Preliminary Study on the Chemical and Biological Properties of Propolis Extract from Stingless Bees from the Northern Region of Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Propolis Samples
2.2. Reagents and Standards
2.3. Extract Preparation and Physicochemical Characterization
2.3.1. Propolis Extract Preparation
2.3.2. Fourier-Transform Infrared Spectroscopy
2.3.3. Thermogravimetric Behavior
2.3.4. Thermal Behavior by Differential Scanning Calorimetry
2.3.5. Total Polyphenols
2.3.6. Total Flavonoids
2.4. Antioxidant Activity
2.4.1. ABTS Radical Cation Scavenging Assay
2.4.2. DPPH Radical Scavenging Assay
2.4.3. FRAP Assay
2.5. In Vitro Cytotoxicity Assay
2.5.1. Cell Culture
2.5.2. Analysis of Cell Viability
2.6. In Vitro Antipromastigote Activity Assay
2.6.1. Obtaining and Cultivation of the Parasite
2.6.2. Viability According to the MTT Method
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characterization of Propolis
3.1.1. FTIR Spectrum
3.1.2. Thermal Behavior by Thermogravimetry
3.1.3. Thermal Behavior Shown by Differential Scanning Calorimetry
3.2. Total Polyphenols and Total Flavonoids
3.3. Antioxidant Activity
3.4. Cell Viability Test
3.5. In Vitro Antipromastigote Assay
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hrncir, M.; Jarau, S.; Barth, F.G. Stingless bees (meliponini): Senses and behavior. J. Comp. Physiol. A 2016, 202, 597–601. [Google Scholar] [CrossRef]
- De Menezes Pedro, S.R. The stingless bee fauna in Brazil (Hymenoptera: Apidae). Sociobiology 2014, 61, 348–354. [Google Scholar] [CrossRef]
- Conceição, V.D.; dos Santos, A.M.; da Conceição, C.A. Polinizadores que visitam a espécie arbórea Myracrodrun urundeuva (Anacardiaceae) na borda oeste do pantanal, assentamento taquaral em Corumbá-MS. Realização 2019, 6, 128–140. [Google Scholar] [CrossRef]
- Loiola, N.D.S.; Ethur, E.M.; Weber, A.C. Atividade antimicrobiana in vitro de extrato etanólico de própolis da abelha Scaptotrigona aff. postica (Latreille, 1807). Rev. Ibero-Am. Ciências Ambient. 2020, 11, 612–620. [Google Scholar] [CrossRef]
- Filho, J.S.P.; Bicalho, L.; da Silva, D.A. Uso de própolis associada a outros componentes no tratamento de feridas oncológicas após excisão. Acta Apic. Bras. 2012, 3, 15–25. [Google Scholar]
- Menezes, C.; Vollet-Neto, A.; Fonseca, V.L.I. An advance in the in vitro rearing of stingless bee queens. Apidologie 2013, 44, 491–500. [Google Scholar] [CrossRef]
- Oliveira, F.F.; Richers, B.T.T.; da Silva, J.R.S.; Farias, R.C.; Matos, T.A.L. Guia Ilustrado das Abelhas “Sem-Ferrão” das Reservas Amaná e Mamirauá, Amazonas, Brasil, 1st ed.; Eliete Amador Alves Silva; IDSM: Salvador, Brazil, 2013; pp. 13–17. ISBN 978-85-88758-27-8. [Google Scholar]
- Vollet-Neto, A.; Blochtein, B.; Viana, B.; dos Santos, C.F.; Menezes, C.; Silva, P.N.; Jaffé, R.; Amoedo, S. Desafios e Recomendações para o Manejo e Transporte de Polinizadores Desafios e Recomendações para o Manejo e o Transporte de Polinizadores, 1st ed.; Vollet Neto, A., Menezes, C., Eds.; Associação Brasileira de Estudos das Abelhas: São Paulo, Brazil, 2018; pp. 39–46. ISBN 978-85-69982-03-6. [Google Scholar]
