
- Jokar, S.M.; Wood, D.A.; Sinehbaghizadeh, S.; Parvasi, P.; Javanmardi, J. Transformation of Associated Natural Gas into Valuable Products to Avoid Gas Wastage in the Form of Flaring. J. Nat. Gas Sci. Eng. 2021, 94, 104078. [Google Scholar] [CrossRef]
- Henningsen, S. Air Pollution from Large Two-Stroke Diesel Engines and Technologies to Control It. In Handbook of Air Pollution from Internal Combustion Engines; Sher, E.B.T.-H., Ed.; Elsevier: San Diego, CA, USA, 1998; pp. 477–534. ISBN 978-0-12-639855-7. [Google Scholar]
- Okubo, M.; Kuwahara, T. Principle and Design of Emission Control Systems. In New Technologies for Emission Control in Marine Diesel Engines; Okubo, M., Kuwahara, T.B.T.-N.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 53–143. ISBN 978-0-12-812307-2. [Google Scholar]
- Alcaráz-Calderon, A.M.; González-Díaz, M.O.; Mendez, Á.; González-Santaló, J.M.; González-Díaz, A. Natural Gas Combined Cycle with Exhaust Gas Recirculation and CO2 Capture at Part-Load Operation. J. Energy Inst. 2019, 92, 370–381. [Google Scholar] [CrossRef]
- Hachem, J.; Schuhler, T.; Orhon, D.; Cuif-Sjostrand, M.; Zoughaib, A.; Molière, M. Exhaust Gas Recirculation Applied to Single-Shaft Gas Turbines: An Energy and Exergy Approach. Energy 2022, 238, 121656. [Google Scholar] [CrossRef]
- Ali, U.; Agbonghae, E.O.; Hughes, K.J.; Ingham, D.B.; Ma, L.; Pourkashanian, M. Techno-Economic Process Design of a Commercial-Scale Amine-Based CO2 Capture System for Natural Gas Combined Cycle Power Plant with Exhaust Gas Recirculation. Appl. Therm. Eng. 2016, 103, 747–758. [Google Scholar] [CrossRef]
- Lee, W.-S.; Kang, J.-H.; Lee, J.-C.; Lee, C.-H. Enhancement of Energy Efficiency by Exhaust Gas Recirculation with Oxygen-Rich Combustion in a Natural Gas Combined Cycle with a Carbon Capture Process. Energy 2020, 200, 117586. [Google Scholar] [CrossRef]
- Nanadegani, F.S.; Sunden, B. Review of Exergy and Energy Analysis of Fuel Cells. Int. J. Hydrogen Energy 2023, 48, 32875–32942. [Google Scholar] [CrossRef]
- Nie, X.; Xue, J.; Zhao, L.; Deng, S.; Xiong, H. New Insight of Thermodynamic Cycle in Thermoelectric Power Generation Analyses: Literature Review and Perspectives. Energy 2024, 292, 130553. [Google Scholar] [CrossRef]
- Geuzebroek, F.H.; Schneiders, L.H.J.M.; Kraaijveld, G.J.C.; Feron, P.H.M. Exergy Analysis of Alkanolamine-Based CO2 Removal Unit with AspenPlus. Energy 2004, 29, 1241–1248. [Google Scholar] [CrossRef]
- Gülen, S.C.; Smith, R.W. Second Law Efficiency of the Rankine Bottoming Cycle of a Combined Cycle Power Plant. J. Eng. Gas Turbines Power 2010, 132, 011801. [Google Scholar] [CrossRef]
- Brigagão, G.V.; Arinelli, L.D.O.; de Medeiros, J.L.; Araújo, O.d.Q.F. Low-Pressure Supersonic Separator with Finishing Adsorption: Higher Exergy Efficiency in Air Pre-Purification for Cryogenic Fractionation. Sep. Purif. Technol. 2020, 248, 116969. [Google Scholar] [CrossRef]
- Cruz, M.D.A.; de Araújo, O.Q.F.; de Medeiros, J.L. Exergy Comparison of Single-Shaft and Multiple-Paralleled Compressor Schemes in Offshore Processing of CO2-Rich Natural Gas. J. Nat. Gas Sci. Eng. 2020, 81, 103390. [Google Scholar] [CrossRef]
- Wiesberg, I.L.; Brigagão, G.V.; Araújo, O.D.Q.F.; de Medeiros, J.L. Carbon Dioxide Management via Exergy-Based Sustainability Assessment: Carbon Capture and Storage versus Conversion to Methanol. Renew. Sustain. Energy Rev. 2019, 112, 720–732. [Google Scholar] [CrossRef]
