Enhancing Low-Fat Probiotic Yogurt: The Role of Xanthan Gum in Functionality and Microbiological Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manufacturing of Low-Fat Yogurt
2.2. Proximate Composition
2.3. Textural Analysis
2.4. Viscosity Determination
2.5. Determination of Water-Holding Capacity (WHC)
2.6. Syneresis
2.7. Microbiological Analysis
2.8. Sensory Evaluation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition of Low-Fat Yogurt (LFY)
3.2. Texture Profile Analysis of Low-Fat Yogurt (LFY)
3.3. Water-Holding Capacity of Low-Fat Yogurt (LFY)
3.4. Viscosity of Low-Fat Yogurt (LFY)
3.5. Syneresis%
3.6. Microbiological Analysis
3.7. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berninger, T.; Dietz, N.; González López, Ó. Water-soluble polymers in agriculture: Xanthan gum as eco-friendly alternative to synthetics. Microb. Biotechnol. 2021, 14, 1881–1896. [Google Scholar] [CrossRef]
- Sadek, Z.I.; Fathi, F.A.; Salem, M.M.E. Incidence, survival and biocontrol of psychrotrophic Bacillus cereus and its potential for toxin production in milk and Talaga cheese. Pol. J. Food Nutr. Sci. 2006, 15, 419–425. [Google Scholar]
- Murad, H.A.; Abo-Elkhair, A.G.; Azzaz, H.H. Production of xanthan gum from nontraditional substrates with perspective of the unique properties and wide industrial applications. JSMC Microbiol 2019, 1, 6. [Google Scholar]
- Dickinson, E. Protein-stabilized emulsions. In Water in Foods; Elsevier: Amsterdam, The Netherlands, 1994; pp. 59–74. [Google Scholar]
- Bahramparvar, M.; Mazaheri Tehrani, M. Application and functions of stabilizers in ice cream. Food Rev. Int. 2011, 27, 389–407. [Google Scholar] [CrossRef]
- Palaniraj, A.; Jayaraman, V. Production, recovery and applications of xanthan gum by Xanthomonas campestris. J. Food Eng. 2011, 106, 1–12. [Google Scholar] [CrossRef]
- McKinley, R. The Outlaws of Sherwood; Penguin: London, UK, 2005; ISBN 0441013252. [Google Scholar]
- Temesgen, M.; Yetneberk, S. Effect of application of stabilizers on gelation and synersis in yoghurt. Food Sci. Qual. Manag. 2015, 37, 90–102. [Google Scholar]
- Crittenden, R.G.; Martinez, N.R.; Playne, M.J. Synthesis and utilisation of folate by yoghurt starter cultures and probiotic bacteria. Int. J. Food Microbiol. 2003, 80, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, S. Syneresis in food gels and its implications for food quality. In Chemical Deterioration and Physical Instability of Food and Beverages; Elsevier: Amsterdam, The Netherlands, 2010; pp. 324–348. [Google Scholar]