- Barboza, J.R.; Pereira, F.A.N.; Fernandes, R.A.; Vasconcelos, C.C.; Cartágenes, M.d.S.d.S.; Lopes, A.J.O.; de Melo, A.C.; Guimarães, I.D.S.; da Rocha, C.Q.; Ribeiro, M.N.d.S. Cytotoxicity and pro-apoptotic, antioxidant and anti-inflammatory activities of geopropolis produced by the stingless bee Melipona fasciculata Smith. Biology 2020, 9, 292. [Google Scholar] [CrossRef]
- Barboza, J.R.; Pereira, F.A.N.; Leite, J.A.C.; Coutinho, D.F.; Ribeiro, M.N.d.S. Abordagem química e toxicidade em modelo zebrafish de geoprópolis de Melipona fasciculata Smith. Braz. J. Heal. Rev. 2019, 2, 5582–5594. [Google Scholar] [CrossRef]
- Barbiéri, C.; Francoy, T.M. Modelo teórico para análise interdisciplinar de atividades humanas: A meliponicultura como atividade promotora da sustentabilidade. Ambient. Soc. 2020, 23, e00202. [Google Scholar] [CrossRef]
- Araujo, M.; Bufalo, M.; Conti, B.; Jr, A.; Trusheva, B.; Bankova, V.; Sforcin, J. The Chemical Composition and Pharmacological Activities of Geopropolis Produced by Melipona fasciculata Smith in Northeast Brazil. J. Mol. Pathophysiol. 2015, 4, 12. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M.; Trusheva, B. Propolis volatile compounds: Chemical diversity and biological activity: A review. Chem. Cent. J. 2014, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.S.; Iberê, C.; Freitas, A.; Freitas, M.O.; Berg, J.; Agra, R. Histórico e principais usos da própolis apícola. Acsa 2015, 11, 1–21. [Google Scholar]
- Bankova, V.; Popova, M.; Trusheva, B. New emerging fields of application of propolis. Maced. J. Chem. Chem. Eng. 2016, 35, 1–11. [Google Scholar] [CrossRef]
- Sanches, M.A.; Pereira, A.M.S.; Serrão, J.E. Acciones farmacológicas de extractos de propóleos de abejas sin aguijón (Meliponini). J. Apic. Res. 2017, 56, 50–57. [Google Scholar] [CrossRef]
- Araújo, M.J.A.M.; Dutra, R.P.; Costa, G.C.; Reis, A.S.; Assunção, A.K.M.; Libério, S.A.; Maciel, M.C.G.; Silva, L.A.; Guerra, R.N.M.; Ribeiro, M.N.S.; et al. Efeito do tratamento com própolis de Scaptotrigona aff. postica sobre o desenvolvimento do tumor de ehrlich em camundongos. Rev. Bras. Farm. 2010, 20, 580–587. [Google Scholar] [CrossRef]
- Lavinas, F.C.; Macedo, E.H.B.C.; Sá, G.B.L.; Amaral, A.C.F.; Silva, J.R.A.; Azevedo, M.M.B.; Vieira, B.A.; Domingos, T.F.S.; Vermelho, A.B.; Carneiro, C.S.; et al. Brazilian stingless bee propolis and geopropolis: Promising sources of biologically active compounds. Rev. Bras. Farm. 2019, 29, 389–399. [Google Scholar] [CrossRef]
- Turco, J.F.; do Nascimento, C.L.; de Lima, V.A.; Torres, Y.R. Could antioxidant capacity and flavonoid content of ethanolic extracts of geopropolis from Brazilian native bees be estimated from digital photos and NIR spectra? Microchem. J. 2020, 157, 105031. [Google Scholar] [CrossRef]
- Miquez Souza, C.; Cavalcante da Silva, S.M.P.; do Nascimento, A.S.; Silva, F.d.L.; Bagaldo, A.R.; de Carvalho, C.A.L. Chemical and microbiological characterization of “Samburá” from two stingless bee species. J. Apic. Res. 2022, 61, 70–78. [Google Scholar] [CrossRef]
- Kasote, D.M.; Pawar, M.V.; Gundu, S.S.; Bhatia, R.; Nandre, V.S.; Jagtap, S.D.; Mahajan, S.G.; Kulkarni, M.V. Chemical profiling, antioxidant, and antimicrobial activities of Indian stingless bees propolis samples. J. Apic. Res. 2019, 58, 617–625. [Google Scholar] [CrossRef]
- Oda, J.M.M.; Fujita, T.C.; de Faveri Pitz, A.; Amarante, M.K.; Felipe, I.; Saridakis, H.O.; Sforcin, J.M.; Watanabe, M.A.E.; Costa, I.C. Ação do extrato de própolis na leishmaniose. Semin. Ciências Biológicas E Da Saúde 2011, 32, 111–121. [Google Scholar] [CrossRef]
