Integration of Chemical Looping Combustion to a Gasified Stream with Low Hydrogen Content
Abstract
:1. Introduction
2. State of the Art
2.1. The Chemical Looping Combustion Process
2.2. The Process of Selecting an Oxygen Carrier
- (a)
- Selective for reduction and oxidation products.
- (b)
- Demonstrating stability throughout multiple combustion-regeneration cycles.
- (c)
- Mechanically resistant to the stress of reaction conditions in each reactor.
- (d)
- Being economically feasible and environmentally friendly.
2.3. Syngas
3. Methodology
3.1. Heat of Formation
3.2. Thermodynamic Analysis
- -
- If the Gibbs free energy value is less than zero, the reaction is exergonic and will proceed spontaneously in the forward reaction to form products.
- -
- If the Gibbs free energy value is higher than zero, the reaction is endergonic, therefore it will require an input of energy to occur, being considered an unnatural or non-spontaneous reaction in the pathway described.
- -
- If the Gibbs free energy value is equal to zero, the system will be in equilibrium and both the concentration of products and reactants will remain constant.
4. Results and Discussion
4.1. Analysis of the Feasibility of Using Ilmenite for Total Oxidation of Syngas in a CLC Process
4.2. Implementation of a Syngas Stream at 650 °C
4.3. Heterogeneous Reaction Mechanism for the CLC System Proposed
- Reagent transfer at the interface.
- Diffusivity of the reagent.
- Adsorption of the reagent into the catalyst.
- Surface reaction (interaction between sites).
- Desorption.
- Diffusivity of the product.
- Product transfer at the interface.
- = number of total moles fed to the system;
- = moles of ferric oxide fed to the system;
- = moles of hematite present in the system;
- = moles of oxygen fed to the regenerator;
- = reaction coordinate;
- = regenerator equilibrium constant.
4.4. Preparation of Synthetic Ilmenite at the Laboratory Level
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, P.; Li, F.; Xiao, F.; Zhao, N.; Wei, W.; Zhong, L.; Sun, Y. Effect of hydrotalcite-containing precursors on the performance of Cu/Zn/Al/Zr catalysts for CO2 hydrogenation: Introduction of Cu2+ at different formation stages of precursors. Catal. Today 2012, 194, 9–15. [Google Scholar] [CrossRef]
- Koytsoumpa, E.I.; Bergins, C.; Kakaras, E. The CO2 economy: Review of CO2 capture and reuse technologies. J. Supercrit. Fluids 2018, 132, 3–16. [Google Scholar] [CrossRef]
- Sullivan, I.; Goryachev, A.; Digdaya, I.A.; Li, X.; Atwater, H.A.; Vermaas, D.A.; Xiang, C. Coupling electrochemical CO2 conversion with CO2 capture. Nat. Catal. 2021, 4, 952–958. [Google Scholar] [CrossRef]
- World Nuclear Association. Carbon Dioxide Emissions from Electricity. 2022. Available online: https://www.world-nuclear.org/information-library/energy-and-the-environment/carbon-dioxide-emissions-from-electricity.aspx (accessed on 30 November 2022).
- Arjmand, M.; Leion, H.; Mattisson, T.; Lyngfelt, A. Investigation of different manganese ores as oxygen carriers in chemical-looping combustion (CLC) for solid fuels. Appl. Energy 2015, 113, 1883–1894. [Google Scholar] [CrossRef]
