Sustainable Electricity Production Using Avocado Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manufacturing of MFCs
2.2. Determination of the Physical–Chemical–Biological Parameters of the MFCs
2.3. Collection of Avocado Waste
2.4. Anodic Isolation of Microorganisms
3. Results and Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alan, H.; Köker, A.R. Analyzing and mapping agricultural waste recycling research: An integrative review for conceptual framework and future directions. Resour. Policy 2023, 85, 103987. [Google Scholar] [CrossRef]
- Khan, A.; Niazi, M.B.K.; Ansar, R.; Jahan, Z.; Javaid, F.; Ahmad, R.; Anjum, H.; Ibrahim, M.; Bokhari, A. Thermochemical conversion of agricultural waste to hydrogen, methane, and biofuels: A review. Fuel 2023, 351, 128947. [Google Scholar] [CrossRef]
- Ouyang, H.; Safaeipour, N.; Othman, R.S.; Otadi, M.; Sheibani, R.; Kargaran, F.; Van Le, Q.; Khonakdar, H.A.; Li, C. Agricultural waste-derived (nano)materials for water and wastewater treatment: Current challenges and future perspectives. J. Clean. Prod. 2023, 421, 138524. [Google Scholar] [CrossRef]
- Lou, J.; Babadi, M.R.; Otadi, M.; Tarahomi, M.; Van Le, Q.; Khonakdar, H.A.; Li, C. Agricultural waste valorization towards (nano)catalysts for the production of chemicals and materials. Fuel 2023, 351, 128935. [Google Scholar] [CrossRef]
- Rojas-Flores, S.; Ramirez-Asis, E.; Delgado-Caramutti, J.; Nazario-Naveda, R.; Gallozzo-Cardenas, M.; Diaz, F.; Delfin-Narcizo, D. An Analysis of Global Trends from 1990 to 2022 of Microbial Fuel Cells: A Bibliometric Analysis. Sustainability 2023, 15, 3651. [Google Scholar] [CrossRef]
- Agüero-Quiñones, R.; Ávila-Sánchez, Z.; Rojas-Flores, S.; Cabanillas-Chirinos, L.; De La Cruz-Noriega, M.; Nazario-Naveda, R.; Rojas-Villacorta, W. Activated Carbon Electrodes for Bioenergy Production in Microbial Fuel Cells Using Synthetic Wastewater as Substrate. Sustainability 2023, 15, 13767. [Google Scholar] [CrossRef]
- Segundo, R.-F.; De La Cruz-Noriega, M.; Nazario-Naveda, R.; Benites, S.M.; Delfín-Narciso, D.; Angelats-Silva, L.; Díaz, F. Golden Berry Waste for Electricity Generation. Fermentation 2022, 8, 256. [Google Scholar] [CrossRef]
- Vama, L.; Cherekar, M.N. Production, extraction and uses of eco-enzyme using citrus fruit waste: Wealth from waste. Asian J. Microbiol. Biotechnol. Environm. Sci. 2020, 22, 346–351. [Google Scholar]
- Esteve-Llorens, X.; Ita-Nagy, D.; Parodi, E.; González-García, S.; Moreira, M.T.; Feijoo, G.; Vázquez-Rowe, I. Environmental footprint of critical agro-export products in the Peruvian hyper-arid coast: A case study for green asparagus and avocado. Sci. Total Environ. 2022, 818, 151686. [Google Scholar] [CrossRef]
- Serrano-García, I.; Domínguez-García, J.; Hurtado-Fernández, E.; González-Fernández, J.J.; Hormaza, J.I.; Beiro-Valenzuela, M.G.; Monasterio, R.; Pedreschi, R.; Olmo-García, L.; Carrasco-Pancorbo, A. Assessing the RP-LC-MS-Based Metabolic Profile of Hass Avocados Marketed in Europe from Different Geographical Origins (Peru, Chile, and Spain) over the Whole Season. Plants 2023, 12, 3004. [Google Scholar] [CrossRef]