- Segueni, N.; Akkal, S.; Benlabed, K.; Nieto, G. Potential use of propolis in phytocosmetic as phytotherapeutic constituent. Molecules 2022, 27, 5833. [Google Scholar] [CrossRef] [PubMed]
- Machado, G.M.D.C.; Leon, L.L.; Lisboa, S.; Castro, D. Activity of Brazilian and Bulgarian propolis against different species of Leishmania. Mem. Inst. Oswaldo Cruz 2007, 102, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Borges, K.S.; Brassesco, M.S.; Scrideli, C.A.; Soares, A.E.E.; Tone, L.G. Antiproliferative effects of tubi-bee propolis in glioblastoma cell lines. Genet. Mol. Biol. 2011, 34, 310–314. [Google Scholar] [CrossRef]
- Olczyk, P.; Komosinska-Vassev, K.; Winsz-Szczotka, K.; Stojko, J.; Klimek, K.; Kozma, E.M. Propolis induces chondroitin/dermatan sulphate and hyaluronic acid accumulation in the skin of burned wound. Evid.-Based Complement. Altern. Med. 2013, 2013, e290675. [Google Scholar] [CrossRef] [PubMed]
- Olczyk, P.; Wisowski, G.; Komosinska-Vassev, K.; Stojko, J.; Klimek, K.; Olczyk, M.; Kozma, E.M. Propolis modifies collagen types I and III accumulation in the matrix of burnt tissue. Evid.-Based Complement. Altern. Med. 2013, 2013, e423809. [Google Scholar] [CrossRef] [PubMed]
- Martinotti, S.; Ranzato, E. Propolis: A new frontier for wound healing? Burn. Trauma 2015, 3, 9. [Google Scholar] [CrossRef] [PubMed]
- Bankova, V. Recent trends and important developments in propolis research. Evid.-Based Complement. Altern. Med. 2005, 2, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Hochheim, S.; Guedes, A.; Faccin-Galhardi, L.; Rechenchoski, D.Z.; Nozawa, C.; Linhares, R.E.; da Silva, H.H.; Rau, M.; Siebert, D.A.; Micke, G.; et al. Determination of phenolic profile by HPLC–ESI-MS/MS, antioxidant activity, in vitro cytotoxicity and anti-herpetic activity of propolis from the Brazilian native bee Melipona quadrifasciata. Rev. Bras. Farm. 2019, 29, 339–350. [Google Scholar] [CrossRef]
- Campos, J.F.; dos Santos, U.P.; da Rocha, P.d.S.; Damião, M.J.; Balestieri, J.B.P.; Cardoso, C.A.L.; Paredes-Gamero, E.J.; Estevinho, L.M.; de Picoli Souza, K.; dos Santos, E.L. Antimicrobial, antioxidant, anti-inflammatory, and cytotoxic activities of propolis from the stingless bee Tetragonisca fiebrigi (Jataí). Evid.-Based Complement. Altern. Med. 2015, 2015, e296186. [Google Scholar] [CrossRef]
- Bonamigo, T.; Campos, J.F.; Alfredo, T.M.; Balestieri, J.B.P.; Cardoso, C.A.L.; Paredes-Gamero, E.J.; de Picoli Souza, K.; dos Santos, E.L. Antioxidant, cytotoxic, and toxic activities of propolis from two native bees in Brazil: Scaptotrigona depilis and Melipona quadrifasciata anthidioides. Oxid. Med. Cell. Longev. 2017, 2017, 1038153. [Google Scholar] [CrossRef]
- Gentile, F.; Arcaro, A.; Pizzimenti, S.; Daga, M.; Cetrangolo, G.P.; Dianzani, C.; Lepore, A.; Graf, M.; Ames, P.R.J.; Barrera, G. DNA damage by lipid peroxidation products: Implications in cancer, inflammation and autoimmunity. Aims Genet. 2017, 4, 103–137. [Google Scholar] [CrossRef]
- Ministério da Saúde; Agência Nacional de Vigilância Sanitária—Anvisa. Farmacopeia Brasileira 2019, v. 1, 6ª ed. Available online: http://portal.anvisa.gov.br (accessed on 20 January 2023).
