Evaluation of the Efficiency of Using an Oxidizer in the Leaching Process of Gold-Containing Concentrate
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- Chemical oxidation of pyrite occurs mainly in an acidic and slightly alkaline environment. Pyrite has a high negative charge under alkaline conditions and becomes positively charged at pH < 6. With an increase in pH in neutral and alkaline media, pyrite has a negative electrokinetic potential, varying from zero to −25 mV.
- The results of studies on the oxidation of pyrite using the TCCA oxidizer show that the products of its hydrolysis oxidize pyrite with the formation of various iron compounds on its surface.
- The results of the experiments show that the enrichment of stale tailings of GRF in a centrifugal separator allows you to get a combined gold-containing concentrate with a gold content of 15.95 g/t, with a yield of 6.39%, which, not being conditioned, allows you to cyanide a relatively small mass of it, which as a result reduces the operating costs for processing gold-containing concentrate. Gold recovery in Knelson’s concentrate was 80.72%.
- It was found that pretreatment of gold-containing concentrate with TCCA and subsequent leaching in cyanide solutions can increase the recovery of gold in solution by 5.8%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Master Plan for the Development of the Mining and Metallurgical Industry of the Republic of Kazakhstan Until 2030. Available online: https://kapital.kz/economic/4765/v-rk-razrabotayut-master-plan-razvitiya-gorno-metallurgicheskogo-kompleksa.html (accessed on 4 December 2023).
- Kenzhaliyev, B.; Surkova, T.; Yessimova, D.; Baltabekova, Z.; Abikak, Y.; Abdikerim, B.; Dosymbayeva, Z. Extraction of noble metals from pyrite cinders. Chemengineering 2023, 7, 14. [Google Scholar] [CrossRef]
- Toktar, G.; Magomedov, D.R.; Koizhanova, A.K.; Abdyldaev, N.N.; Bakraeva, A.N. Extraction of gold from low-sulfide gold-containing ores by beneficiating method using a pressure generator for pulp microaeration. Kompleks. Ispolʹzovanie Miner. Syrʹâ/Complex. Use Miner. Resour./Miner. Shikisattardy Keshendi Paid. 2023, 325, 62–71. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, T.; Guo, X.-Y.; Tian, Q.-H.; Zhong, S.-P.; Dong, L.; Qin, H.; Liu, Z.-W.; Makuza, B. Sustainable processing of gold cyanide tailings: Reduction roasting, mechanical activation, non-cyanide leaching, and magnetic separation. Hydrometallurgy 2023, 217, 106028. [Google Scholar] [CrossRef]
- Bragin, V.I.; Burdakova, E.A.; Kondrateva, A.A.; Plotnikova, A.A.; Baksheeva, I.I. Dressability of old gold-containing tailings by flotation. J. Min. Sci. 2019, 54, 663–670. [Google Scholar] [CrossRef]
- Chang, C.S.; Yusoff, A.H.; Mohamed, C.A.R.; Liu, S.F.; Shoparwe, N.F.; Husain, N.A.; Azlan, M.N. Geochemistry of Rare Earth Elements in Pahang River Sediment, Malaysia. Kompleks. Ispolʹzovanie Miner. Syrʹâ/Complex. Use Miner. Resour./Miner. Shikisattardy Keshendi Paid. 2024, 331, 42–50. [Google Scholar] [CrossRef]