- Manuel, R. Avocado visual selection with convolutional neural networks based on Peruvian standards. In Proceedings of the 2022 IEEE XXIX International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Lima, Peru, 11–13 August 2022. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Xu, J.; Shi, C. What factors drive the temporal-spatial differences of electricity consumption in the Yangtze River Delta region of China. Environ. Impact Assess. Rev. 2023, 103, 107247. [Google Scholar] [CrossRef]
- Balcioglu, G.; Jeswani, H.K.; Azapagic, A. A sustainability assessment of utilising energy crops for heat and electricity generation in Turkey. Sustain. Prod. Consum. 2023, 41, 134–155. [Google Scholar] [CrossRef]
- Lei, X.; Yu, H.; Yu, B.; Shao, Z.; Jian, L. Bridging electricity market and carbon emission market through electric vehicles: Optimal bidding strategy for distribution system operators to explore economic feasibility in China’s low-carbon transitions. Sustain. Cities Soc. 2023, 94, 104557. [Google Scholar] [CrossRef]
- Kazemi, M.; Biria, D.; Rismani-Yazdi, H. Modelling bio-electrosynthesis in a reverse microbial fuel cell to produce acetate from CO2 and H2O. Phys. Chem. Chem. Phys. 2015, 17, 12561–12574. [Google Scholar] [CrossRef] [PubMed]
- Khunjar, W.O.; Sahin, A.; West, A.C.; Chandran, K.; Banta, S. Biomass Production from Electricity Using Ammonia as an Electron Carrier in a Reverse Microbial Fuel Cell. PLoS ONE 2012, 7, e44846. [Google Scholar] [CrossRef]
- Boas, J.V.; Oliveira, V.B.; Simões, M.; Pinto, A.M. Review on microbial fuel cells applications, developments and costs. J. Environ. Manag. 2022, 307, 114525. [Google Scholar] [CrossRef] [PubMed]
- Oladzad, S.; Fallah, N.; Mahboubi, A.; Afsham, N.; Taherzadeh, M.J. Date fruit processing waste and approaches to its valorization: A review. Bioresour. Technol. 2021, 340, 125625. [Google Scholar] [CrossRef] [PubMed]
- Mohyudin, S.; Farooq, R.; Jubeen, F.; Rasheed, T.; Fatima, M.; Sher, F. Microbial fuel cells a state-of-the-art technology for wastewater treatment and bioelectricity generation. Environ. Res. 2022, 204, 112387. [Google Scholar] [CrossRef]
- Rojas-Villacorta, W.; Rojas-Flores, S.; Benites, S.M.; Nazario-Naveda, R.; Romero, C.V.; Gallozzo-Cardenas, M.; Delfín-Narciso, D.; Díaz, F.; Murga-Torres, E. Preliminary Study of Bioelectricity Generation Using Lettuce Waste as Substrate by Reverse microbial fuel cells. Sustainability 2023, 15, 10339. [Google Scholar] [CrossRef]
- Aleid, G.M.; Alshammari, A.S.; Alomari, A.D.; Abdullahi, S.S.; Mohammad, R.E.A.; Abdulrahman, R.M.I. Degradation of Metal Ions with Electricity Generation by Using Fruit Waste as an Organic Substrate in the Microbial Fuel Cell. Int. J. Chem. Eng. 2023, 2023, e1334279. [Google Scholar] [CrossRef]
- Verma, M.; Mishra, V. Bioelectricity generation by microbial degradation of banana peel waste biomass in a dual-chamber S. cerevisiae-based microbial fuel cell. Biomass Bioenergy 2023, 168, 106677. [Google Scholar] [CrossRef]
- Rojas-Villacorta, W.; Rojas-Flores, S.; Benites, S.M.; Delfín-Narciso, D.; De La Cruz-Noriega, M.; Cabanillas-Chirinos, L.; Rodríguez-Serin, H.; Rebaza-Araujo, S. Potential use of pepper waste and microalgae Spirulina sp. for bioelectricity generation. Energy Rep. 2023, 9, 253–261. [Google Scholar] [CrossRef]