- Pérez-Méndez, M.A.; Fraga-Cruz, G.S.; Jiménez-García, G.; Huirache-Acuña, R.; Nápoles-Rivera, F.; Maya-Yescas, R. Macroscopic analysis of chemical looping combustion with ilmenite versus conventional oxides as oxygen carriers. Int. J. Chem. React. Eng. 2023, 21, 511–520. [Google Scholar] [CrossRef]
- Linderholm, C.; Mattisson, T.; Lyngfelt, A. Long-term integrity testing of spray-dried particles in a 10-kW chemical-looping combustor using natural gas as fuel. Fuel 2009, 88, 2083–2096. [Google Scholar] [CrossRef]
- Adanez, J.; Abad, A. Chemical-looping Combustion: Status and Research Needs. Proc. Combust. Inst. 2019, 37, 4303–4317. [Google Scholar] [CrossRef]
- Jin, H.; Ishida, M. A new type of coal gas fueled chemical-looping combustion. Fuel 2004, 83, 2411–2417. [Google Scholar] [CrossRef]
- Adánez, J.; Cuadrat, A.; Abad, A.; Gayán, P.; de Diego, L.F.; García-Labiano, F. Ilmenite activation during consecutive redox cycles in chemical-looping combustion. Energy Fuels 2010, 24, 1402–1413. [Google Scholar] [CrossRef]
- Hwang, J.H.; Son, E.N.; Lee, R.; Kim, S.H.; Baek, J.I.; Ryu, H.J.; Lee, K.T.; Sohn, J.M. A thermogravimetric study of CoTiO3 as oxygen carrier for chemical looping combustion. Catal. Today 2018, 303, 13–18. [Google Scholar] [CrossRef]
- Hossain, M.M.; de Lasa, H.I. Chemical-looping combustion (CLC) for inherent CO2 separations—A review. Chem. Eng. Sci. 2008, 63, 4433–4451. [Google Scholar] [CrossRef]
- Ipsakis, D.; Heracleous, E.; Silvester, L.; Bukur, D.B.; Lemonidou, A.A. Reduction and oxidation kinetic modeling of NiO-based oxygen transfer materials. Chem. Eng. J. 2017, 308, 840–852. [Google Scholar] [CrossRef]
- Görke, R.; Marek, E.; Donat, F.; Scott, S. Reduction and oxidation behavior of strontium perovskites for chemical looping air separation. Int. J. Greenh. Gas Control. 2020, 94, 102891. [Google Scholar] [CrossRef]
- Mattisson, T.; Johansson, M.; Lyngfelt, A. Multicycle Reduction and Oxidation of Different Types of Iron Oxide ParticlesApplication to Chemical-Looping Combustion. Energy Fuels 2004, 18, 628–637. [Google Scholar] [CrossRef]
- Czakiert, T.; Krzywanski, J.; Zylka, A.; Nowak, W. Chemical Looping Combustion: A Brief Overview. Energies 2022, 15, 1563. [Google Scholar] [CrossRef]
- Berguerand, N.; Lyngfelt, A. Design and operation of a 10 kWth chemical-looping combustor for solid fuels–Testing with South African coal. Fuel 2008, 87, 2713–2726. [Google Scholar] [CrossRef]
- Knutsson, P.; Linderholm, C. Characterization of ilmenite used as oxygen carrier in a 100 kW chemical-looping combustor for solid fuels. Appl. Energy 2015, 157, 368–373. [Google Scholar] [CrossRef]
- Lyngfelt, A.; Leckner, B.; Mattisson, T. A Fluidized-Bed Combustion Process with Inherent CO2 Separation; Application of Chemical-Looping Combustion. Chem. Eng. Sci. 2001, 56, 3101–3113. [Google Scholar] [CrossRef]
- Azis, M.M.; Jerndal, E.; Leion, H.; Mattisson, T.; Lyngfelt, A. On the evaluation of synthetic and natural ilmenite using syngas as fuel in chemical-looping combustion (CLC). Chem. Eng. Res. Des. 2010, 88, 1505–1514. [Google Scholar] [CrossRef]