- Bantshi, A.M.; Makuvise, P. Extraction of gold from sands and slimes tailings dump from Mazowe mine, Zimbabwe. In Proceedings of the 3rd Pan American Materials Congress; Springer: Berlin/Heidelberg, Germany, 2017; pp. 507–517. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, H.-Y.; Tong, L.-L.; Niu, H.-Q.; Zhang, F.-S.; Chen, G.-M. Research and application of a Knelson concentrator: A review. Miner. Eng. 2020, 152, 106339. [Google Scholar] [CrossRef]
- Guney, A.; Önal, G.; Atmaca, T. New aspect of chromite gravity tailings re-processing. Miner. Eng. 2001, 14, 1527–1530. [Google Scholar] [CrossRef]
- Sen, S. Gold recovery by KC from grinding circuit of Bergama CIP plant. Rem. Rev. Esc. Minas 2010, 63, 539–545. [Google Scholar] [CrossRef]
- Uslu, T.; Sahinoglu, E.; Yavuz, M. Desulphurization and deashing of oxidized fine coal by Knelson concentrator. Fuel Process. Technol. 2012, 101, 94–100. [Google Scholar] [CrossRef]
- Kökkılıç, O.; Langlois, R.; Waters, K.E. A design of experiments investigation into dry separation using a Knelson concentrator. Miner. Eng. 2015, 72, 73–86. [Google Scholar] [CrossRef]
- Abbruzzese, S.; Ubaldini, F.; Veglio, L.; Toro, L. Preparatory bioleaching to the conventional cyanidation of arsenical gold ores. Miner. Eng. 1994, 7, 49–60. [Google Scholar] [CrossRef]
- Kenzhaliyev, B.K. Innovative Technologies Providing Enhancement of Non-Ferrous, Precious, Rare and Rare Earth Metals Extraction. Kompleks. Ispolʹzovanie Miner. Syrʹâ/Complex. Use Miner. Resour./Miner. Shikisattardy Keshendi Paid. 2019, 310, 64–75. [Google Scholar] [CrossRef]
- Lodeyshchikov, V.V. Technology for Extracting Gold and Silver from Refractory Ores; OJSC “Irgiredmet”: Irkutsk, Russia, 1999; p. 452. [Google Scholar]
- Hapid, A.; Zullaikah, S.; Kawigraha, A.; Sudiyanto, Y.; Nareswari, R.B.; Quitain, A.T. Oxidation of sulfide mineral and metal extraction analysis in the microwave-assisted roasting pretreatment of refractory gold ore. Arab. J. Chem. 2024, 17, 105447. [Google Scholar] [CrossRef]
- Watling, H. Microbiological Advances in Biohydrometallurgy. Minerals 2016, 6, 49. [Google Scholar] [CrossRef]
- Fomchenko, N.V.; Muravyov, M.I.; Kondrateva, T.F. Two-stage bacterial–chemical oxidation of refractory gold-containing sulfidic concentrates. Hydrometallurgy 2010, 101, 28–34. [Google Scholar] [CrossRef]
- Koizhanova, A.K.; Toktar, G.; Banks Craig, E.; Magomedov, D.R.; Kubaizhanov, A.A. Research of hydrometallurgical method of leaching gold from flotation tails with using bio-oxidation. Kompleks. Ispolʹzovanie Miner. Syrʹâ/Complex. Use Miner. Resour. /Miner. Shikisattardy Keshendi Paid. 2020, 314, 28–39. [Google Scholar] [CrossRef]
- Amaya, D.; Bernal, S.; Garnica, M.; Reslen, R.; Correa, R. Improved roasting of some colombian gold ores. Rev. Dyna 2013, 80, 70–77. [Google Scholar]
- Karimova, L.M.; Oleinikova, T.O.; Mansurov, B.E.; Saganbek, S. Oxidizing roasting and cyanidation for the processing of refractory gold concentrates. Obogashchenie Rud. 2023, 3, 10–15. [Google Scholar] [CrossRef]
- Boduen, A.; Zalesov, M.; Melamud, V.; Grigorieva, V.; Bulaev, A. Combined Bacterial and Pressure Oxidation for Processing High-Sulfur Refractory Gold Concentrate. Processes 2023, 11, 3062. [Google Scholar] [CrossRef]