- Gyawali, R.; Ibrahim, S.A. Effects of hydrocolloids and processing conditions on acid whey production with reference to Greek yogurt. Trends Food Sci. Technol. 2016, 56, 61–76. [Google Scholar] [CrossRef]
- Nguyen, N.; Nguyen, H.V.; Nguyen, P.T.; Tran, V.T.; Nguyen, H.N.; Nguyen, T.M.N.; Cao, T.K.; Nguyen, T.H. Some key factors affecting consumers’ intentions to purchase functional foods: A case study of functional yogurts in Vietnam. Foods 2020, 9, 24. [Google Scholar] [CrossRef]
- Macit, E.; Bakirci, I. Effect of different stablizers on quality characteristics of the set-type yogurt. Afr. J. Biotechnol. 2017, 16, 2142–2151. [Google Scholar]
- Kip, P.; Meyer, D.; Jellema, R.H. Inulins improve sensoric and textural properties of low-fat yoghurts. Int. Dairy J. 2006, 16, 1098–1103. [Google Scholar] [CrossRef]
- Hashim, M.A.; Nadtochii, L.A.; Muradova, M.B.; Proskura, A.V.; Alsaleem, K.A.; Hammam, A.R.A. Non-fat yogurt fortified with whey protein isolate: Physicochemical, rheological, and microstructural properties. Foods 2021, 10, 1762. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, A.M.; Ahmed, M.E.; Mehta, D.; Elfaruk, M.S.; Hammam, A.R.A.; El-Derwy, Y.M.A. Enhancement of low-fat Feta cheese characteristics using probiotic bacteria. Food Sci. Nutr. 2021, 9, 62–70. [Google Scholar] [CrossRef]
- Ling, E.R. Textbook of Dairy Chemistry; Chapman & Hall: London, UK, 1963. [Google Scholar]
- Gharibzahedi, S.M.T.; Emam-Djomeh, Z.; Razavi, S.H.; Jafari, S.M. Mechanical behavior of lentil seeds in relation to their physicochemical and microstructural characteristics. Int. J. Food Prop. 2014, 17, 545–558. [Google Scholar] [CrossRef]
- Alvarez-Sabatel, S.; de Marañón, I.M.; Arboleya, J.-C. Impact of high pressure homogenisation (HPH) on inulin gelling properties, stability and development during storage. Food Hydrocoll. 2015, 44, 333–344. [Google Scholar] [CrossRef]
- Keogh, M.K.; O’Kennedy, B.T. Rheology of stirred yogurt as affected by added milk fat, protein and hydrocolloids. J. Food Sci. 1998, 63, 108–112. [Google Scholar] [CrossRef]
- Wehr, H.M.; Frank, J.F. Standard Methods for the Examination of Dairy Products; Ignatius Press: San Francisco, CA, USA, 2004; ISBN 0875530028. [Google Scholar]
- de Man, J.C.; Rogosa, M.; Sharpe, M.E. A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 1960, 23, 130–135. [Google Scholar] [CrossRef]
- Brewer, J.H. Clear liquid mediums for the aerobic cultivation of anaerobes. J. Am. Med. Assoc. 1940, 115, 598–600. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley & Sons: Hoboken, NJ, USA, 1984; ISBN 0471870927. [Google Scholar]