- Ridha, F.N.; Duchesne, M.A.; Lu, X.; Lu, D.Y.; Filippou, D.; Hughes, R.W. Characterization of an ilmenite ore for pressurized chemical looping combustion. Appl. Energy 2016, 163, 323–333. [Google Scholar] [CrossRef]
- Molino, A.; Nanna, F.; Ding, Y.; Bikson, B.; Braccio, G. Biomethane production by anaerobic digestion of organic waste. Fuel 2013, 103, 1003–1009. [Google Scholar] [CrossRef]
- Pacheco, M.; Moura, P.; Silva, C. A Systematic Review of Syngas Bioconversion to Value-Added Products from 2012 to 2022. Energies 2023, 16, 3241. [Google Scholar] [CrossRef]
- Chang, Y.-J.; Chang, J.-S.; Lee, D.-J. Gasification of biomass for syngas production: Research update and stoichiometry diagram presentation. Bioresour. Technol. 2023, 387, 129535. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.M.; Van Ness, H.C.; Abbott, M.M.; Swihart, M.T. Introduction to Chemical Engineering Thermodynamics; McGraw-Hill: Singapore, 1949. [Google Scholar]
- Collieu, A.M.; Powney, D.J.; Girifalco, L.A.; Herman, H. The mechanical and thermal properties of materials and statistical physics of materials. Phys. Today 1975, 28, 51–52. [Google Scholar] [CrossRef]
Characteristic | Natural Ilmenite Ore | Activated Ilmenite |
---|---|---|
Fe2O3 (mass fraction) | 0.112 | 0.220 |
Fe2TiO5 (mass fraction) | 0.547 | 0.385 |
TiO2 (mass fraction) | 0.286 | 0.340 |
Inert (mass fraction) | 0.055 | 0.055 |
Mineral Density (kg m−3) | 4100 | 4250 |
R0, ilm (%) | 4.0 | 3.3 |
Heat Reaction | kJ/mol |
---|---|
2 Fe + 3/2O2 → Fe2O3 | 810.3 |
2 FeO + 1/2O2 → Fe2O3 | 279.5 |
2 Fe3O4 + 1/2O2 → 3 Fe2O3 | 80.9 |
2FeTiO3 +1/2O2 → Fe2TiO5 + TiO2 | 214.2 |
Fe2TiO4 + 1/2O2 → Fe2TiO5 | 219.0 |
2FeTi2O4 + 3/2O2 → Fe2TiO5 + 3TiO2 | 938.6 |
Calorific Capacity | kJ/°C × mol |
Hematite (Fe2O3)s | 0.1398 |
Magnetite (Fe3O4)s | 0.2035 |
Pseudobrookite (Fe2TiO5)s | 0.2174 |
Titania (TiO2)s | 0.0758 |
Ilmenite (FeTiO3)s | 0.1353 |
Compound | |||
---|---|---|---|
Fe2TiO5 | −1565.3 | 0.1714 | 0.2174 |
Fe2O3 | −824.2 | 0.0874 | 0.1398 |
FeTiO3 | −1235.23 | 0.1249 | 0.1353 |
Fe3O4 | −1118.4 | 0.1464 | 0.2035 |
TiO2 | −180.49 | 0.151 | 0.0758 |
CO | −110.13 | 0.1976 | 0.02916 |
H2 | 0 | 0.1307 | 0.02882 |
CO2 | −393.51 | 0.21378 | 0.03711 |
H2O | −241.82 | 0.18883 | 0.03358 |
O2 | 0 | 0.20513 | 0.02935 |
Pseudobrookite Route | Combustor | |||
---|---|---|---|---|
Compound | ||||
CO | 100.0 | 0.0 | 0 = 100 − ε1 = 100(1 − | 0.0 |
H2 | 100.0 | 0.0 | 0 = 100 − ε2 = 100(1 − | 0.0 |
Fe2TiO5 | 0.0 | 2985.0 | 0.0 | 0.0 |
TiO2 | 0.0 | 2985.0 | 0.0 | 0.0 |
FeTiO3 | 0.0 | 0.0 | 0.0 | 5970.0 |
CO2 | 0.0 | 0.0 | ε2 = 100.0 | 0.0 |
H2O | 0.0 | 0.0 | ε1 = 100.0 | 0.0 |
Ferric Oxide Route | Combustor | |||
---|---|---|---|---|
Compound | ||||
H2 | 100.0 | 0.0 | 0=100 − ε1 = 100(1 − | 0.0 |
CO | 100.0 | 0.0 | 0=100 − ε2 = 100(1 − | 0.0 |
Fe2O3 | 0.0 | 18,181.8 | 0.0 | 0.0 |
Fe3O4 | 0.0 | 0.0 | 0.0 | 12,121.2 |
H2O | 0.0 | 0.0 | ε1 = 100.0 | 0.0 |
CO2 | 0.0 | 0.0 | ε2 = 100.0 | 0.0 |
Regenerator | ||||
---|---|---|---|---|
Compound | ||||
FeTiO3 | 5970.0 | 0.0 | 0.0 | 0.0 |
Fe2TiO5 | 0.0 | 0.0 | 0.0 | 2985.0 |
TiO2 | 0.0 | 0.0 | 0.0 | 2985.0 |
Fe3O4 | 12,121.2 | 0.0 | 0.0 | 0.0 |
Fe2O3 | 0.0 | 0.0 | 0.0 | 18,181.8 |
N2 | 0.0 | 17,014.3 | 17,014.3 | 0.0 |
O2 | 0.0 | 4522.8 | 0 = 4522.8 − ε2 | 0.0 |