- Milão, R.D.F.D.; Carminati, H.B.; de Araújo, O.Q.F.; de Medeiros, J.L. Thermodynamic, Financial and Resource Assessments of a Large-Scale Sugarcane-Biorefinery: Prelude of Full Bioenergy Carbon Capture and Storage Scenario. Renew. Sustain. Energy Rev. 2019, 113, 109251. [Google Scholar] [CrossRef]
- Talebizadehsardari, P.; Ehyaei, M.A.; Ahmadi, A.; Jamali, D.H.; Shirmohammadi, R.; Eyvazian, A.; Ghasemi, A.; Rosen, M.A. Energy, Exergy, Economic, Exergoeconomic, and Exergoenvironmental (5E) Analyses of a Triple Cycle with Carbon Capture. J. CO2 Util. 2020, 41, 101258. [Google Scholar] [CrossRef]
- Amrollahi, Z.; Ertesvåg, I.S.; Bolland, O. Optimized Process Configurations of Post-Combustion CO2 Capture for Natural-Gas-Fired Power Plant—Exergy Analysis. Int. J. Greenh. Gas Control 2011, 5, 1393–1405. [Google Scholar] [CrossRef]
- Minutillo, M.; Lubrano Lavadera, A.; Jannelli, E. Assessment of Design and Operating Parameters for a Small Compressed Air Energy Storage System Integrated with a Stand-Alone Renewable Power Plant. J. Energy Storag. 2015, 4, 135–144. [Google Scholar] [CrossRef]
- Souza, I.V.A.F.; Ellis, G.S.; Ferreira, A.A.; Guzzo, J.V.P.; Díaz, R.A.; Albuquerque, A.L.S.; Amrani, A. Geochemical Characterization of Natural Gases in the Pre-Salt Section of the Santos Basin (Brazil) Focused on Hydrocarbons and Volatile Organic Sulfur Compounds. Mar. Pet. Geol. 2022, 144, 105763. [Google Scholar] [CrossRef]
- General Electric (GE). GE Gas&Power—Gas Turbines 9F. Available online: https://www.ge.com/gas-power/products/gas-turbines/9f (accessed on 13 February 2024).
- Turton, R. Analysis, Synthesis, and Design of Chemical Processes; Prentice-Hall International Series in Engineering; Prentice Hall: Hoboken, NJ, USA, 2012; ISBN 9780132618120. [Google Scholar]
- Chemical Engineering (CE). The Chemical Engineering Plant Cost Index. Available online: https://www.chemengonline.com/Assets/File/CEPCI_2002.pdf (accessed on 13 February 2024).
- Carminati, H.B.; Milão, R.D.F.D.; de Medeiros, J.L.; de Araújo, O.Q.F. Bioenergy and Full Carbon Dioxide Sinking in Sugarcane-Biorefinery with Post-Combustion Capture and Storage: Techno-Economic Feasibility. Appl. Energy 2019, 254, 113633. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration (EIA). Natural Gas Henry Hub Spot Price: Average of 2022. Available online: https://www.eia.gov/dnav/ng/hist/rngwhhdm.htm (accessed on 13 February 2024).
- U.S. Energy Information Administration (EIA). Independent Statistics and Analysis. Electricity and Natural Gas Data Browser: Average of 2022. Available online: https://www.eia.gov/electricity/data/browser/#/topic/7?agg=2,0,1&geo=g&freq=M (accessed on 13 February 2024).
- Thorne, R.J.; Sundseth, K.; Bouman, E.; Czarnowska, L.; Mathisen, A.; Skagestad, R.; Stanek, W.; Pacyna, J.M.; Pacyna, E.G. Technical and Environmental Viability of a European CO2 EOR System. Int. J. Greenh. Gas Control 2020, 92, 102857. [Google Scholar] [CrossRef]
- Liptak, B. Optimization of Cooling Towers. Available online: https://www.controlglobal.com/manage/optimization/article/11304737/optimization-of-cooling-towers (accessed on 13 February 2024).
- Ruiz-Mercado, G.J.; Smith, R.L.; Gonzalez, M.A. Sustainability Indicators for Chemical Processes: I. Taxonomy. Ind. Eng. Chem. Res. 2012, 51, 2309–2328. [Google Scholar] [CrossRef]
- Aspentech. 2024. Aspen Technology Inc. Available online: www.aspentech.com/en/about-aspentech (accessed on 1 March 2024).