- Ziaolhagh, S.H.; Jalali, H. Physicochemical properties and survivability of probiotics in bio-doogh containing wild thyme essence and xanthan gum. Int. Food Res. J. 2017, 24, 1805–1810. [Google Scholar]
- Sabaa, M.W.; Hanna, D.H.; Elella, M.H.A.; Mohamed, R.R. Encapsulation of bovine serum albumin within novel xanthan gum based hydrogel for protein delivery. Mater. Sci. Eng. C 2019, 94, 1044–1055. [Google Scholar] [CrossRef]
- Hematyar, N.; Samarin, A.M.; Poorazarang, H.; Elhamirad, A.H. Effect of gums on yogurt characteristics. World Appl. Sci. J. 2012, 20, 661–665. [Google Scholar]
- El-Sayed, E.; Abd El-Gawad, I.; Murad, H.; Salah, S. Utilization of laboratory-produced xanthan gum in the manufacture of yogurt and soy yogurt. Eur. Food Res. Technol. 2002, 215, 298–304. [Google Scholar]
- Mohsin, A.; Ni, H.; Luo, Y.; Wei, Y.; Tian, X.; Guan, W.; Ali, M.; Khan, I.M.; Niazi, S.; Rehman, S. Qualitative improvement of camel milk date yoghurt by addition of biosynthesized xanthan from orange waste. LWT 2019, 108, 61–68. [Google Scholar] [CrossRef]
- Khorshidi, M.; Heshmati, A.; Taheri, M.; Karami, M.; Mahjub, R. Effect of whey protein-and xanthan-based coating on the viability of microencapsulated Lactobacillus acidophilus and physiochemical, textural, and sensorial properties of yogurt. Food Sci. Nutr. 2021, 9, 3942–3953. [Google Scholar] [CrossRef] [PubMed]
- Lunardello, K.A.; Yamashita, F.; de Toledo Benassi, M.; de Rensis, C.M.V.B. The physicochemical characteristics of nonfat set yoghurt containing some hydrocolloids. Int. J. Dairy Technol. 2012, 65, 260–267. [Google Scholar] [CrossRef]
- Huang, T.; Tu, Z.; Shangguan, X.; Wang, H.; Zhang, L.; Bansal, N. Characteristics of fish gelatin-anionic polysaccharide complexes and their applications in yoghurt: Rheology and tribology. Food Chem. 2021, 343, 128413. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Mishra, H.N. Yoghurt powder—A review of process technology, storage and utilization. Food Bioprod. Process. 2004, 82, 133–142. [Google Scholar] [CrossRef]
- Nie, Y.; Liu, Y.; Jiang, J.; Xiong, Y.L.; Zhao, X. Rheological, structural, and water-immobilizing properties of mung bean protein-based fermentation-induced gels: Effect of pH-shifting and oil imbedment. Food Hydrocoll. 2022, 129, 107607. [Google Scholar] [CrossRef]
- Ahmed, M.E.; Rathnakumar, K.; Awasti, N.; Elfaruk, M.S.; Hammam, A.R.A. Influence of probiotic adjunct cultures on the characteristics of low-fat Feta cheese. Food Sci. Nutr. 2021, 9, 1512–1520. [Google Scholar] [CrossRef]
- Gallardo-Escamilla, F.J.; Kelly, A.L.; Delahunty, C.M. Mouthfeel and flavour of fermented whey with added hydrocolloids. Int. Dairy J. 2007, 17, 308–315. [Google Scholar] [CrossRef]