- Naaz, T.; Kumar, A.; Vempaty, A.; Singhal, N.; Pandit, S.; Gautam, P.; Jung, S.P. Recent advances in biological approaches towards anode biofilm engineering for improvement of extracellular electron transfer in reverse microbial fuel cells. Environ. Eng. Res. 2023, 28, 220666. [Google Scholar] [CrossRef]
- Noori, M.T.; Thatikayala, D.; Pant, D.; Min, B. A critical review on microbe-electrode interactions towards heavy metal ion detection using microbial fuel cell technology. Bioresour. Technol. 2022, 347, 126589. [Google Scholar] [CrossRef] [PubMed]
- Idris, M.O.; Guerrero–Barajas, C.; Kim, H.C.; Yaqoob, A.A.; Ibrahim, M.N.M. Scalability of biomass-derived graphene derivative materials as viable anode electrode for a commercialized reverse microbial fuel cell: A systematic review. Chin. J. Chem. Eng. 2022, 55, 277–292. [Google Scholar] [CrossRef]
- Esparza, I.; Jiménez-Moreno, N.; Bimbela, F.; Ancín-Azpilicueta, C.; Gandía, L.M. Fruit and vegetable waste management: Conventional and emerging approaches. J. Environ. Manag. 2020, 265, 110510. [Google Scholar] [CrossRef] [PubMed]
- Sirohi, R.; Gaur, V.K.; Pandey, A.K.; Sim, S.J.; Kumar, S. Harnessing fruit waste for poly-3-hydroxybutyrate production: A review. Bioresour. Technol. 2021, 326, 124734. [Google Scholar] [CrossRef] [PubMed]
- Nyakang′i, C.O.; Ebere, R.; Marete, E.; Arimi, J.M. Avocado production in Kenya in relation to the world, Avocado by-products (seeds and peels) functionality and Utilization in food products. Appl. Food Res. 2023, 3, 100275. [Google Scholar] [CrossRef]
- Ramirez-Guerrero, T.; Hernandez-Perez, M.I.; Tabares, M.S.; Marulanda-Tobon, A.; Villanueva, E.; Peña, A. Agroclimatic and Phytosanitary Events and Emerging Technologies for Their Identification in Avocado Crops: A Systematic Literature Review. Agronomy 2023, 13, 1976. [Google Scholar] [CrossRef]
- Viola, E.; Buzzanca, C.; Tinebra, I.; Settanni, L.; Farina, V.; Gaglio, R.; Di Stefano, V. A Functional End-Use of Avocado (cv. Hass) Waste through Traditional Semolina Sourdough Bread Production. Foods 2023, 12, 3743. [Google Scholar] [CrossRef]
- Pérez-Solache, A.; Vaca-Sánchez, M.S.; Maldonado-López, Y.; De Faria, M.L.; Borges, M.A.Z.; Fagundes, M.; Oyama, K.; Méndez-Solórzano, M.I.; Aguilar-Peralta, J.S.; Hernández-Guzmán, R.; et al. Changes in land use of temperate forests associated to avocado production in Mexico: Impacts on soil properties, plant traits and insect-plant interactions. Agric. Syst. 2023, 204, 103556. [Google Scholar] [CrossRef]
- Roy, H.; Rahman, T.U.; Tasnim, N.; Arju, J.; Rafid, M.M.; Islam, M.R.; Pervez, N.; Cai, Y.; Naddeo, V.; Islam, S. Microbial fuel cell construction features and application for sustainable wastewater treatment. Membranes 2023, 13, 490. [Google Scholar] [CrossRef] [PubMed]
- NTP 360.502:2016 CALIDAD DE AGUA. Determinación de Sulfuros. Available online: https://sni.org.pe/aprueban-normas-tecnicas-peruanas-sobre-carne-y-productos-carnicos-maiz-amilaceo-cebada-cerveza-aditivos-alimentarios-y-otros/ (accessed on 7 May 2020).