- Mcampbell, J. Gas Conditioning and Processing. J. Chem. Inf. Model. 2013, 53, 1689–1699. [Google Scholar]
- Kim, S. Maximum Allowable Fluid Velocity and Concern on Piping Stability of ITER Tokamak Cooling Water System. Fusion Eng. Des. 2021, 162, 112049. [Google Scholar] [CrossRef]
(a) | ||
Item | Description | Assumptions |
A1 | NG-to-onshore Compressor | Compression RatioStage = 1.6; Stages = 4; TIntercooler = 40 °C; PInlet = 30 bar; POutlet = 200 bar; TOutlet = 40 °C [43] |
A2 | Molecular Sieve Temperature Swing Adsorption | PInlet = 75 bar; Dehydration Target: H2O = 1 ppm-mol; Adsorption Cycle = 12 h; Regeneration Cycle = 4 h; MassAdsorbent = 50,000 kg/Vessel; Vessels = 2; DensityAdsorbent = 800 kg/m3; WaterAdsorbed = 0.1 kgWater/kgAdsorbent [42]; |
A3 | NG Downcomer | PInlet = 200 bar; Flexible Pipes = 2; Inner Diameter = 12″; Length = 2000 m; Inclination = −100%; Average TExternal = 15 °C [45]. |
A4 | NG Pipeline Rig-to-Shore | Inner Diameter = 16″; Max Velocity = 3 m/s; POutlet ≥ 70 bar; Segment-1: Length = 10 km; Inclination = +0.1%; Average TExternal = 5 °C; Segment-2: Length = 20 km; Inclination = +10%; Average TExternal = 10 °C; Segment-3: Length = 200 km; Inclination = +0.1%; Average TExternal = 20 °C [45]. |
(b) | ||
Item | Description | Assumptions |
A5 | Thermodynamic Modeling | Base Model: PR-EOS; PCC-MEA: HYSYS Acid–Gas Package; Pipelines: Beggs and Brill + PR-EOS [45]; CW + Rankine Cycle: HYSYS ASME Steam Table; TEG unit: Glycol Package. |
A6 | Treated CO2-Rich NG | 6.5 MMm3,Std/d; T = 40 °C; P = 18.5 bar; CO2 = 44% mol, CH4 = 50% mol, C2H6 = 3% mol, C3H8 = 2% mol, C4H10 = 1% mol, H2O = 1 ppm-mol [49]. |
A7 | CW | TInlet = 35 °C; TOutlet = 55 °C; PInlet = 4 bar; POutlet = 3.5 bar [43]. |
A8 | Adiabatic Efficiencies | ηPumps = 75%; ηSteam Turbine = 85%; η Compressors = 75%; η CWT Blower = 95%; Gas Turbine: ηAir Compressor = 87%; ηExpander = 90% [42]. |
A9 | Heat Exchangers | ΔP = 0.5 bar; Thermal Approaches: ΔTGas-CW = 5 °C, ΔTGas-Gas = 10 °C, ΔTLiq-Liq = 5 °C [43]. |
A10 | Steam Streams HPS, MPS1, MPS2, LPS (saturated) | GTW-CONV and GTW-CCS: PHPS = 45 bar; THPS = 545 °C; PLPS = 3 bar; TLPS = 135 °C; GTW-CCS-EGR: PHPS = 90 bar, THPS = 535 °C; PMPS1 = 21 bar, TMPS1 = 535 °C; PMPS2 = 3.8 bar, TMPS2 = 343 °C; PLPS = 4.7 bar, TLPS = 150 °C [45]. |
A11 | HRSG | ΔTApproach = 50 °C; ΔPFlue Gas = 0.025 bar; ΔPSteam = 0.050 bar [45]. |
A12 | Rankine Cycle | GTW-CONV and GTW-CCS: PHPS = 45 bar; POutlet = 0.25 bar; QualityOutlet = 95.1%; GTW-CCS-EGR: PHPS = 90 bar; PMPS1 = 21 bar; PMPS2 = 3.8 bar; POutlet = 0.16 bar; QualityOutlet = 99.1% [45]. |
A13 | Air | T = 25 °C; P = 1 atm; N2 = 76.6% mol; O2 = 20.6% mol; H2O = 1.9% mol; Ar = 0.9% mol. |
A14 | Gas Turbine (2 Gas Turbines) | GE9F.05; Air = 170.3 t/h; NG = 3.252 MMsm3/d; PInlet = 18 bar; TOUT = 640 °C [50]; GTW-CONV and GTW-CCS: Air = 14.2 kg/kgNG; GTW-CCS-EGR: Air = 6.5 kg/kgNG. |
A15 | DCC | 4-Staged Tray Column; PTop = 1 bar; 36 °C [42] |