- Gilbert, A.; Rioux, L.-E.; St-Gelais, D.; Turgeon, S.L. Studying stirred yogurt microstructure using optical microscopy: How smoothing temperature and storage time affect microgel size related to syneresis. J. Dairy Sci. 2020, 103, 2139–2152. [Google Scholar] [CrossRef]
- Alsaleem, K.A.; Hamouda, M.E.A.; Alayouni, R.R.; Elfaruk, M.S.; Hammam, A.R.A. Effect of Skim Milk Powder and Whey Protein Concentrate Addition on the Manufacture of Probiotic Mozzarella Cheese. Fermentation 2023, 9, 948. [Google Scholar] [CrossRef]
- SAbdel-Gawad, A.S.; El-Rahman, A.; Mokhless, A.M.; Limam, S.A.M.A.; A Abdel-Rahman, A.M.; Ali, A.K. Effect of Different Gums and Water Content on The Physical, Textural and Sensory Properties of Gluten-free Pan Bread. Assiut J. Agric. Sci. 2023, 54, 23–40. [Google Scholar] [CrossRef]
- Bahrami, M.; Ahmadi, D.; Alizadeh, M.; Hosseini, F. Physicochemical and sensorial properties of probiotic yogurt as affected by additions of different types of hydrocolloid. Food Sci. Anim. Resour. 2013, 33, 363–368. [Google Scholar] [CrossRef]
- Sahan, N.; Yasar, K.; Hayaloglu, A.A. Physical, chemical and flavour quality of non-fat yogurt as affected by a β-glucan hydrocolloidal composite during storage. Food Hydrocoll. 2008, 22, 1291–1297. [Google Scholar] [CrossRef]
- Brennan, C.S.; Tudorica, C.M. Carbohydrate-based fat replacers in the modification of the rheological, textural and sensory quality of yoghurt: Comparative study of the utilisation of barley beta-glucan, guar gum and inulin. Int. J. Food Sci. Technol. 2008, 43, 824–833. [Google Scholar] [CrossRef]
- Hathout, A.S.; Sadek, Z.I.; Foda, M.I.; Aly, S.E. Assessment of Aflatoxin M Levels and. World Appl. Sci. J. 2013, 26, 857–866. [Google Scholar]
- Ding, Z.; Zhang, Z.; Zhong, J.; Luo, D.; Zhou, J.; Yang, J.; Xiao, L.; Shu, D.; Tan, H. Comparative transcriptome analysis between an evolved abscisic acid-overproducing mutant Botrytis cinerea TBC-A and its ancestral strain Botrytis cinerea TBC-6. Sci. Rep. 2016, 6, 37487. [Google Scholar] [CrossRef] [PubMed]
- Khalid, N.; Ramzan, R.; Zahoor, T.; Muhammad, Z.; Tehseen, S.; Aziz, M.; Batool, R. Exploring the prebiotic potential of xanthan gum and its modified forms for the production of synbiotic yogurt. J. Food Process. Preserv. 2022, 46, e17053. [Google Scholar] [CrossRef]
- Tymczyszyn, E.E.; Gómez-Zavaglia, A.; Disalvo, E.A. Effect of sugars and growth media on the dehydration of Lactobacillus delbrueckii ssp. bulgaricus. J. Appl. Microbiol. 2007, 102, 845–851. [Google Scholar] [CrossRef]