- De La Cruz-Noriega, M.; Benites, S.M.; Rojas-Flores, S.; Otiniano, N.M.; Sabogal Vargas, A.M.; Alfaro, R.; Cabanillas-Chirinos, L.; Rojas-Villacorta, W.; Nazario-Naveda, R.; Delfín-Narciso, D. Use of Wastewater and Electrogenic Bacteria to Generate Eco-Friendly Electricity through Reverse microbial fuel cells. Sustainability 2023, 15, 10640. [Google Scholar] [CrossRef]
- Teng, P. A Novel Portable Oxidation-Reduction Potential and Reverse Microbial Fuel Cell-Based Sensor to Monitor Microbial Growth. Ph.D. Dissertation, University of Saskatchewan, Saskatoon, SK, Canada, 2023. [Google Scholar]
- Zafar, H. Reverse Microbial Fuel Cells: A Comparative Analysis of Operational Factors, Response Metrics, and Degradation Response to Fruit Waste Degradation. Ph.D. Dissertation, University of British Columbia, Vancouver, BC, Canada, 2023. [Google Scholar]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Al-Zaqri, N. A Pilot Trial in the Remediation of Pollutants Simultaneously with Bioenergy Generation through Reverse microbial fuel cell. J. Environ. Chem. Eng. 2023, 11, 110643. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Bose, D.; Yadav, J.; Sharma, B.; Sangli, E.; Patel, A.; Mukherjee, A.; Singh, A.A. Bioremediation and bioelectricity from Himalayan rock soil in sediment-microbial fuel cell using carbon rich substrates. Fuel 2023, 341, 127019. [Google Scholar] [CrossRef]
- Zhong, K.; Wang, Y.; Wu, Q.; You, H.; Zhang, H.; Su, M.; Liang, R.; Zuo, J.; Yang, S.; Tang, J. Highly conductive skeleton Graphitic-C3N4 assisted Fe-based metal-organic frameworks derived porous bimetallic carbon nanofiber for enhanced oxygen-reduction performance in reverse microbial fuel cells. J. Power Sources 2020, 467, 228313. [Google Scholar] [CrossRef]
- Yellappa, M.; Modestra, J.A.; Reddy, Y.R.; Mohan, S.V. Functionalized conductive activated carbon-polyaniline composite anode for augmented energy recovery in reverse microbial fuel cells. Bioresour. Technol. 2021, 320, 124340. [Google Scholar] [CrossRef]
- Vélez-Pérez, L.S.; Ramirez-Nava, J.; Hernández-Flores, G.; Talavera-Mendoza, O.; Escamilla-Alvarado, C.; Poggi-Varaldo, H.M.; Solorza-Feria, O.; López-Díaz, J. Industrial acid mine drainage and municipal wastewater co-treatment by dual-chamber reverse microbial fuel cells. Int. J. Hydrogen Energy 2020, 45, 13757–13766. [Google Scholar] [CrossRef]
- Kalagbor Ihesinachi, A.; Akpotayire Stephen, I. Electricity Generation from Waste Tropical Fruits-Watermelon (Citrullus lanatus) and Paw-paw (Carica papaya) using Single Chamber Reverse microbial fuel cells. Int. J. Energy Inf. Commun 2020, 11, 11–20. [Google Scholar] [CrossRef]
- Bazina, N.; Ahmed, T.G.; Almdaaf, M.; Jibia, S.; Sarker, M. Power generation from wastewater using reverse microbial fuel cells: A review. J. Biotechnol. 2023, 374, 17–30. [Google Scholar] [CrossRef]
- Rashid, T.; Sher, F.; Hazafa, A.; Hashmi, R.Q.; Zafar, A.; Rasheed, T.; Hussain, S. Design and feasibility study of novel paraboloid graphite based microbial fuel cell for bioelectrogenesis and pharmaceutical wastewater treatment. J. Environ. Chem. Eng. 2021, 9, 104502. [Google Scholar] [CrossRef]