A16 | PCC-MEA | Solvent: MEA = 29.9% w/w; H2O = 70.1% w/w; Heating Utility: LPS [45]; Absorber: 40-Staged, TSolvent Inlet = 36 °C; Stripper: 20-Staged, PCondenser = 1 bar, PReboiler = 1.3 bar, TSolvent Inlet = 90 °C, TCondenser = 40 °C, TReboiler = 110 °C. |
A17 | CO2 Compression | Compression RatioStage = 2.7; Stages = 5; TIntercooler = 40 °C [43]. |
A18 | TEG Unit | Lean TEG: TEG = 98.5% w/w; Absorber: PTop = 46.4 bar, TTEG Inlet = 40 °C; Stripper: PCondenser = 1 bar, TTEG Inlet = 75 °C, TCondenser = 40 °C, TReboiler = 140 °C; Absorber = 20-Staged; Stripper = 10-Staged; Dry-CO2:154 ppm-mol H2O. |
A19 | CO2-to-EOR | P = 300 bar; T = 40 °C; CO2GTW-CCS = 99.6% mol; CO2GTW-CCS-EGR = 99.99% mol. |
A20 | CW Tower | Blowdown = Evaporation; WaterMake-up: P = 1.013 bar, T = 30 °C; ∆PBlower = 2 kPa [45]. |
A21 | Steam | Priority: LPS; Surplus: HPS/MPS1/MPS2. |
A22 | EGR | Flue GasRecycle = 53.23%; AirInlet: Stoichiometric. |
A23 | CO2 Pipeline Shore-to-Field | PInlet = 300 bar; POutlet ≥ 750 bar; Inner Diameter = 13″; Max Velocity = 3 m/s; Segment-1: Length = 200 km; Inclination = −0.1%; Average TExternal = 20 °C; Segment-2: Length = 20 km; Inclination = −10%; Average TExternal = 10 °C; Segment-3: Length = 10 km; Inclination = −0.1%; Average TExternal = 5 °C; Segment 4: Length = 3 km; Inclination = −100%; Average TExternal = 30 °C [45]. |
System | Tributaries | Description |
---|---|---|
Gas Turbines | Power#1 | Power#1GTW-CCS > Power#1GTW-CCS-EGR |
Steam Turbines | Power#2 | Power#2GTW-CONV > Power#2GTW-CCS-EGR > Power#2GTW-CCS |
HPS condensate pump | Power#3 | Power#3GTW-CONV > Power#3GTW-CCS-EGR > Power#3GTW-CCS |
LPS condensate pump | Power#4 | Power#4GTW-CCS > Power#4GTW-CCS-EGR |
DCC pump | Power#5 | Power#5GTW-CONV = Power#5GTW-CCS = Power#5GTW-CCS-EGR |
PCC-MEA recirculation pump | Power#6 | Power#6GTW-CCS > Power#6GTW-CCS-EGR |
PCC-MEA make-up pump | Power#7 | Power#7GTW-CCS > Power#7GTW-CCS-EGR |
CO2 Compressors | Power#8 | Power#8GTW-CCS > Power#8GTW-CCS-EGR |
CO2-to-EOR pump | Power#9 | Power#9GTW-CCS ≈ Power#9GTW-CCS-EGR |
CW Tower pump | Power#10 | Power#10GTW-CONV < Power#10GTW-CCS < Power#10GTW-CCS-EGR |
CW Tower make-up pump | Power#11 | Power#11 GTW-CONV < Power#11GTW-CCS < Power#1 GTW-CCS-EGR |
CW Tower blower | Power#12 | Power#1 GTW-CONV < Power#12GTW-CCS < Power#6GTW-CCS-EGR |
TEG pump | Power#13 | - |
TEG make-up pump | Power#14 | - |
CW Tower GTW-CONV | PowerCWTGTW-CONV | Power#10 + Power#11 + Power#12 |
CW Tower GTW-CCS | PowerCWTGTW-CCS | Power#10 + Power#11 + Power#12 |
CW Tower GTW-CCS-EGR | PowerCWTGTW-CCS-EGR | Power#10 + Power#11 + Power#12 |
PCC-MEA | PowerPCC-MEA | Power#6 + Power#7 |
CO2-CMP | PowerCO2-CMP | Power#8 + Power#9 |
GTW-CONV | PowerGTW-CONV | Power#1 + Power#2 − Power#3 − Power#5 − PowerCWTGTW-CONV |
GTW-CCS | PowerGTW-CCS | Power#1 + Power#2 − Power#3-Power#4 − Power#5 − PowerPCC-MEA − Power#CO2-CMP − PowerCWTGTW-CCS |
GTW-CCS-EGR | PowerGTW-CCS-EGR | Power#1 + Power#2 − Power#3 − Power#4 − Power#5 − PowerPCC-MEA − Power#CO2-CMP − PowerCWTGTW-CCS-EGR − Power#13 − Power#14 |
Item | Parameter | Assumption |