Reaction Route | H2 (Fe2TiO5) | CO (Fe2TiO5) | H2 (Fe2O3) | CO (Fe2O3) |
---|---|---|---|---|
Combustor (kW) | −342.99 | −341.02 | 183.35 | 186.40 |
Regenerator (kW) | 606.92 | 606.92 | −400.5 | −400.5 |
Total (kW) | 263.93 | 265.90 | −217.15 | −214.1 |
Fuel | ∆Hcomb (kJ/mol) | ∆Hreg (kJ/mol) | ∆Htot (kJ/mol) | ∆Scomb (kJ/molK) | ∆Sreg (kJ/molK) | ∆Stot (kJ/molK) |
---|---|---|---|---|---|---|
H2 (1) | −982.992 | 1464.001 | 481.009 | −0.039653 | −0.037556 | −0.077209 |
H2 (2) | 40.234 | −475.809 | −435.579 | 0.420709 | −0.272753 | 0.147957 |
CO (1) | −1021.601 | 1464.001 | 442.402 | −0.077100 | −0.037556 | −0.114657 |
CO (2) | −51.696 | −475.809 | −527.505 | 0.040498 | −0.272753 | −0.232254 |
Fuel | ∆Gcomb (kJ/mol) | Kcomb | ∆Greg (kJ/mol) | Kreg | ∆Gtot (kJ/mol) | |
H2 (1) | −934.491 | 8.10745 × 1039 | 1509.938 | 3.27894 × 10−65 | 575.448 | |
H2 (2) | −474.367 | 1.81265 × 1020 | −142.191 | 1.18168 × 106 | −616.552 | |
CO (1) | −927.297 | 3.99622 × 1039 | 1509.938 | 3.27894 × 10−65 | 582.642 | |
CO (2) | −101.232 | 21,051 × 104 | −142.191 | 1.18168 × 106 | −243.423 |
Fuel | ∆Hcomb (kJ/mol) | ∆Hreg (kJ/mol) | ∆HTot (kJ/mol) | ∆Scomb (kJ/molK) | ∆Sreg (kJ/molK) | ∆Stot (kJ/molK) |
---|---|---|---|---|---|---|
H2 (1) | −971.842 | 1454.095 | 482.253 | −0.01949005 | −0.055470 | −0.074960 |
H2 (2) | 8.980 | −472.965 | −463.985 | 0.36419965 | −0.267610 | 0.096589 |
CO (1) | −1012.445 | 1454.095 | 441.650 | −0.06054241 | −0.055470 | −0.116012 |
CO (2) | −48.915 | −472.965 | −521.880 | 0.04552780 | −0.267610 | −0.222083 |
Fuel | ∆Gcomb (kJ/mol) | Kcomb | ∆Greg (kJ/mol) | Kreg | ∆Gtot (kJ/mol) | |
H2 (1) | −948.003 | 3.06150 × 1040 | 1521.943 | 1.00705 × 10−65 | 573.940 | |
H2 (2) | −436.491 | 4.37542 × 1018 | −145.637 | 1.65800 × 106 | −582.128 | |
CO (1) | −938.393 | 1.18992 × 1040 | 1521.943 | 1.00705 × 10−65 | 583.550 | |
CO (2) | −104.602 | 29,322.8025 | −145.637 | 1.65800 × 106 | −250.240 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraga-Cruz, G.S.; Pérez-Méndez, M.A.; Jiménez-García, G.; Huirache-Acuña, R.; Nápoles-Rivera, F.; Espino-Valencia, J.; Maya-Yescas, R. Integration of Chemical Looping Combustion to a Gasified Stream with Low Hydrogen Content. Processes 2024, 12, 1033. https://doi.org/10.3390/pr12051033
Fraga-Cruz GS, Pérez-Méndez MA, Jiménez-García G, Huirache-Acuña R, Nápoles-Rivera F, Espino-Valencia J, Maya-Yescas R. Integration of Chemical Looping Combustion to a Gasified Stream with Low Hydrogen Content. Processes. 2024; 12(5):1033. https://doi.org/10.3390/pr12051033
Chicago/Turabian StyleFraga-Cruz, Guadalupe S., Mario A. Pérez-Méndez, Gladys Jiménez-García, Rafael Huirache-Acuña, Fabricio Nápoles-Rivera, Jaime Espino-Valencia, and Rafael Maya-Yescas. 2024. "Integration of Chemical Looping Combustion to a Gasified Stream with Low Hydrogen Content" Processes 12, no. 5: 1033. https://doi.org/10.3390/pr12051033
APA StyleFraga-Cruz, G. S., Pérez-Méndez, M. A., Jiménez-García, G., Huirache-Acuña, R., Nápoles-Rivera, F., Espino-Valencia, J., & Maya-Yescas, R. (2024). Integration of Chemical Looping Combustion to a Gasified Stream with Low Hydrogen Content. Processes, 12(5), 1033. https://doi.org/10.3390/pr12051033