- Ullah, Z.; Zeshan, S. Effect of substrate type and concentration on the performance of a double chamber reverse microbial fuel cell. Water Sci. Technol. 2020, 81, 1336–1344. [Google Scholar] [CrossRef] [PubMed]
- Raychaudhuri, A.; Sahoo, R.N.; Behera, M. Sequential anaerobic–aerobic treatment of rice mill wastewater and simultaneous power generation in reverse microbial fuel cell. Environ. Technol. 2023, 44, 3176–3182. [Google Scholar] [CrossRef]
- Yu, B.; Feng, L.; He, Y.; Yang, L.; Xun, Y. Effects of anode materials on the performance and anode microbial community of soil reverse microbial fuel cell. J. Hazard. Mater. 2021, 401, 123394. [Google Scholar] [CrossRef]
- Xu, F.; Ouyang, D.L.; Rene, E.R.; Ng, H.Y.; Guo, L.L.; Zhu, Y.J.; Zhou, L.-L.; Yuan, Q.; Miao, M.-S.; Wang, Q.; et al. Electricity production enhancement in a constructed wetland-microbial fuel cell system for treating saline wastewater. Bioresour. Technol. 2019, 288, 121462. [Google Scholar] [CrossRef]
- Kim, B.; Mohan, S.V.; Fapyane, D.; Chang, I.S. Controlling voltage reversal in reverse microbial fuel cells. Trends Biotechnol. 2020, 38, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Gadkari, S.; Shemfe, M.; Sadhukhan, J. Reverse microbial fuel cells: A fast converging dynamic model for assessing system performance based on bioanode kinetics. Int. J. Hydrogen Energy 2019, 44, 15377–15386. [Google Scholar] [CrossRef]
- Ma, H.; Peng, C.; Jia, Y.; Wang, Q.; Tu, M.; Gao, M. Effect of fermentation stillage of food waste on bioelectricity production and microbial community structure in reverse microbial fuel cells. R. Soc. Open Sci. 2018, 5, 180457. [Google Scholar] [CrossRef] [PubMed]
- Sonu, K.; Sogani, M.; Syed, Z.; Rajvanshi, J.; Sengupta, N.; Kumar, P. The effects of waste jasmine flower as a substrate in a single chamber reverse microbial fuel cell. Biomass Convers. Bioref. 2023, 1–9. [Google Scholar] [CrossRef]
- Jannelli, N.; Nastro, R.A.; Cigolotti, V.; Minutillo, M.; Falcucci, G. Low pH, high salinity: Too much for reverse microbial fuel cells? Appl. Energy 2017, 192, 543–550. [Google Scholar] [CrossRef]
- Obileke, K.; Onyeaka, H.; Meyer, E.L.; Nwokolo, N. Reverse microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review. Electrochem. Commun. 2021, 125, 107003. [Google Scholar] [CrossRef]
- Babanova, S.; Jones, J.; Phadke, S.; Lu, M.; Angulo, C.; Garcia, J.; Carpenter, K.; Cortese, R.; Chen, S.; Phan, T.; et al. Continuous flow, large-scale, microbial fuel cell system for the sustained treatment of swine waste. Water Environ. Res. 2020, 92, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Ramya, M.; Kumar, P.S. A review on recent advancements in bioenergy production using reverse microbial fuel cells. Chemosphere 2022, 288, 132512. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, A.A.; Khatoon, A.; Mohd Setapar, S.H.; Umar, K.; Parveen, T.; Mohamad Ibrahim, M.N.; Ahmad, A.; Rafatullah, M. Outlook on the role of reverse microbial fuel cells in remediation of environmental pollutants with electricity generation. Catalysts 2020, 10, 819. [Google Scholar] [CrossRef]