---|---|---|
E1 | Operation lifetime (y) | 30 |
E2 | Construction time (y) | 2 (40%/60%) |
E3 | Operation (h/y) | 8400 |
E4 | i (%) | 10 |
E5 | DEPR (%FCI) | 10 |
E6 | ITR (%) | 34 |
E7 | NG price (USD/MMBTU) [54] | 2.82 |
E8 | Electricity price (USD/kWh) [55] | 0.1026 |
E11 | Labor cost (USD/y.operator) [51] | 89,100 |
E12 | EOR yield (bblOil/tCO2) [56] | 1.5 |
E13 | MEA Price (USD/kg) | 2 |
E14 | Water Make-up Price (USD/m3) [45] | 0.0003 |
E15 | FCI CW Tower (USD/GPM) [57] | 40 |
E16 | Molecular Sieve (USD/kg) | 1.0 |
E17 | NG Downcomer | 4 MMUSD/km |
E18 | NG Pipeline (Segment 1) [53] | 4 MMUSD/km |
E19 | NG Pipeline (Segment 2) [53] | 4 MMUSD/km |
E20 | NG Pipeline (Segment 3) [53] | 3 MMUSD/km |
E21 | CO2 Pipeline (Segment 1) [53] | 2 MMUSD/km |
E22 | CO2 Pipeline (Segment 2) [53] | 3 MMUSD/km |
E23 | CO2 Pipeline (Segment 3) [53] | 3 MMUSD/km |
E24 | CO2 Pipeline (Segment 4) [53] | 3 MMUSD/km |
Symbol | Definition | Unit | Best Case | Worst Case |
---|---|---|---|---|
Economic | ||||
NPV | Net Present Value | USD | 0% interest | NPV = 0 |
DPBP | Discounted Payback Periodfor NPV = 0 | y | DPBP = 3 | DPBP = 30 |
TR | Turnover Ratio (Revenues/FCI) | USD/USD | TR = 4 | TR = 0 |
COM | Cost of Manufacture | USD/y | COM = 0 | COM = Revenues |
CRMv | Cost of Raw Material per Power Exported (Hourly) | USD/kWh | CRMv = 0 | Revenues/Power Exported |
Environmental | ||||
HS | No. of Hazardous Substance Inputs | - | HS = 0 | All inputs hazardous |
HSs | Hazardous Substances Consumption per Power Exported | kg/kWh | HSs = 0 | All inputs hazardous |
CI | CO2 Emitted per Power Exported | kg/kWh | CI = 0 | 100% CO2 emitted |
CIv | CO2 Emitted per Revenues | kg/USD | CIv = 0 | 100% CO2 emitted |
Material | ||||
Mcp | Mass Input | kg | Equals MassOutput | 40 * MassOutput |
MI | Mass Consumption per Power Exported | kg/kWh | 1 | 40 |
WI | Water Consumption per Power Exported | m3/kWh | 0 | MI = WI |
WIv | Water Consumption per Revenues | m3/USD | 0 | 1.55 |
Energy | ||||
Eff | Power Produced per Energy Input | kW/kW | 1 | 0 |
Ecp | Energy Consumption | kW | 0 | Power Produced |
ER | Power Demand per Power Exported | kW/kW | 0 | 1 |
EU | Energy Required by Utilities | kW | 0 | 10% of Power Exported |
Case | GTW-CONV | GTW-CCS | GTW-CCS-EGR | ||||
---|---|---|---|---|---|---|---|
Stream | NG Feed | Flue Gas | Clean Flue Gas | CO2-to-EOR | Flue Gas to PCC-MEA | Clean Flue Gas | CO2-to-EOR |
T (°C) | 40 | 40 | 55 | 40 | 36.5 | 62.9 | 40 |
P (bar) | 18.5 | 1 atm | 1 atm | 300 | 1.05 | 1 atm | 300 |
Flow rate (kmol/h) | 11,459.8 | 181,869.1 | 176,135.0 | 11,623.3 | 79,530.5 | 78,143.2 | 11,496.1 |
CH4 (% mol) | 50 | 0 | 0 | 0 | 0 | 0 | 0 |
C2+ (% mol) | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
CO2 (% mol) | 44 | 7.21 | 0.59 | 99.64 | 15.80 | 1.37 | 99.95 |
H2O (% mol) | ≈0 | 5.89 | 13.98 | 0.33 | 6.08 | 20.0 | 0.03 |
N2 (% mol) | 0 | 74.36 | 73.86 | 0.03 | 77.22 | 78.6 | 0.02 |
O2 (% mol) | 0 | 11.65 | 11.57 | 0 | 0 | 0 | 0 |