- De Cássia Almeida Sampaio, R.; Da Costa, R.S.; De Souza, C.R.F.; Duarte Júnior, A.P.; Ribeiro-Costa, R.M.; Da Costa, C.E.F.; De Oliveira, W.P.; Converti, A.; Silva Júnior, J.O.C. Thermal characterization of Arrabidaea chica (Humb. & Bonpl.) B. Verl. dry extracts obtained by spray dryer. J. Therm. Anal. Calorim. 2016, 123, 2469–2475. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J. Spectrometric Identification of Organic Compounds, 7th ed.; David, L.B., Ed.; LTC: Rio de Janeiro, Brazil, 2007; pp. 71–107. ISBN 978-85-216-3637-3. [Google Scholar]
- Silva da Costa, R.; Pinheiro, W.B.d.S.; Arruda, M.S.P.; Costa, C.E.F.; Converti, A.; Ribeiro Costa, R.M.; Silva Júnior, J.O.C. Thermoanalytical and phytochemical study of the cupuassu (Theobroma grandiflorum Schum.) Seed by-Product in Different Processing Stages. J. Therm. Anal. Calorim. 2020, 147, 275–284. [Google Scholar] [CrossRef]
- Funari, C.S.; Ferro, V.O. Análise de Própolis. Food Sci. Technol. 2006, 26, 171–178. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggenete, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J. The Ferric Reducing Ability of Plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Fotakis, G.; Timbrell, J.A. In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Lett. 2006, 160, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Moraes, L.S.; Donza, M.R.H.; Rodrigues, A.P.D.; Silva, B.J.M.; Brasil, D.S.B.; Zoghbi, M.D.G.B.; Andrade, E.H.A.; Guilhon, G.M.S.P.; Silva, E.O.; Schmidt, T.J. Leishmanicidal Activity of (+)-Phyllanthidine and the Phytochemical profile of Margaritaria nobilis (Phyllanthaceae). Molecules 2015, 20, 22157–22169. [Google Scholar] [CrossRef]
- Forato, L.A.; Filho, R.B.; Osiro, D.; Bicudo, T.D.C.; Colnago, L.A. A Espectroscopia na região do infravermelho e algumas aplicações. Embrapa Instrumentação 2010, 1. Available online: https://www.infoteca.cnptia.embrapa.br/bitstream/doc/884592/1/DOC512010.pdf (accessed on 15 December 2023).
- Li, F.; Awale, S.; Zhang, H.; Tezuka, Y.; Esumi, H.; Kadota, S. Chemical constituents of propolis from myanmar and their preferential cytotoxicity against a human pancreatic cancer cell line. J. Nat. Prod. 2009, 72, 1283–1287. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, X.; Ji, J.; Dai, Y. TG-DTG as an effective method for the characterization of rutin extracted from the buds of Sophora japonica L. J. Therm. Anal. Calorim. 2009, 95, 917–922. [Google Scholar] [CrossRef]
- da Costa, R.S.; Santos, O.V.D.; Lannes, S.C.d.S.; Casazza, A.A.; Aliakbarian, B.; Perego, P.; Ribeiro-Costa, R.M.; Converti, A.; Silva Júnior, J.O.C. Bioactive compounds and value-added applications of cupuassu (Theobroma grandiflorum Schum.) agroindustrial by-product. J. Food Sci. Technol. 2020, 40, 401–407. [Google Scholar] [CrossRef]
- Gabbay Alves, T.V.; Silva da Costa, R.; Aguiar Gomes, A.T.; Ferreira da Costa, C.E.; Perego, P.; Carréra Silva Júnior, J.O.; Converti, A.; Ribeiro Costa, R.M. Quality control of Amazonian cocoa (Theobroma cacao L.) by-products and microencapsulated extract by thermal analysis. J. Therm. Anal. Calorim. 2018, 134, 993–1000. [Google Scholar] [CrossRef]
- Pardauil, J.J.R.; de Molfetta, F.A.; Braga, M.; de Souza, L.K.C.; Filho, G.N.R.; Zamian, J.R.; da Costa, C.E.F. Characterization, thermal properties and phase transitions of Amazonian vegetable oils. J. Therm. Anal. Calorim. 2017, 127, 1221–1229. [Google Scholar] [CrossRef]
