Mechanism and Model Analysis of Ultralow-Temperature Fluid Fracturing in Low-Permeability Reservoir: Insights from Liquid Nitrogen Fracturing
Abstract
:1. Introduction
2. Process and Mechanism of LN2 Fracturing of Low-Permeability Coalbeds
2.1. Rock Breaking Processes with High-Pressure Fluids
2.2. The Low-Temperature LN2 Freeze-Thaw Fracturing Process
2.2.1. The Temperature Exchange Process
2.2.2. The Intermediate Freeze-Thaw Fracturing Process
2.3. The Liquid-Gas Phase Change Fracturing Process
3. Influencing Factors of the Low-Temperature Fluid Fracturing Effect
3.1. Effect of Temperature Difference on LNF
3.2. Effect of Moisture on LNF
3.3. Effects of Other Factors
4. Fracture Propagation Process and Fracturing Effect
4.1. Fracture Propagation Process under Low-Temperature Conditions
4.2. Effect on Gas Migration Efficiency
5. Feasibility Analysis
5.1. The Technology of LNF Low-Permeability Reservoir
5.2. LNF Low-Permeability Reservoir Model
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
LNCFT | Liquid nitrogen cyclic freezing-thawing |
LN2 | Liquid nitrogen |
CBM | Coalbed methane |
PMMA | PolymethyⅠ Methacrylate |
LNF | Liquid nitrogen fracturing |
PTA | Pressure transient analysis |
DTS | Distributed temperature sensor |
References
- Xu, F.; Hou, W.; Xiong, X.; Xu, B.; Wu, P.; Wang, H.; Feng, K.; Yun, J.; Li, S.; Zhang, L.; et al. The status and development strategy of coalbed methane industry in China. Pet. Explor. Dev. 2023, 50, 669–682. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, J.; Che, C.; Fan, M. Methodologies and results of the latest assessment of coalbed methane resources in China. Nat. Gas Ind. 2009, 29, 130–132. [Google Scholar]
- Zhang, Q.; Feng, S.; Yang, X. Basic reservoir characteristics and development strategy of coalbed methane resource in China. J. China Coal Soc. 2001, 26, 230–235. [Google Scholar]
- Mu, F.; Zhong, W.; Zhao, X.; Che, C.; Chen, Y.; Zhu, J.; Wang, B. Strategies for the development of CBM gas industry in China. Nat. Gas Ind. 2015, 35, 110–116. [Google Scholar] [CrossRef]
- Barati, R.; Liang, J.T. A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells. J. Appl. Polym. Sci. 2014, 131, 40735. [Google Scholar] [CrossRef]
- Song, Y.; Ma, X.; Liu, S.; Jiang, L.; Hong, F.; Qin, Y. Gas accumulation conditions and key exploration & development technologies in Qinshui coalbed methane field. Acta Pet. Sin. 2019, 40, 621–634. [Google Scholar]
- Zhang, L.; Chen, S.; Zhang, C.; Fang, X.; Li, S. The characterization of bituminous coal microstructure and permeability by liquid nitrogen fracturing based on μCT technology. Fuel 2020, 262, 116635. [Google Scholar] [CrossRef]
- Marder, M.; Eftekhari, B.; Patzek, T.W. Solvable model of gas production decline from hydrofractured networks. Phys. Rev. E 2021, 104, 65001. [Google Scholar] [CrossRef]
- Huang, Z.; Wei, J.; Li, G.; Cai, C. An experimental study of tensile and compressive strength of rocks under cryogenic nitrogen freezing. Rock Soil Mech. 2016, 37, 694–700+834. [Google Scholar]
- McDaniel, B.W.; Steven, R.; Grundman, S.; William, D.; Kendrick, W.; Dennis, R.; Jordan, S.W. Field applications of cryogenic nitrogen as a hydraulic fracturing fluid. J. Pet. Technol. 1998, 50, 38–39. [Google Scholar]
- Grundman, S.R.; Rodvelt, G.D.; Dials, G.A.; Allen, R.E. Cryogenic nitrogen as a hydraulic fracturing fluid in the devonian shale. In Proceedings of the SPE Eastern Regional Meeting, Pittsburgh, PA, USA, November 1998. [Google Scholar]