H2 (% mol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Ar (% mol) | 0 | 0.89 | 0 | 0 | 0.90 | 0 | 0 |
Consumption/Production | ||||
---|---|---|---|---|
GTW-CONV | GTW-CCS | GTW-CCS-EGR | ||
Tributaries | Power (MW) | |||
Gas Turbine | Power#1 | 628.00 | 628.00 | 604.91 |
Steam Turbines | Power#2 | 245.89 | 8.86 | 23.36 |
HPS Condensate Pump | Power#3 | 1.44 | 0.05 | 0.26 |
LPS Condensate Pump | Power#4 | - | 0.03 | 0.01 |
DCC Pump | Power#5 | 1.40 | 1.40 | 1.40 |
PCC-MEA Recirculation Pump | Power#6 | - | 0.56 | 0.53 |
PCC-MEA Make-up Pump | Power#7 | - | 0.03 | 0.02 |
CO2 Compressors | Power#8 | - | 58.70 | 58.64 |
CO2-to-EOR Pump | Power#9 | - | 4.80 | 4.81 |
CW Tower Pump | Power#10 | 3.81 | 4.35 | 4.45 |
CW Tower Make-up Pump | Power#11 | 0.23 | 0.25 | 0.29 |
CW Tower Fan | Power#12 | 3.63 | 4.19 | 4.28 |
TEG Recirculation Pump | Power#13 | - | 0.01 | 0.01 |
TEG Make-up Pump | Power#14 | - | 0.01 | 0.01 |
Power Generated | 873.89 | 636.86 | 628.27 | |
Power Demand | 10.51 | 74.38 | 74.71 | |
Net Power Exported | 863.38 | 562.48 | 553.56 | |
Utilities (t/h) | ||||
LPS | - | 1278.2 | 1260.45 | |
CW | 35,424.0 | 41,715.9 | 42,679.0 |
GTW-CCS | GTW-CCS-EGR | ||||
---|---|---|---|---|---|
Absorbers | Strippers | Absorbers | Strippers | ||
Total Gas (Absorbers) or Liquid (Strippers) Inlet Flow rate | MMm3,Std/d | 99.3 | 1.6 | 45.1 | 2.00 |
t/h | 5099.1 | 6048.0 | 2389.1 | 5816.36 | |
kmol/h | 174,934.5 | 245,909.2 | 79,530.5 | 236,621.88 | |
StagesTheoretical | 40 | 20 | 36 | 20 | |
Columns | 14 | 7 | 7 | 7 | |
Gas or Liquid Flow rate per Column (t/h) | 348.8 | 864.0 | 359.4 | 830.9 | |
Gas or Liquid Flow rate per Column (kmol/h) | 12,495.3 | 35,129.9 | 11,361.5 | 33,803.1 | |
Gas or Liquid Inlet % molCO2 | 7.21% | 6.22% | 15.80% | 6.36% | |
GasOutlet % molCO2 | 0.59% | 92.62% | 1.37% | 92.63% | |
GasOutlet T (°C) | 56 | 40 | 63 | 40 | |
LiquidOutlet T (°C) | 52.02 | 110.82 | 61.44 | 110.78 | |
Capture Ratio (kgSolvent/kgCO2) | 10.4 | 10.0 | |||
Heat Ratio (kJ/molCO2) | 241.3 | 233.2 | |||
Reboiler Duty (MW) | 776.4 | 749.3 | |||
Total GasOutlet from Strippers (kmol/h) | 12,506.3 | 12,486.9 | |||
Total CO2Outlet from Strippers (t/h) | 509.7 | 508.9 | |||
CO2 Capture Efficiency (% mol/mol) | 91.93% | 91.91% | |||
Packing (Stage Equivalent Height) | MELLAPAK 250X (0.6096m/stage) | ||||
Packing Height (m) + Spacing (m) [60] | 24.4 + 3 | 12.2 + 3 | 22 + 3 | 12.2 + 3 | |
Columns Height (m)/Diameter (m) | 27.4/6.1 | 15.2/3.3 | 25/5.9 | 15.2/3.4 |
TEG Results | GTW-CCS | GTW-CCS-EGR | |||
---|---|---|---|---|---|
Absorber | Stripper | Absorber | Stripper | ||
Total Gas (Absorbers) or Liquid (Strippers) Inlet Flow rate | Actual_m3/d | 4921.0 | 3.9 | 4885.8 | 3.8 |
t/h | 513.4 | 2.9 | 509.7 | 2.9 | |
kmol/h | 11,689.0 | 52.4 | 11,605.0 | 51.2 | |
TEGInlet (%w/w) | 98.5 | 73.1 | 98.5 | 72.7 | |
TEGOutlet (%w/w) | 73.1 | 98.5 | 72.7 | 98.5 | |
StagesTheoretical | 20 | 10 | 20 | 10 | |
Columns | 1 | 1 | 1 | 1 | |
Wet CO2 (ppm-mol H2O) | 1370.0 | - | 1369.4 | - | |
Dry CO2 (ppm-mol H2O) | 148.2 | - | 154.0 | - | |