- do Nascimento, T.G.; do Nascimento, N.M.; Ribeiro, A.S.; de Almeida, C.P.; dos Santos, J.I.Z.; Basílio-Júnior, I.D.; Calheiros-Silva, F.G.; Lira, G.M.; Escodro, P.B.; de Moraes Porto, I.C.C.; et al. Preparation and characterization of chitosanates loaded with Brazilian red propolis extract. J. Therm. Anal. Calorim. 2022, 147, 7837–7848. [Google Scholar] [CrossRef]
- Pereira, E.; Ferreira, M.C.; Sampaio, K.A.; Grimaldi, R.; Meirelles, A.J.d.A.; Maximo, G.J. Physical properties of Amazonian fats and oils and their blends. Food Chem. 2019, 278, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Al-Hatamleh, M.A.I.; Boer, J.C.; Wilson, K.L.; Plebanski, M.; Mohamud, R.; Mustafa, M.Z. Antioxidant-based medicinal properties of stingless bee products: Recent progress and future directions. Biomolecules 2020, 10, 923. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, L.; Marcinkevicius, K.; Borelli, R.; Gennari, G.; Salomón, V.; Isla, M.I.; Vera, N.; Borelli, V. Differentiation of Argentine propolis from different species of bees and geographical origins by UV spectroscopy and chemometric analysis. J. Saudi Soc. Agric. Sci. 2020, 19, 185–191. [Google Scholar] [CrossRef]
- Deus, V.L.; Santos, A.P.C.; Walker, J.F.; Neta, L.G.S.; Souza, L.S. Compostos fenólicos em hortaliças cultivadas nos sistemas convencional e orgânico: Uma revisão. Braz. J. Heal. Pharm. 2019, 1, 70–84. [Google Scholar] [CrossRef]
- Melo, A.R.; Alves, L.A.; Morais, N.R.L.; Silva, F.F.M.; Bertini, L.M.; Oliveira Neto, F.B. Prospecção fitoquímica e avaliação do potencial antioxidante de Cnidoscolus phyllacanthus (Müll. Arg.) Pax & k.Hoffm. oriundo de Apodi—RN. Rev. Bras. Plantas. Med. 2016, 18, 180–185. [Google Scholar] [CrossRef]
- Asem, N.; Abdul Gapar, N.A.; Abd Hapit, N.H.; Omar, E.A. Correlation between Total phenolic and flavonoid contents with antioxidant activity of malaysian stingless bee propolis extract. J. Apic. Res. 2020, 59, 437–442. [Google Scholar] [CrossRef]
- dos Santos, L.; Hochheim, S.; Boeder, A.M.; Kroger, A.; Tomazzoli, M.M.; Dal Pai Neto, R.; Maraschin, M.; Guedes, A.; de Cordova, C.M.M. Caracterización química, antioxidante, actividad citotóxica y antibacteriana de extractos de propóleos y compuestos aislados de las abejas sin aguijón brasileñas Melipona quadrifasciata y Tetragonisca angustula. J. Apic. Res. 2017, 56, 543–558. [Google Scholar] [CrossRef]
- Torres, A.R.; Sandjo, L.P.; Friedemann, M.T.; Tomazzoli, M.M.; Maraschin, M.; Mello, C.F.; Santos, A.R.S. Chemical characterization, antioxidant and antimicrobial activity of propolis obtained from Melipona quadrifasciata quadrifasciata and Tetragonisca angustula stingless bees. Braz. J. Med. Biol. Res. 2018, 51, e7118. [Google Scholar] [CrossRef]
- Lopes, A.J.O.; Vasconcelos, C.C.; Garcia, J.B.S.; Pinheiro, M.S.D.; Pereira, F.A.N.; Camelo, D.d.S.; Morais, S.V.d.; Freitas, J.R.B.; Rocha, C.Q.d.; Ribeiro, M.N.d.S.; et al. Anti-Inflammatory and Antioxidant Activity of Pollen Extract Collected by Scaptotrigona affinis postica: In silico, in vitro, and in vivo Studies. Antioxidants 2020, 9, 103. [Google Scholar] [CrossRef]
- Mohtar, L.G.; Messina, G.A.; Bertolino, F.A.; Pereira, S.V.; Raba, J.; Nazareno, M.A. Comparative study of different methodologies for the determination the antioxidant activity of Venezuelan propolis. Microchem. J. 2020, 158, 105244. [Google Scholar] [CrossRef]
- Ferreira, B.L.; Gonzaga, L.V.; Vitali, L.; Micke, G.A.; Baggio, D.; de Oliveira Costa, A.C.; Fett, R. Dataset about southern-Brazilian geopropolis: Physical and chemical perspectives. Data Br. 2020, 29, 105109. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, A.C.; Valentim, I.B.; Goulart, M.O.F.; Silva, C.A.; Bechara, E.J.H.; Trevisan, M.T.S. Fontes vegetais naturals de antioxidantes. Quim. Nova 2009, 32, 689–702. [Google Scholar] [CrossRef]