- Rossi, R.; Hur, A.Y.; Page, M.A.; Thomas, A.O.B.; Butkiewicz, J.J.; Jones, D.W.; Baek, G.; Saikaly, P.E.; Cropek, D.M.; Logan, B.E. Pilot scale reverse microbial fuel cells using air cathodes for producing electricity while treating wastewater. Water Res. 2022, 215, 118208. [Google Scholar] [CrossRef] [PubMed]
- Moradian, J.M.; Fang, Z.; Yong, Y.C. Recent advances on biomass-fueled reverse microbial fuel cell. Bioresour. Bioprocess. 2021, 8, 14. [Google Scholar] [CrossRef]
- Hung, Y.H.; Liu, T.Y.; Chen, H.Y. Renewable coffee waste-derived porous carbons as anode materials for high-performance sustainable reverse microbial fuel cells. ACS Sustain. Chem. Eng. 2019, 7, 16991–16999. [Google Scholar] [CrossRef]
- Greenman, J.; Gajda, I.; You, J.; Mendis, B.A.; Obata, O.; Pasternak, G.; Ieropoulos, I. Reverse microbial fuel cells and their electrified biofilms. Biofilm 2021, 3, 100057. [Google Scholar] [CrossRef] [PubMed]
- Sonawane, A.V.; Rikame, S.; Sonawane, S.H.; Gaikwad, M.; Bhanvase, B.; Sonawane, S.S.; Mungray, A.K.; Gaikwad, R. A review of microbial fuel cell and its diversification in the development of green energy technology. Chemosphere 2024, 350, 141127. [Google Scholar] [CrossRef]
- Arun, J.; SundarRajan, P.; Pavithra, K.G.; Priyadharsini, P.; Shyam, S.; Goutham, R.; Le, Q.H.; Pugazhendhi, A. New insights into microbial electrolysis cells (MEC) and reverse microbial fuel cells (MFC) for simultaneous wastewater treatment and green fuel (hydrogen) generation. Fuel 2024, 355, 129530. [Google Scholar] [CrossRef]
- Daud, N.N.M.; Ibrahim, M.N.M.; Yaqoob, A.A.; Yaakop, A.S.; Hussin, M.H. Evaluating the electrode materials to improve electricity generation with the removal of multiple pollutants through reverse microbial fuel cells. Biomass Convers. Bioref. 2024, 1–22. [Google Scholar] [CrossRef]
- Akay, R.G. Components Used in Reverse microbial fuel cells for Renewable Energy Generation: A Review of Their Historical and Ecological Development. J. Electrochem. En. Conv. Stor. 2024, 21, 020801. [Google Scholar] [CrossRef]
- Tamilarasan, K.; Shabarish, S.; Banu, J.R.; Sharmila, V.G. Sustainable power production from petrochemical industrial effluent using dual chambered reverse microbial fuel cell. J. Environ. Manag. 2024, 351, 119777. [Google Scholar] [CrossRef] [PubMed]
- Atkar, A.; Sridhar, S.; Deshmukh, S.; Dinker, A.; Kishor, K.; Bajad, G. Synthesis and characterization of sulfonated chitosan (SCS)/sulfonated polyvinyl alcohol (SPVA) blend membrane for microbial fuel cell application. Mater. Sci. Eng. B 2024, 299, 116942. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Y.; Liu, Y.; Wei, Y.; Lan, F.; Wang, J.; Liu, X.; Wang, R.; Yang, Y.; Chen, J. Improving oxygen reduction reaction by cobalt iron-layered double hydroxide layer on nickel-metal organic framework as cathode catalyst in reverse microbial fuel cell. Bioresour. Technol. 2024, 392, 130011. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef] [PubMed]
- Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Reverse microbial fuel cells: From fundamentals to applications. A review. J. Power Sources 2017, 356, 225–244. [Google Scholar] [CrossRef]