GasOutlet T (°C) | 41.8 | 40.0 | 41.7 | 40.0 | |
LiquidOutlet T (°C) | 40.4 | 140.0 | 40.3 | 140.0 | |
Dry CO2 (kmol/h) | 11,649.4 | 11,566.5 | |||
Dry CO2 to Reboiler (kmol/h) | 71.44 | 70.4 | |||
Reboiler Duty (MW) | 0.593 | 0.590 | |||
Packing (Stage Equivalent Height) | MELLAPAK 250X (0.6096 m/stage) | ||||
Packing Height (m) | 12.2 | 18.7 | 12.2 | 18.7 | |
Extra Height (m) [60] | 3.0 | 3.0 | 3.0 | 3.0 | |
Column Height (m) | 15.2 | 21.7 | 15.2 | 21.7 | |
Diameter (m) | 5.7 | 5.4 | 5.7 | 5.4 |
Unit | Streams of HRSG | Type | Flow Rate (kmol/h) | Enthalpy (kJ/kmol) | Entropy (kJ/kmol.K) | Viscosity (cP) | Thermal Conductivity (W/m.K) |
---|---|---|---|---|---|---|---|
HRSG | Hot Flue gas | Input | 180,738.1 | −65,989.0 | 197.2 | 0.0390 | 0.0629 |
CO2-Rich NG | Input | 11,459.9 | −216,542.8 | 162.8 | 0.0138 | 0.0272 | |
LPS Condensate | Input | 71,061.5 | −276,785.2 | 30.1 | 0.2051 | 0.6879 | |
HPS Condensate | Input | 2800.0 | −283,666.9 | 10.5 | 0.6393 | 0.6327 | |
MPS1 to reheat | Input | 3200.0 | −229,848.0 | 125.8 | 0.0231 | 0.0526 | |
MPS1 Condensate | Input | 400.0 | −283,834.0 | 10.3 | 0.6486 | 0.6318 | |
MPS2 Condensate | Input | 400.0 | −283,878.6 | 10.3 | 0.6514 | 0.6315 | |
Cold Flue gas | Output | 180,738.1 | −82,746.9 | 175.9 | 0.0222 | 0.0322 | |
Hot CO2-Rich NG | Output | 11,459.9 | −213,940.3 | 170.6 | 0.0161 | 0.0337 | |
LPS | Output | 71,061.5 | −237,809.1 | 126.0 | 0.0133 | 0.0272 | |
HPS | Output | 2800.0 | −224,314.7 | 122.0 | 0.0308 | 0.0806 | |
MPS1 reheated | Output | 3200.0 | −223,048.8 | 135.3 | 0.0300 | 0.0737 | |
MPS1 | Output | 400.0 | −234,428.4 | 117.9 | 0.0181 | 0.0420 | |
MPS2 | Output | 400.0 | −229,956.7 | 139.6 | 0.0225 | 0.0487 | |
First and Second Laws Verification for HRSG | Unit | ||||||
(1) Total Entropy Input Rate | kJ/K.h | 40,089,973.7 | |||||
(2) Total Entropy Output Rate | kJ/K.h | 43,570,121.7 | |||||
Entropy Creation Rate: (2) − (1) | kJ/K.h | +3,480,147.9 (+8.8%) | |||||
(3) Total Enthalpy Input Rate | kJ/h | −35,833,920,242.3 | |||||
(4) Total Enthalpy Output Rate | kJ/h | −35,833,921,391.9 | |||||
(5) Total Heat Absorbed | kJ/h | 0.0 | |||||
(6) Total Power Exported | kJ/h | 0.0 | |||||
First Law Residue: (3) + (5) − (4) − (6) | kJ/h | +1149.6 (+0.0000032%) |
System | (MW) | (MW) | (MW) | (MW) | (MW) | % | (MW) | (MW) | Divergence (%) |
---|---|---|---|---|---|---|---|---|---|
GTW-CCS | |||||||||
NGCC | 1672.31 | 1.27 | 207.27 | 636.82 | 845.36 | 50.6 | 826.95 | 826.96 | 0.001 |
DCC | 38.00 | − | − | −1.40 | −1.40 | −3.7 | 39.40 | 39.37 | 0.08 |
PCC-MEA | −61.31 | −35.26 | 206.93 | 0.61 | 172.28 | 35.6 | 110.97 | 110.26 | 0.64 |
CO2-CMP#1 | −28.63 | −4.19 | − | 49.46 | 45.27 | 63.2 | 16.64 | 16.60 | 0.23 |
CO2-CMP#1 | −5.40 | −2.76 | − | 14.51 | 11.76 | 46.0 | 6.35 | 6.33 | 0.38 |
TEG | −0.00008 | −0.03 | 0.16 | 0.0036 | 0.13 | 0.06 | 0.13 | 0.13 | 0.58 |
STR-CO2 | 0.1701 | − | − | − | 0 | 0 | 0.17 | 0.17 | 0.03 |
CWT | 24.48 | − | − | −8.81 | −8.81 | −36.0 | 33.29 | 33.27 | 0.06 |
Sum Crosscheck | 1639.62 | − | − | − | − | − | 1033.91 | 1033.09 | 0.08 |