- Carneiro, M.J.; López, B.G.C.; Lancellotti, M.; Franchi, G.C.; Nowill, A.E.; Sawaya, A.C.H.F. Evaluación de la composición química y la actividad biológica de los extractos de propóleos de Tetragonisca angustula y Schinus terebinthifolius Raddi (Anacardiaceae). J. Apic. Res. 2016, 55, 315–323. [Google Scholar] [CrossRef]
- Guimarães, S.; Souza, X.D.; Fabian, A.; Teixeira, R.; Mariana, A.; Melo, C.D. As abelhas sem ferrão (Apidae; Meliponina) residentes no campus Federação/Ondina da Universidade Federal da Bahia, Salvador, Bahia, Brasil. Candombá 2005, 1, 57–69. [Google Scholar]
- Carvalho-zilse, G.A.; Kerr, W.E. Natural substitutions of queens and flight distance ofmales in tiuba (Melipona compressipes fasciculata Smith,1854) and uruçu (Melipona scutellaris Latreille, 1811) (Apidae, Meliponini). Acta Amaz. 1854, 34, 649–652. [Google Scholar] [CrossRef]
- Araújo, M.J.A.M.; Bosco, S.d.M.G.; Sforcin, J.M. Pythium insidiosum: Inhibitory effects of propolis and geopropolis on hyphal growth. Braz. J. Microbiol. 2016, 47, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Isidorov, V.A.; Maslowiecka, J.; Szoka, L.; Pellizzer, N.; Miranda, D.; Olchowik-Grabarek, E.; Zambrzycka, M.; Swiecicka, I. Chemical composition and biological activity of Argentinian propolis of four species of stingless bees. Molecules 2022, 27, 7686. [Google Scholar] [CrossRef] [PubMed]
- Gerginova, D.; Popova, M.; Chimshirova, R.; Trusheva, B.; Shanahan, M.; Guzmán, M.; Solorzano-Gordillo, E.; López-Roblero, E.; Spivak, M.; Simova, S.; et al. The chemical composition of Scaptotrigona mexicana honey and propolis collected in two locations: Similarities and differences. Foods 2023, 12, 3317. [Google Scholar] [CrossRef] [PubMed]
- Pujirahayu, N.; Suzuki, T.; Katayama, T. Cycloartane-type triterpenes and botanical origin of propolis of stingless Indonesian bee Tetragonula sapiens. Plants 2019, 8, 57. [Google Scholar] [CrossRef] [PubMed]
- Alvear, M.; Santos, E.; Cabezas, F.; Pérez-SanMartín, A.; Lespinasse, M.; Veloz, J. Geographic area of collection determines the chemical composition and antimicrobial potential of three extracts of Chilean propolis. Plants 2021, 10, 1543. [Google Scholar] [CrossRef] [PubMed]
- Stanciauskaite, M.; Marksa, M.; Liaudanskas, M.; Ivanauskas, L.; Ivaskiene, M.; Ramanauskiene, K. Extracts of Poplar buds (Populus balsamifera L., Populus nigra L.) and Lithuanian propolis: Comparison of their composition and biological activities. Plants 2021, 10, 828. [Google Scholar] [CrossRef] [PubMed]
- Sanpa, S.; Popova, M.; Bankova, V.; Tunkasiri, T.; Eitssayeam, S.; Chantawannakul, P. Antibacterial compounds from propolis of Tetragonula laeviceps and Tetrigona melanoleuca (Hymenoptera: Apidae) from Thailand. PLoS ONE 2015, 10, e0126886. [Google Scholar] [CrossRef] [PubMed]
- Al Naggar, Y.; Sun, J.; Robertson, A.; Giesy, J.P.; Wiseman, S. Caracterización química y propiedades antioxidantes del propóleos Canadiense. J. Apic. Res. 2016, 55, 305–314. [Google Scholar] [CrossRef]
- Freitas, C.P.; Bilibio, D. Atividade antioxidante da própolis de abelhas Jataí antioxidant activity of propolis of jataí bees. Braz. J. Anim. Environ. Res. 2021, 4, 989–996. [Google Scholar] [CrossRef]
- Campos, J.F.; dos Santos, U.P.; Macorini, L.F.B.; de Melo, A.M.M.F.; Balestieri, J.B.P.; Paredes-Gamero, E.J.; Cardoso, C.A.L.; de Picoli Souza, K.; dos Santos, E.L. Antimicrobial, antioxidant and cytotoxic activities of propolis from Melipona orbignyi (Hymenoptera, Apidae). Food Chem. Toxicol. 2014, 65, 374–380. [Google Scholar] [CrossRef]