- Coetzee, S.; Neomagus HW, J.P.; Bunt, J.R.; Strydom, C.A.; Schobert, H.H. The transient swelling behaviour of large (−20+16 mm) South African coal particles during low-temperature devolatilisation. Fuel 2014, 136, 79–88. [Google Scholar] [CrossRef]
- King, S.R. Liquid CO2 for the Stimulation of Low-Permeability Reservoirs; American Fracmaster Inc.: Calgary, AB, Canada, 1983. [Google Scholar]
- Wang, Z.; Fu, X.; Pan, J.; Deng, Z. Effect of N2/CO2 injection and alternate injection on volume swelling/shrinkage strain of coal. Energy 2023, 275, 127377. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.; Gao, X.; Wang, L.; Sun, S.; Zhu, Z. Effect of cold loading by liquid nitrogen on damage of coal samples with varied joint angles and water saturation levels. J. Min. Saf. Eng. 2021, 39, 413. [Google Scholar]
- Tian, M.; Zhang, L.; Xue, J.; Zhang, C.; Lu, S.; Chen, S. Study and prospection of liquid nitrogen fracturing coal technology. Coal Sci. Technol. 2022, 50, 191–198. [Google Scholar]
- Yan, M.; Fan, Y.; Yue, M.; Wei, J.; Lin, H.; Li, S. Heat-mass transfer coupling effects in water-ice phase transformation of water-bearing coal frozen with liquid nitrogen. Appl. Therm. Eng. 2022, 215, 118902. [Google Scholar] [CrossRef]
- Leidenfrost, J.G. On the fixation of water in diverse fire. Int. J. Heat Mass Transf. 1966, 9, 1153–1166. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Wang, L.; Zhao, Y.; Ishii, M. Thermal prediction of transient two-phase flow in cryogenic transportation based on drift-flux model. Int. J. Heat Mass Transf. 2021, 177, 121512. [Google Scholar] [CrossRef]
- Darr, S.R.; Hu, H.; Glikin, N.G.; Hartwig, J.W.; Majumdar, A.K.; Leclair, A.C.; Chung, J.N. An experimental study on terrestrial cryogenic transfer line chilldown I. Effect of mass flux, equilibrium quality, and inlet subcooling. Int. J. Heat Mass Transf. 2016, 103, 1225–1242. [Google Scholar] [CrossRef]
- Cha, M.; Yin, X.; Kneafsey, T.; Johanson, B.; Alqahtani, N.; Miskimins, J.; Patterson, T.; Wu, Y.S. Cryogenic fracturing for reservoir stimulation—Laboratory studies. J. Pet. Sci. Eng. 2014, 124, 436–450. [Google Scholar] [CrossRef]
- Li, R.; Huang, Z.; Wu, X.; Yan, P.; Dai, X. Cryogenic quenching of rock using liquid nitrogen as a coolant: Investigation of surface effects. Int. J. Heat Mass Transf. 2018, 119, 446–459. [Google Scholar] [CrossRef]
- Xu, S. Study on the Distribution Law and Control Mode of Geothermal Field in Huainan-Huaibei Coalfield. Ph.D. Thesis, AnHui University of Science and Technology, Huainan, China, 2014. [Google Scholar]
- Wang, C.; Zhang, X.; Lu, F. Study on coal cracking under liquid nitrogen soaking based on nuclear magnetic resonance and stress analysis. China Saf. Sci. J. 2019, 29, 156–163. [Google Scholar]
- Li, B.; Ren, Y.; Zhang, L.; Ding, Z. Study on influence mechanism of liquid nitrogen to permeability improved function of water bearing coal and rock mass. Coal Sci. Technol. 2018, 46, 145–150. [Google Scholar]
- Hong, C.; Yang, R.; Huang, Z.; Wen, H.; Xia, Z.; Li, G. Visualization of fracture initiation and morphology by cyclic liquid nitrogen fracturing. Pet. Sci. Bull. 2023, 8, 87–101. [Google Scholar]
- Jin, X.; Gao, J. Research on conversion of brittleness to ductility of coal with liquid nitrogen cryogenic. China Coal 2018, 44, 99–105. [Google Scholar]
- Guo, X.; Zhong, J.; Xu, X.; Ma, Z. Development characteristics and genetic mechanism of the untectonic fracture. J. China Univ. Pet. 2004, 28, 6–11. [Google Scholar]
- Chen, J.; Fang, H. Heat under the microscope. Physics 2014, 43, 552–553. [Google Scholar]