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial fermentation and its role in quality improvement of fermented foods. Fermentation 2020, 6, 106. [Google Scholar] [CrossRef]
- Kamel, D.G.; Hammam, A.R.A.; Alsaleem, K.A.; Osman, D.M. Addition of inulin to probiotic yogurt: Viability of probiotic bacteria (Bifidobacterium bifidum) and sensory characteristics. Food Sci. Nutr. 2021, 9, 1743–1749. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Griffiths, M.W. Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan–xanthan beads. Int. J. Food Microbiol. 2000, 61, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Dave, R.I. Factors Affecting Viability of Yoghurt and Probiotic Bacteria in Commercial Starter Cultures. Ph.D. Thesis, Victoria University of Technology, Melbourne, Australia, 1998. [Google Scholar]
- Vinderola, C.G.; Prosello, W.; Ghiberto, D.; Reinheimer, J.A. Viability of probiotic (Bifidobacterium, Lactobacillus acidophilus and Lactobacillus casei) and nonprobiotic microflora in Argentinian Fresco cheese. J. Dairy Sci. 2000, 83, 1905–1911. [Google Scholar] [CrossRef]
- Alwohaibi, A.A.A.; Ali, A.A.; Sakr, S.S.; Mohamed Ahmed, I.A.; Alhomaid, R.M.; Alsaleem, K.A.; Aladhadh, M.; Barakat, H.; Hassan, M.F.Y. Valorization of Different Dairy By-Products to Produce a Functional Dairy–Millet Beverage Fermented with Lactobacillus paracasei as an Adjunct Culture. Fermentation 2023, 9, 927. [Google Scholar] [CrossRef]
Treatments | XG% |
---|---|
T1 | - |
T2 | 0.2 |
T3 | 0.4 |
T4 | 0.6 |
T5 | 0.8 |
T6 | 1 |
1 Treatments | pH | TP | TS | Ash |
---|---|---|---|---|
T1 | 4.46 a ± 0.01 | 5.47 a ± 0.01 | 8.58 f ± 0.05 | 0.85 a ± 0.00 |
T2 | 4.40 b ± 0.02 | 5.34 b ± 0.01 | 8.85 e ± 0.01 | 0.81 b ± 0.01 |
T3 | 4.27 c ± 0.01 | 5.21 c ± 0.02 | 9.08 d ± 0.02 | 0.76 c ± 0.02 |
T4 | 4.28 d± 0.00 | 4.94 d ± 0.01 | 9.12 c ± 0.02 | 0.72 d ± 0.03 |
T5 | 4.25 e± 0.02 | 4.81 e ± 0.03 | 9.32 b ± 0.04 | 0.68 e ± 0.02 |
T6 | 4.18 f± 0.01 | 4.65 f ± 0.02 | 9.67 a ± 0.02 | 0.62 f ± 0.01 |
1 Treatments | Firmness (g) | Consistency (Pa·s) | Cohesiveness (mj) | Adhesiveness (N·s) |
---|---|---|---|---|
T1 | 0.63 f ± 0.01 | 17.76 f ± 0.00 | 0.27 f ± 0.01 | 1.86 f ± 0.00 |
T2 | 0.75 e ± 0.02 | 18.35 e ± 0.00 | 0.34 e ± 0.01 | 1.98 e ± 0.00 |
T3 | 0.79 d ± 0.01 | 23.87 d ± 0.02 | 0.39 d ± 0.00 | 2.35 d ± 0.00 |
T4 | 0.85 c ± 0.00 | 28.98 c ± 0.01 | 0.43 c ± 0.00 | 2.56 c ± 0.02 |
T5 | 0.89 b ± 0.02 | 36.91 b ± 0.01 | 0.47 b ± 0.002 | 2.89 b ± 0.03 |
T6 | 0.94 a ± 0.01 | 39.21 a ± 0.00 | 0.48 a ± 0.00 | 3.15 a ± 0.00 |
1 Treatments | Fresh | 7 Days | 14 Days | 21 Days | Mean |
---|---|---|---|---|---|
T1 | 66.42 ± 0.12 | 66.02 ± 0.01 | 52.83 ± 0.11 | 41.43 ± 0.15 | 56.68 e |