- Zhang, C.; Shen, X.; Chen, J.; Jiang, X.; Hu, F. Identification of free radical scavengers from Brazilian green propolis using off-line HPLC-DPPH Assay and LC-MS. J. Food Sci. 2017, 82, 1602–1607. [Google Scholar] [CrossRef]
- Pazin, W.M.; Mônaco, L.d.M.; Egea Soares, A.E.; Miguel, F.G.; Berretta, A.A.; Ito, A.S. Actividad antioxidante de tres tipos de propóleos de abeja sin aguijón y propóleos verdes. J. Apic. Res. 2017, 56, 40–49. [Google Scholar] [CrossRef]
- Zhang, W.; Cai, Y.; Chen, X.; Ji, T.; Sun, L. Optimized extraction based on the terpenoids of Heterotrigona itama propolis and their antioxidative and anti-inflammatory activities. J. Food Biochem. 2020, 44, e13296. [Google Scholar] [CrossRef] [PubMed]
- Béji-Srairi, R.; Younes, I.; Snoussi, M.; Yahyaoui, K.; Borchard, G.; Ksouri, R.; Frachet, V.; Wided, M.K. Ethanolic extract of Tunisian propolis: Chemical composition, antioxidant, antimicrobial and antiproliferative properties. J. Apic. Res. 2020, 59, 917–927. [Google Scholar] [CrossRef]
- de Sousa, J.P.A.; de Sousa, J.M.S.; Rodrigues, R.R.L.; de Lima Nunes, T.A.; Machado, Y.A.A.; de Araujo, A.C.; da Silva, I.G.M.; Barros-Cordeiro, K.B.; Báo, S.N.; de Moraes Alves, M.M.; et al. Antileishmanial activity of 2-amino-thiophene derivative SB-200. Int. Immunopharmacol. 2023, 123, 110750. [Google Scholar] [CrossRef] [PubMed]
- Pessotti, J.H.; Zaverucha Do Valle, T.; Corte-Real, S.; Gonçalves Da Costa, S.C. Interaction of Leishmania (L.) chagasi with the vero cell line. Parasite 2004, 11, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Dutra, R.P.; Bezerra, J.L.; da Silva, M.C.P.; Batista, M.C.A.; Patrício, F.J.B.; Nascimento, F.R.F.; Ribeiro, M.N.S.; Guerra, R.N.M. Antileishmanial activity and chemical composition from Brazilian geopropolis produced by stingless bee Melipona fasciculata. Rev. Bras. Farm. 2019, 29, 287–293. [Google Scholar] [CrossRef]
- Cavalcante, G.M.; Camara, C.A.; Silva, E.M.S.D.; Santos, M.S.; Leite, A.B.; Queiroz, A.C.; Evelyn Da Silva, A.; Araújo, M.V.; Alexandre-Moreira, M.S.; Silva, T.M.S. Leismanicidal activity of propolis collected in the semiarid region of Brazil. Front. Pharmacol. 2021, 12, 702032. [Google Scholar] [CrossRef]
- Branquinha, M.H.; Araújo, P.S.S.; Oliveira, S.S.C.; Sangenito, L.S.; Gonçalves, D.S.; Seabra, S.H.; d’Avila-Levy, C.M.; Santos, A.L.S. Antileishmanial efficacy of the calpain inhibitor MDL28170 in combination with amphotericin B. Trop. Med. Infect. Dis. 2022, 7, 29. [Google Scholar] [CrossRef]
- Ayres, D.C.; Marcucci, M.C.; Giorgio, S. Effects of Brazilian propolis on Leishmania amazonensis. Mem. Inst. Oswaldo Cruz 2007, 102, 215–220. [Google Scholar] [CrossRef]
- Duran, G.; Duran, N.; Culha, G.; Ozcan, B.; Oztas, H.; Ozer, B. In vitro antileishmanial activity of Adana propolis samples on Leishmania tropica: A preliminary study. Parasitol. Res. 2008, 102, 1217–1225. [Google Scholar] [CrossRef]
Species | Total Polyphenols (mg GAE/g) | Total Flavonoids (mg QE/g) |
---|---|---|
Scaptotrigona postica | 21.29 ± 0.003 | 8.17 ± 0.01 |
Tetrigona apicalis [56] | 28.57 | ____ |
Heterotrigona itama [56] | 34.17 | ____ |
Geniotrigona thoracica [56] | 55.16 | ____ |
Melipona quadrifasciata [57] | 84.4–189.5 | 0.74–0.79 |
Tetragonisca angustula [57] | 34.9–42.0 | 0.82–0.93 |
Melipona quadrifasciata quadrifasciata [58] | 3.87 | 0.14 |
Tetragonisca angustula [58] | 1.26 | 0.15 |
Species | Chemical Components |
---|---|
Scaptotrigona mexicana [68] | Phenolic lipids, anacardic and phenolic acids, terpenes, lignans |
Melipona orbignyi [69] | Benzoic acids, phenolic acid, dihydrocinnamic acids and Cinnamic acids |