- Chu, Y.; Zhang, D.; Yang, H.; Liu, H.; Wu, X.; Shen, T.; Zhai, P. Study on evolution law of mechanical properties of coal samples subjected to freezing and freeze-thaw cycles of liquid nitrogen. Coal Sci. Technol. 2023, 51, 82–92. [Google Scholar]
- Ma, L.; Li, Q.; Cao, X.; Zhou, T. Variation characteristics of internal infrared radiation temperature of coal-rock mass in compression process. J. China Univ. Min. Technol. 2013, 42, 331–336. [Google Scholar]
- Akhondzadeh, H.; Keshavarz, A.; Al-Yaseri, A.Z.; Ali, M.; Awan, F.R.; Wang, X.; Yang, Y.; Iglauer, S.; Lebedev, M. Pore-scale analysis of coal cleat network evolution 3coal geology. Int. J. Coal Geol. 2020, 219, 103370. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, S.; Yang, R.; Wu, X.; Li, R.; Zhang, H.; Hung, P. A review of liquid nitrogen fracturing technology. Fuel 2020, 266, 117040. [Google Scholar] [CrossRef]
- Huang, Z.; Wen, H.; Wu, X.; Li, G.; Yang, R.; Li, R.; Zhang, C. Experimental study on cracking of high temperature granite using liquid nitrogen. J. China Univ. Pet. 2019, 43, 68–76. [Google Scholar]
- Cai, C.; Li, G.; Huang, Z.; Tian, S.; Shen, Z.; Fu, X. Experiment of coal damage due to super-cooling with liquid nitrogen. J. Nat. Gas Sci. Eng. 2015, 22, 42–48. [Google Scholar] [CrossRef]
- Wang, L.; Yao, B.; Cha, M.; Alqahtani, N.B.; Patterson, T.W.; Kneafsey, T.J.; Miskimins, J.L.; Yin, X.; Wu, Y. Waterless fracturing technologies for unconventional reservoirs-opportunities for liquid nitrogen. J. Nat. Gas Sci. Eng. 2016, 35, 160–174. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Song, D.; Pan, J.; Wang, Z.; Guo, X. The evolution process of fractures and their modification effects on the liquid–solid interface during liquid nitrogen cyclic freeze–thaw of coal and shale. Fuel 2024, 362, 130877. [Google Scholar] [CrossRef]
- Sandström, T.; Fridh, K.; Emborg, M.; Hassanzadeh, M. The influence of temperature on water absorption in concrete during freezing. Nord. Concr. Res. 2012, 45, 45–58. [Google Scholar]
- Hallet, B. Why do freezing rocks break? Science 2006, 314, 1092–1093. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, S.; Kang, Y.; Cui, X. Advance and review on freezing-thawing damage of fractured rock. Chin. J. Rock Mech. Eng. 2015, 34, 452–471. [Google Scholar]
- Pan, Z.; Connell, L. A theoretical model for gas adsorption-induced coal swelling. Int. J. Coal Geol. 2007, 69, 243–252. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, X.; Deng, Z.; Pan, J. Investigation of Adsorption–Desorption, Induced Strains and Permeability Evolution During N2–ECBM Recovery. Nat. Resour. Res. 2021, 30, 3717–3734. [Google Scholar] [CrossRef]
- Zhang, D.; Bai, X.; Yin, G.; Rao, Z.; He, Q. Research and application on technology of increased permeability by liquid CO2 phase change directional jet fracturing in low-permeability coal seam. J. China Coal Soc. 2018, 43, 1938–1950. [Google Scholar]
- Cao, Y.; Shi, B.; Zhou, D.; Wu, H.; Liu, T.; Tian, L.; Cao, Y.; Jia, M. Study and application of stimulation technology for low production CBM well through high pressure N2 Injection-soak. J. China Coal Soc. 2019, 44, 2556–2565. [Google Scholar]
- Xu, J. Study of Pore Evolution and Damage Mechanical Characteristics of Coals Under the Effect of Liquid CO2 Cyclic Shock Fracturing. Ph.D. Thesis, China University of Mining and Technology, Xuzhou, China, 2020. [Google Scholar]
- Wang, Q. Experimental Study on Liquid Nitrogen Cracking of Coal. Master’s Thesis, Taiyuan University of Technology, Taiyuan, China, 2018. [Google Scholar]