- Yu, L.; Yuan, Y.; Rensing, C.; Zhou, S. Combined spectroelectrochemical and proteomic characterizations of bidirectional Alcaligenes faecalis-electrode electron transfer. Biosens. Bioelectron. 2018, 106, 21–28. [Google Scholar] [CrossRef]
- Huang, C. Extensively drug-resistant Alcaligenes faecalis infection. BMC Infect. Dis. 2020, 20, 833. [Google Scholar] [CrossRef]
- Paz-Zarza, V.M.; Mangwani-Mordani, S.; Martínez-Maldonado, A.; Álvarez-Hernández, D.; Solano-Gálvez, S.G.; Vázquez López, R. Pseudomonas aeruginosa: Patogenicidad y resistencia antimicrobiana en la infección urinaria [Pseudomonas aeruginosa: Pathogenicity and Antimicrobial Resistance in Urinary Tract Infection]. Rev. Chil. Infectología 2019, 36, 180–189. [Google Scholar] [CrossRef]
- Angelaalincy, M.J.; Navanietha Krishnaraj, R.; Shakambari, G.; Ashokkumar, B.; Kathiresan, S.; Varalakshmi, P. Biofilm engineering approaches for improving the performance of reverse microbial fuel cells and bioelectrochemical systems. Front. Energy Res. 2018, 6, 63. [Google Scholar] [CrossRef]
- Shen, H.B.; Yong, X.Y.; Chen, Y.L.; Liao, Z.H.; Si, R.W.; Zhou, J.; Wang, S.Y.; Yong, Y.C.; OuYang, P.K.; Zheng, T. Enhanced bioelectricity generation by improving pyocyanin production and membrane permeability through sophorolipid addition in Pseudomonas aeruginosa-inoculated reverse microbial fuel cells. Bioresour. Technol. 2014, 167, 490–494. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, S.; Xu, A.; Zhang, L.; Liu, H.; Ma, L.Z. Biological synthesis of high-conductive pili in aerobic bacterium Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 2019, 103, 1535–1544. [Google Scholar] [CrossRef] [PubMed]
- Kafaei, R.; Yazdanbakhsh, A.; Sadani, M.; Alavi, N. Bioelectricity and Biohydrogen Production Using High Solid Content of Oily-Kitchen Wastes in Air Cathode Reverse microbial fuel cells. Iran. J. Chem. Chem. Eng. 2023, 42, 2895–2907. [Google Scholar] [CrossRef]
- Lin, X.; Zheng, L.; Zhang, M.; Qin, Y.; Liu, X.; Liu, Y.; Li, H.; Li, C. Binder-free Fe nano oxides decoration for stimulating power generation in reverse microbial fuel cell: Effects on electrode substrates and function mechanism. Chem. Eng. J. 2023, 453, 139910. [Google Scholar] [CrossRef]
- Ouzi, Z.A.; Aber, S.; Nofouzi, K.; Khajeh, R.T.; Rezaei, A. Carbon paste/LDH/bacteria biohybrid for the modification of the anode electrode of a reverse microbial fuel cell. J. Taiwan Inst. Chem. Eng. 2023, 142, 104668. [Google Scholar] [CrossRef]
- Ahmad, A.; Alshammari, M.B.; Ibrahim, M.N.M. Impact of Self-Fabricated Graphene–Metal Oxide Composite Anodes on Metal Degradation and Energy Generation via a Reverse microbial fuel cell. Processes 2023, 11, 163. [Google Scholar] [CrossRef]
- Hirose, S.; Nguyen, D.T.; Taguchi, K. Development of low-cost block-shape anodes for practical soil reverse microbial fuel cells. Energy Rep. 2023, 9, 144–150. [Google Scholar] [CrossRef]