- Johnson, D.B. The Evolution, Current Status, and Future Prospects of Using Biotechnologies in the Mineral Extraction and Metal Recovery Sectors. Minerals 2018, 8, 343. [Google Scholar] [CrossRef]
- Nestor, D.; Valdivia, U.; Chaves, A.P. Mechanisms of bioleaching of a refractory mineral of gold with Thiobacillus ferrooxidans. Int. J. Miner. Process. 2001, 62, 187–198. [Google Scholar] [CrossRef]
- Van Aswegen, P.C.; Van Niekerk, J.; Olivier, W. The BIOX process for the treatment of refractory gold concentrate. In Biomining; Rawlings, D.E., Johnson, B.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–35. [Google Scholar] [CrossRef]
- Mahmoud, A.; Cezac, P.; Hoadley, A.F.A.; Contaminea, F.; D’Hugues, P. A review of sulfide minerals microbially assisted leaching in stirred tank reactors. Int. Biodeterior. Biodegrad. 2017, 119, 118–146. [Google Scholar] [CrossRef]
- Sedelnikova, G.V. Comparison of autoclave and bacterial leaching. Gold Technol. 2014, 2, 110–115. [Google Scholar]
- Soto-Uribe, J.C.; Valenzuela-Garcia, J.L.; Salazar-Campoy, M.M.; Parga-Torres, J.R.; Tiburcio-Munive, G.; Encinas-Romero, M.A.; Vazquez-Vazquez, V.M. Gold extraction from a refractory sulfide concentrate by simultaneous pressure leaching/oxidation. Minerals 2023, 13, 116. [Google Scholar] [CrossRef]
- Adewuyi, S.O.; Ahmed, H.A.M.; Ahmed, H.M.A. Methods of ore pretreatment for comminution energy reduction. Minerals 2020, 10, 423. [Google Scholar] [CrossRef]
- Valenzuela, A.; Valenzuela, J.L.; Parga, J.R. Effect of pretreatment of sulfide refractory concentrate with sodium hypochlorite, followed by extraction of gold by pressure cyanidation, on gold removal. Adv. Chem. Eng. Sci. 2013, 3, 7. [Google Scholar] [CrossRef]
- Feng, F.; Sun, Y.X.; Rui, J.Y.; Yu, L.; Liu, J.M.; Zhang, N.; Zhao, M.X.; Wei, L.W.; Lu, C.S.; Zhao, J.; et al. Study of the “Oxidation-complexation” coordination composite ionic liquid system for dissolving precious metals. Appl. Sci. 2020, 10, 3625. [Google Scholar] [CrossRef]
- Puvvada, G.V.K.; Murthy, D.S.R. Selective precious metals leaching from a chalcopyrite concentrate using chloride/hypochlorite media. Hydrometallurgy 2000, 58, 185–191. [Google Scholar] [CrossRef]
- Basu, N.; Maity, S.K.; Chaudhury, A.; Ghosh, R. Trichloroisocyanuric acid (TCCA):an efficient green reagent for activation of thioglycosides toward hydrolysis. Carbohydr. Res. 2013, 369, 10–13. [Google Scholar] [CrossRef]
- Samusev, A.L.; Tomskaya, E.S. Modern methods for intensifying the process of leaching gold from refractory mineral raw materials. Min. Inf. Anal. Bull. 2015, 8, 100–105. [Google Scholar]
- Teut, A.O.; Kuimov, D.V.; Kosyanov, E.A. Extraction of gold from refractory sulfide ores using the electrochlorination method. In Proceedings of the New Technologies for Enrichment and Complex Processing of Difficult-to-Enrich Natural and Technogenic Mineral Raw Materials, Upper Pyshma, Russia, 10 October 2011. [Google Scholar]