Tetragonula sapiens [70] | Mangiferonic and ambolic acids, cycloartenol |
Chilean propolis [71] | Galangin, quercetin, apigenin, caffeic acid phenethyl ester |
Lithuanian propolis [72] | p-Cumaric, ferulic, caffeic and vanillic acids, apigenin, galangin, vanillin |
Tetrigona melanoleuca [73] | 3-O-acetylursolic acid, dipterocarpol, ocotillones I and II, oleanolic aldehydes |
Tetragonula laeviceps [73] | α-Mangostin, 8-desoxigartanin, gartanin, garcinone B, methylpinoresinol |
DPPH🞄 | ABTS🞄+ | FRAP | |||
---|---|---|---|---|---|
µM TE/g | Inhibition % | µM TE/g | Inhibition % | µM TE/g | |
Scaptotrigona postica (Brazil, this study) | 910.09 ± 0.0264 | 63.95 | 859.97 ± 0.0854 | 34.43 | 1613.67 ± 0.2610 |
Ascorbic acid | 1132.68 ± 0.005 | 85.54 | 2380.04 ± 0.0000 | 91.31 | 2408.57 ± 0.058 |
Canadian propolis [73] | __________ | 64.0–93.7 | __________ | __________ | |
Tetragonisca angustula (Brazil) [74] | __________ | 19.6–30.5 | __________ | __________ | |
Scaptotrigona mexicana [68] | __________ | 1.8–17.7 | __________ | __________ | |
Scaptotrigona depilis (Brazil) [32] | __________ | 14.9 | __________ | 73.4 | __________ |
Melipona quadrifasciata anthidioides (Brazil) [32] | __________ | 97.5 | __________ | 99.3 | __________ |
Melipona orbignyi (Brazil) [75] | __________ | 96 | __________ | __________ | |
Tetragonisca fiebrigi (Brazil) [31] | __________ | __________ | 86.5 | __________ |
IC50 (µg/mL) | |||
---|---|---|---|
DPPH🞄 | ABTS🞄+ | FRAP | |
Scaptotrigona postica (Brazil, this study) | 18.9 ± 0.01 | 692 ± 0.01 | 80 ± 0.1 |
Ascorbic acid | 6.80 ± 0.02 | 310 ± 0.02 | 60 ± 0.2 |
Mandaçaia [77] | 11.05 ± 0.6 | __________ | __________ |
Melipona quadrifasciata [57] | 117.5 | __________ | |
Heterotrigona itama [78] | 630.31 ± 0.76 | 321.58 ± 3.67 | __________ |
Tunisian propolis extract [79] | 20.1–43 | 244–616 | 375–780 |
Melipona fasciculata (Viana, Brazil) [9] | 76.16 ± 1.05 | 13.28 ± 0.11 | __________ |
Melipona fasciculata (Pinheiros, Brazil) [9] | 265.91 ± 0.29 | 58.94 ± 0.09 | __________ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, L.M.d.M.C.; Souza, P.D.Q.d.; Pereira, R.R.; da Silva, E.O.; Barbosa, W.L.R.; Silva-Júnior, J.O.C.; Converti, A.; Ribeiro-Costa, R.M. Preliminary Study on the Chemical and Biological Properties of Propolis Extract from Stingless Bees from the Northern Region of Brazil. Processes 2024, 12, 700. https://doi.org/10.3390/pr12040700
Ferreira LMdMC, Souza PDQd, Pereira RR, da Silva EO, Barbosa WLR, Silva-Júnior JOC, Converti A, Ribeiro-Costa RM. Preliminary Study on the Chemical and Biological Properties of Propolis Extract from Stingless Bees from the Northern Region of Brazil. Processes. 2024; 12(4):700. https://doi.org/10.3390/pr12040700
Chicago/Turabian StyleFerreira, Lindalva Maria de Meneses Costa, Poliana Dimsan Queiroz de Souza, Rayanne Rocha Pereira, Edilene Oliveira da Silva, Wagner Luiz Ramos Barbosa, José Otávio Carréra Silva-Júnior, Attilio Converti, and Roseane Maria Ribeiro-Costa. 2024. "Preliminary Study on the Chemical and Biological Properties of Propolis Extract from Stingless Bees from the Northern Region of Brazil" Processes 12, no. 4: 700. https://doi.org/10.3390/pr12040700
APA StyleFerreira, L. M. d. M. C., Souza, P. D. Q. d., Pereira, R. R., da Silva, E. O., Barbosa, W. L. R., Silva-Júnior, J. O. C., Converti, A., & Ribeiro-Costa, R. M. (2024). Preliminary Study on the Chemical and Biological Properties of Propolis Extract from Stingless Bees from the Northern Region of Brazil. Processes, 12(4), 700. https://doi.org/10.3390/pr12040700