- Wang, H.; Chai, G.; Zhang, Y.; Wang, D.; Wang, Z.; Meng, H.; Jiang, C.; Dong, W.; Li, J.; Lin, Y.; et al. Copper removal from wastewater and electricity generation using dual-chamber reverse microbial fuel cells with shrimp shell as the substrate. Electrochim. Acta 2023, 441, 141849. [Google Scholar] [CrossRef]
- Malik, S.; Kishore, S.; Dhasmana, A.; Kumari, P.; Mitra, T.; Chaudhary, V.; Kumari, R.; Bora, J.; Ranjan, A.; Minkina, T.; et al. A Perspective Review on Reverse microbial fuel cells in Treatment and Product Recovery from Wastewater. Water 2023, 15, 316. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, J.; Zhang, Y.; Guo, Q.; Hu, T.; Xiao, H.; Lu, W.; Jia, J. Progress on anodic modification materials and future development directions in reverse microbial fuel cells. J. Power Sources 2023, 556, 232486. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
pH | 5.64 |
Temperature (°C) | 22.4 ± 0.01 |
Electrical conductivity (µS/cm) | 43.08 ± 1.73 |
Dissolved Oxygen (mg/L) | 2.54 ± 0.01 |
Total Dissolved Solids (mg/L) | 1358 ± 1 |
Chemical Oxygen Demand (mg/L) | 1487.25 ± 0.01 |
Sample Identification | BLAST Characterization | Length of Consensus Sequence (nt) | % Maximum Identidad | Accession Number |
---|---|---|---|---|
M15 | Bacillus marisflavi | 1482 | 100.00 | NR_025240.1 |
Substrate Type | Types of MFCs | Maximum Value of Voltage (V) | Maximum Power Density (mW/m2) | Maximum Current Density (mA/m2) | Electrodes | Ref. |
---|---|---|---|---|---|---|
Avocado waste | single chamber | 0.861 ± 0.241 V | 365.16 ± 9.88 | 5.744 | Carbon/Zinc | this investigation |
Oily kitchen waste | single chamber cubic | 0.400 | - | - | carbon | [78] |
Sugarcane waste | single chamber | 0.290 | 3.571 | 64.51 | graphite | [79] |
Yeast wastewater | single chamber | 1.090 | -- | -- | Cu-Ag cathode and | [80] |
Sweet lemon peels | single chamber | 0.792 ± 0.010 | 204.80 ± 1.28 | 640.0 ± 2.0 | Anodo: stainless-steel mesh and cathode: cylindrical graphite rod | [81] |
Fruit waste | single chamber | 0.102 | 0.099 | 31.57 | carbon | [82] |
Banana peel waste | dual-chamber | 0.307 ± 0.015 | 86.9 ± 0.4 | 129.4 ± 1 | Anodo: carbon and cathode: graphite plate | [83] |
Coriander waste | single chamber | 0.882 ± 0.154 | 304.325 ± 16.51 | 506 | Anodic: copper and cathodic: zinc | [84] |
Tangerine waste | single chamber | 1.191 ± 0.35 | 475.32 ± 24.56 | 553 | Anodic: copper and cathodic: zinc | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Flores, S.; Vives-Garnique, J.; Díaz, F.; De La Cruz-Noriega, M. Sustainable Electricity Production Using Avocado Waste. Processes 2024, 12, 715. https://doi.org/10.3390/pr12040715
Rojas-Flores S, Vives-Garnique J, Díaz F, De La Cruz-Noriega M. Sustainable Electricity Production Using Avocado Waste. Processes. 2024; 12(4):715. https://doi.org/10.3390/pr12040715
Chicago/Turabian StyleRojas-Flores, Segundo, Juan Vives-Garnique, Félix Díaz, and Magaly De La Cruz-Noriega. 2024. "Sustainable Electricity Production Using Avocado Waste" Processes 12, no. 4: 715. https://doi.org/10.3390/pr12040715
APA StyleRojas-Flores, S., Vives-Garnique, J., Díaz, F., & De La Cruz-Noriega, M. (2024). Sustainable Electricity Production Using Avocado Waste. Processes, 12(4), 715. https://doi.org/10.3390/pr12040715