Overall System | 1600.64 | − | − | 562.50 | 562.50 | 35.14 | 1038.14 | 1030.89 | 0.70 |
GTW-CCS-EGR | |||||||||
NGCC-EGR | 1642.90 | 2.61 | 204.41 | 628.07 | 835.09 | 50.8 | 807.81 | 805.67 | 0.26 |
DCC | 32.52 | − | − | −1.40 | −1.40 | −4.3 | 33.92 | 33.96 | 0.10 |
PCC-MEA | −52.09 | −35.88 | 200.51 | 0.56 | 165.19 | 31.5 | 113.10 | 112.92 | 0.16 |
CO2-CMP#1 | −28.40 | −4.16 | − | 49.08 | 44.92 | 63.2 | 16.51 | 16.48 | 0.20 |
CO2-CMP#2 | −5.36 | −2.74 | − | 14.40 | 11.66 | 46.0 | 6.30 | 6.30 | 0.03 |
TEG | −0.0001 | −0.03 | 0.16 | 0.004 | 0.13 | 0.04 | 0.13 | 0.13 | 0.59 |
STR-CO2 | 0.1699 | − | − | − | 0 | 0 | 0.17 | 0.17 | 0.00 |
CWT | 25.06 | − | − | −9.03 | −9.03 | −36.0 | 34.09 | 33.89 | 0.60 |
Sum Crosscheck | 1614.62 | − | − | − | − | − | 1012.04 | 1009.52 | 0.25 |
Overall System | 1566.44 | − | − | 553.56 | 553.56 | 35.34 | 1012.88 | 1013.90 | 0.10 |
Onshore FCI Items (MMUSD) | GTW-CONV | GTW-CCS | GTW-CCS-EGR | |
---|---|---|---|---|
NGCC | 153.05 | 135.15 | 139.84 | |
DCC | 16.40 | 16.40 | 16.40 | |
PCC-MEA | - | 113.99 | 49.74 | |
CO2-CMP | - | 27.53 | 27.52 | |
TEG + STR-CO2 | - | 6.64 | 6.64 | |
CW Tower | 8.24 | 9.39 | 9.58 | |
Onshore Total FCI (MMUSD) | 177.69 | 309.10 | 249.71 | |
Offshore FCI Items (MMUSD) | Pipelines | 720.00 | 1210.00 | 1210.00 |
NG Downcomer | 16.00 | 16.00 | 16.00 | |
NG Dehydration | 18.66 | 18.66 | 18.66 | |
NG Compression | 57.68 | 57.68 | 57.68 | |
Offshore Total FCI (MMUSD) | 990.02 | 1611.44 | 1552.04 | |
DEPR (MMUSD/y) | 99.00 | 161.14 | 155.20 | |
COM (MMUSD/y) | 364.02 | 475.88 | 465.20 | |
Revenues (MMUSD/y) | Power Exported | 731.49 | 469.18 | 461.47 |
CO2-to-EOR | - | 514.58 | 509.85 | |
GAP (MMUSD/y) | 367.47 | 507.87 | 506.12 | |
AP (MMUSD/y) | 276.19 | 346.73 | 386.81 | |
NPV (MMUSD) | 1416.53 | 1798.28 | 1827.40 | |
Payback Time (y) | 5.90 | 6.90 | 6.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poblete, I.B.S.; de Medeiros, J.L.; Araújo, O.d.Q.F. Thermodynamically Efficient, Low-Emission Gas-to-Wire for Carbon Dioxide-Rich Natural Gas: Exhaust Gas Recycle and Rankine Cycle Intensifications. Processes 2024, 12, 639. https://doi.org/10.3390/pr12040639
Poblete IBS, de Medeiros JL, Araújo OdQF. Thermodynamically Efficient, Low-Emission Gas-to-Wire for Carbon Dioxide-Rich Natural Gas: Exhaust Gas Recycle and Rankine Cycle Intensifications. Processes. 2024; 12(4):639. https://doi.org/10.3390/pr12040639
Chicago/Turabian StylePoblete, Israel Bernardo S., José Luiz de Medeiros, and Ofélia de Queiroz F. Araújo. 2024. "Thermodynamically Efficient, Low-Emission Gas-to-Wire for Carbon Dioxide-Rich Natural Gas: Exhaust Gas Recycle and Rankine Cycle Intensifications" Processes 12, no. 4: 639. https://doi.org/10.3390/pr12040639
APA StylePoblete, I. B. S., de Medeiros, J. L., & Araújo, O. d. Q. F. (2024). Thermodynamically Efficient, Low-Emission Gas-to-Wire for Carbon Dioxide-Rich Natural Gas: Exhaust Gas Recycle and Rankine Cycle Intensifications. Processes, 12(4), 639. https://doi.org/10.3390/pr12040639