- Li, S.K.; Gu, G.H.; Qiu, G.Z.; Chen, Z.X. Flotation and electrochemical behaviors of chalcopyrite and pyrite in the presence of N-propyl-N0—Ethoxycarbonyl thiourea. Trans. Nonferrous Met. Soc. China. 2018, 28, 1241–1247. [Google Scholar] [CrossRef]
- Feng, B.; Feng, Q.; Lu, Y. The effect of lizardite surface characteristics on pyrite flotation. App. Surf. Sci. 2012, 259, 153–158. [Google Scholar] [CrossRef]
- Bicak, O.; Ekmekci, Z.; Bradshaw, D.J.; Harris, P.J. Adsorption of guar gum and CMC on pyrite. Miner. Eng. 2007, 20, 996–1002. [Google Scholar] [CrossRef]
- Cheng, W.; Deng, Z.; Tong, X.; Lu, T. Hydrophobic Agglomeration of Fine Pyrite Particles Induced by Flotation Reagents. Minerals 2020, 10, 801. [Google Scholar] [CrossRef]
Compound Name | Formula | Content, % |
---|---|---|
Quartz, syn | SiO2 | 54.7 |
Calcite, magnesian | (Mg0.064Ca0.936)(CO3) | 12.0 |
Clinochlore 1MIa | Mg2.5Fe1.65Al1.5Si2.2Al1.8O10(OH)8 | 11.2 |
Dolomite | CaMg(CO3)2 | 6.3 |
Albite | Na(AlSi3O8) | 5.0 |
Riebeckite | Na2Fe3Fe2Si8O22(OH)2 | 4.8 |
Pyrite | FeS2 | 3.4 |
Muscovite 2M1, syn | KAl2Si3AlO10(OH)2 | 2.7 |
Chemical Element | Content, % | Chemical Element | Content, % |
---|---|---|---|
O | 47.195 | Cr | 0.037 |
Na | 1.976 | Mn | 0.091 |
Mg | 2.131 | Fe | 5.293 |
Al | 8.022 | Co | 0.013 |
Si | 28.273 | Ni | 0.013 |
P | 0.055 | Cu | 0.004 |
S | 0.527 | Zn | 0.013 |
Cl | 0.064 | Sr | 0.014 |
K | 0.993 | Zr | 0.005 |
Ca | 4.908 | Pb | 0.018 |
Ti | 0.355 |
Products | Yield, % | Gold Content, g/t | Gold Recovery, % |
---|---|---|---|
I centrifugal separator concentrates | 3.22 | 17.1 | 43.33 |
II centrifugal separation concentrate | 3.19 | 14.8 | 37.39 |
Combined ash concentrate | 6.41 | 15.95 | 80.72 |
Centrifugal separator tailings | 93.61 | 0.26 | 19.28 |
Initial tailings | 100.0 | 1.263 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kenzhaliyev, B.K.; Tussupbayev, N.K.; Abdykirova, G.Z.; Koizhanova, A.K.; Fischer, D.Y.; Baltabekova, Z.A.; Samenova, N.O. Evaluation of the Efficiency of Using an Oxidizer in the Leaching Process of Gold-Containing Concentrate. Processes 2024, 12, 973. https://doi.org/10.3390/pr12050973
Kenzhaliyev BK, Tussupbayev NK, Abdykirova GZ, Koizhanova AK, Fischer DY, Baltabekova ZA, Samenova NO. Evaluation of the Efficiency of Using an Oxidizer in the Leaching Process of Gold-Containing Concentrate. Processes. 2024; 12(5):973. https://doi.org/10.3390/pr12050973
Chicago/Turabian StyleKenzhaliyev, Bagdaulet Kenzhaliyevich, Nessipbay Kyandykovich Tussupbayev, Gulnar Zhanuzakovna Abdykirova, Aigul Kairgeldyevna Koizhanova, Dametken Yedilovna Fischer, Zhazira Amangeldiyevna Baltabekova, and Nazira Orakkyzy Samenova. 2024. "Evaluation of the Efficiency of Using an Oxidizer in the Leaching Process of Gold-Containing Concentrate" Processes 12, no. 5: 973. https://doi.org/10.3390/pr12050973
APA StyleKenzhaliyev, B. K., Tussupbayev, N. K., Abdykirova, G. Z., Koizhanova, A. K., Fischer, D. Y., Baltabekova, Z. A., & Samenova, N. O. (2024). Evaluation of the Efficiency of Using an Oxidizer in the Leaching Process of Gold-Containing Concentrate. Processes, 12(5), 973. https://doi.org/10.3390/pr12050973