T2 | 67.09 ± 0.17 | 66.73 ± 0.22 | 57.28 ± 0.41 | 40.29 ± 0.03 | 57.85 d |
T3 | 65.68 ± 0.23 | 65.48 ± 0.08 | 62.01 ± 0.12 | 45.51 ± 0.34 | 59.67 c |
T4 | 67.68 ± 0.09 | 67.22 ± 0.01 | 63.35 ± 0.07 | 50.09 ± 0.13 | 62.09 b |
T5 | 74.50 ± 0.12 | 72.30 ± 0.32 | 57.75 ± 0.09 | 46.34 ± 0.04 | 62.72 b |
T6 | 79.80 ± 0.06 | 74.05 ± 0.12 | 73.25 ± 0.12 | 52.40 ± 0.06 | 69.88 a |
Mean | 70.20 A | 68.63 B | 61.08 C | 46.01 D |
1 Treatments | Fresh | 7 Days | 14 Days | 21 Days | Mean |
---|---|---|---|---|---|
T1 | 2173.80 ± 2.23 | 1966.50 ± 0.76 | 1780.51 ± 1.11 | 1442.01 ± 0.89 | 1840.71 f |
T2 | 3155.00 ± 1.08 | 1699.00 ± 1.34 | 1656.80 ± 1.25 | 1442.01 ± 2.02 | 1988.20 e |
T3 | 3273.80 ± 1.32 | 2912.00 ± 1.02 | 2142.50 ± 0.93 | 1167.00 ± 1.02 | 2373.83 d |
T4 | 3414.60 ± 1.02 | 3110.00 ± 1.21 | 2360.20 ± 1.02 | 1462.00 ± 1.12 | 2586.70 c |
T5 | 3613.60 ± 0.90 | 3312.01 ± 1.04 | 2582.20 ± 2.02 | 1575.03 ± 0.85 | 2770.71 b |
T6 | 4124.30 ± 1.01 | 3879.23 ± 0.82 | 2864.02 ± 1.07 | 1896.05 ± 1.12 | 3190.90 a |
Mean | 3292.52 A | 2813.12 B | 2231.04 C | 1497.35 D |
1 Treatments | Fresh | 7 Days | 14 Days | 21 Days | Mean |
---|---|---|---|---|---|
T1 | 44 ± 0.52 | 47 ± 0.17 | 53 ± 0.11 | 58 ± 0.34 | 50.50 a |
T2 | 37 ± 0.34 | 41 ± 0.62 | 48 ± 0.27 | 51 ± 0.12 | 44.25 b |
T3 | 32 ± 0.24 | 38 ± 0.88 | 42 ± 0.77 | 45 ± 0.28 | 39.25 c |
T4 | 32 ± 0.22 | 35 ± 0.52 | 36 ± 0.32 | 41 ± 0.65 | 36.00 d |
T5 | 24 ± 0.64 | 27 ± 0.38 | 32 ± 0.81 | 36 ± 0.62 | 29.75 e |
T6 | 19 ± 0.12 | 20 ± 0.31 | 25 ± 0.25 | 26 ± 0.92 | 22.50 f |
Mean | 31.33 D | 34.67 C | 39.33 B | 42.83 A |
1 Treatments | Fresh | 7 Days | 14 Days | 21 Days |
---|---|---|---|---|
Total bacterial counts (log CFU/g) | ||||
T1 | 7.34 ± 0.06 Dc | 7.76 ± 0.11 Db | 7.89 ± 0.01 Da | 6.98 ± 0.21 Dd |
T2 | 7.87 ± 0.13 Cc | 7.96 ± 0.22 Cb | 8.05 ± 0.04 Ca | 7.65 ± 0.02 Cd |
T3 | 7.98 ± 0.11 Bc | 8.13 ± 0.06 Bb | 8.34 ± 0.14 Ba | 7.78 ± 0.05 Bd |
T4 | 8.15 ± 0.12 Ac | 8.27 ± 0.16 Ab | 8.47 ± 0.11 Aa | 7.59 ± 0.12 Ad |
T5 | 6.43 ± 0.09 Ec | 6.65 ± 0.02 Eb | 6.71 ± 0.06 Ea | 6.13 ± 0.22 Ed |
T6 | 6.12 ± 0.06 Fc | 6.34 ± 0.09 Fb | 6.67 ± 0.08 Fa | 5.65 ± 0.14 Fd |
Lactobacillus dlebreuckii ssp. Bulgaricus (log CFU/g) | ||||
T1 | 5.27 ± 0.02 Fc | 6.85 ± 0.06 Fa | 5.33 ± 0.03 Fb | 5.17 ± 0.02 Fd |
T2 | 7.80 ± 0.01 Ec | 8.15 ± 0.03 Ea | 7.95± 0.02 Eb | 7.56 ± 0.01 Ed |
T3 | 7.91 ± 0.03 Dc | 8.30 ± 0.02 Da | 8.14 ± 0.01 Db | 7.80 ± 0.03 Dd |
T4 | 7.98 ± 0.04 Cc | 8.53 ± 0.01 Ca | 8.37 ± 0.01 Cb | 7.91 ± 0.04 Cd |
T5 | 8.05 ± 0.02 Bc | 8.62 ± 0.01 Ba | 8.42 ± 0.02 Bb | 8.14 ± 0.03 Bd |
T6 | 8.36 ± 0.01 Ac | 8.73 ± 0.03 Aa | 8.68 ± 0.07 Ab | 8.47 ± 0.02 Ad |
Streptococcus thermophilus counts (log CFU) | ||||
T1 | 6.34 ± 0.05 Cf | 6.77 ± 0.06 Af | 6.11 ± 0.02 Bf | 5.97 ± 0.05 Df |
T2 | 7.93 ± 0.12 Ce | 8.23 ± 0.02 Ae | 8.03 ± 0.04 Be | 7.54 ± 0.02 De |
T3 | 8.03 ± 0.03 Cd | 8.38± 0.04 Ad | 8.24± 0.13 Bd | 7.78 ± 0.03 Dd |
T4 | 8.12 ± 0.01 Cc | 8.61 ± 0.01 Ac | 8.45 ± 0.02 Bc | 7.90 ± 0.06 Dc |
T5 | 8.18± 0.02 Cb | 8.80 ± 0.04 Ab | 8.54 ± 0.03 Bb | 8.12 ± 0.03 Db |
T6 | 8.54 ± 0.05 Ca | 8.83 ± 0.02 Aa | 8.74 ± 0.08 Ba | 8.46 ± 0.02 Da |
Bifidobacterium bifidum counts (log CFU) | ||||
T1 | 3.67 ± 0.05 Cf | 3.84 ± 0.05 Bf | 4.12 ± 0.01 Af | 3.14 ± 0.01 Df |
T2 | 6.68 ± 0.01 Cc | 6.92 ± 0.01 Bc | 7.25 ± 0.03 Ac | 6.21 ± 0.03 Dc |
T3 | 6.95 ± 0.02 Cb | 7.21 ± 0.03 Bb | 7.45 ± 0.01 Ab | 6.32 ± 0.05 Db |
T4 | 7.03 ± 0.03 Ca | 7.29 ± 0.03 Ba | 7.62 ± 0.01 Aa | 6.38 ± 0.04 Da |
T5 | 6.45 ± 0.01 Cd | 6.87 ± 0.01 Bd | 7.09 ± 0.00 Ad | 6.04 ± 0.01 Dd |
T6 | 6.13 ± 0.07 Ce | 6.65 ± 0.02 Be | 6.98 ± 0.01 Ae | 5.88 ± 0.02 De |
1 Treatments | Storage Period/Days | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fresh Time | 14 | 21 | ||||||||||
Color and Appearance (15) | Body and Texture (35) | Flavor (50) | Total (100) | Color and Appearance (15) | Body and Texture (35) | Flavor (50) | Total (100) | Color and Appearance (15) | Body and Texture (35) | Flavor (50) | Total (100) | |
T1 | 14 | 12 | 9 | 35 | 12 | 22 | 24 | 58 | 11 | 28 | 30 | 69 e |
T2 | 13 | 12 | 11 | 36 | 13 | 24 | 25 | 62 | 9 | 29 | 37 | 75 d |
T3 | 14 | 12 | 10 | 36 | 12 | 25 | 33 | 70 | 10 | 31 | 43 | 84 c |
T4 | 15 | 13 | 12 | 40 | 13 | 26 | 34 | 73 | 12 | 30 | 45 | 87 b |
T5 | 15 | 13 | 12 | 40 | 13 | 29 | 38 | 80 | 12 | 32 | 48 | 92 a |
T6 | 15 | 11 | 11 | 37 | 11 | 23 | 26 | 60 | 11 | 27 | 20 | 58 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaleem, K.A.; Hamouda, M.E.A. Enhancing Low-Fat Probiotic Yogurt: The Role of Xanthan Gum in Functionality and Microbiological Quality. Processes 2024, 12, 990. https://doi.org/10.3390/pr12050990
Alsaleem KA, Hamouda MEA. Enhancing Low-Fat Probiotic Yogurt: The Role of Xanthan Gum in Functionality and Microbiological Quality. Processes. 2024; 12(5):990. https://doi.org/10.3390/pr12050990
Chicago/Turabian StyleAlsaleem, Khalid A., and Mahmoud E. A. Hamouda. 2024. "Enhancing Low-Fat Probiotic Yogurt: The Role of Xanthan Gum in Functionality and Microbiological Quality" Processes 12, no. 5: 990. https://doi.org/10.3390/pr12050990
APA StyleAlsaleem, K. A., & Hamouda, M. E. A. (2024). Enhancing Low-Fat Probiotic Yogurt: The Role of Xanthan Gum in Functionality and Microbiological Quality. Processes, 12(5), 990. https://doi.org/10.3390/pr12050990