- Zhai, C.; Wu, S.; Liu, S.; Qin, L.; Xu, J. Experimental study on coal pore structure deterioration under freeze–thaw cycles. Environ. Earth Sci. 2017, 76, 1. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.; Niu, F.; Liu, W.; Zhang, C. Study on effect of freeze-thaw cycle with liquid nitrogen on crack extension of coal at different initial temperatures. China Saf. Sci. J. 2015, 25, 121–126. [Google Scholar]
- Zhang, C.; Xu, G.; Yu, Y.; Li, H.; Wang, X.; Wang, L. Study on permeability-enhancing mathematical model of coal fracturing with borehole water injection and liquid nitrogen injection. Coal Sci. Technol. 2019, 47, 139–144. [Google Scholar]
- Li, H.; Wang, L.; Zhang, H.; Zhang, C.; Zhou, H.; Geng, Y. Investigation on damage laws of loading coal samples under cyclic cooling treatment. J. China Coal Soc. 2017, 42, 2345–2352. [Google Scholar]
- Wang, Q.; Zhao, D.; Feng, Z.; Zhang, C. Experimental study on fracturing of coal by injection liquid nitrogen in drill based on CT scanning. Coal Sci. Technol. 2017, 45, 149–154. [Google Scholar] [CrossRef]
- Yan, D. Experimental Study on the Effects of Liquid Nitrogen Freezing and Thawing Damage in Coal with Different Water Content. Master’s Thesis, China University of Mining and Technology, Xuzhou, China, 2019. [Google Scholar]
- Zhang, C.; Zhang, H.; Yong, Y.; Li, H.; Wang, L. Effects of saturation and re-submersion on coal fracturing subjected to liquid nitrogen shock. J. China Coal Soc. 2016, 41, 400–406. [Google Scholar]
- Wang, S.; Su, S.; Wang, D.; Hou, P.; Xue, Y.; Liang, X.; Cai, C.; Gao, X.; Jin, Y.; Yang, S.; et al. Experimental study on fracture characteristics of coal due to liquid nitrogen fracturing. Geomech. Energy Environ. 2023, 33, 100438. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Wang, D.; Wu, M.; Yin, G.; Li, M. Mechanical and Acoustic Emission Characteristics of Coal at Temperature Impact. Nat. Resour. Res. 2020, 29, 1755–1772. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, S.; Zhang, C.; Chen, S. Effect of cyclic hot/cold shock treatment on the permeability characteristics of bituminous coal under different temperature gradients. J. Nat. Gas Sci. Eng. 2020, 75, 103121. [Google Scholar] [CrossRef]
- Cai, C.; Zou, Z.; Ren, K.; Tao, Z.; Feng, Y.; Yang, Y.; Wang, B. Experimental study on the breakdown mechanism of high temperature granite induced by liquid nitrogen fracturing: An implication to geothermal reservoirs. Heliyon 2023, 9, e19257. [Google Scholar] [CrossRef]
- Lin, H.; Li, B.; Li, S.; Qin, L.; Wei, Z.; Wang, P.; Luo, R. Numerical investigation of temperature distribution and thermal damage of heterogeneous coal under liquid nitrogen freezing. Energy 2023, 267, 126592. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.; Wang, L.; Guo, P.; Yu, Y.; Ren, T. Effect of freeze-thaw cycles in liquid nitrogen on damage of coal samples with different initial temperatures. Coal Eng. 2023, 55, 142–147. [Google Scholar]
- Yan, M.; Zhang, Y.; Lin, H.; Li, J.; Qin, L. Effect on liquid nitrogen impregnation of pore damage characteristics of coal at different temperatures. J. China Coal Soc. 2020, 45, 2813–2823. [Google Scholar]
- Li, Y.; Ren, Z.; Song, D.; Liu, W.; Wang, H.; Guo, X. Selection Effect of Liquid Nitrogen Freeze–Thaw Cycles on Full Pore Size Distribution of Different Rank Coals. ACS Omega 2023, 8, 9526–9538. [Google Scholar] [CrossRef]
- Walder, J.; Hallet, B. A theoretical model of the fracture of rock during freezing. Geol. Soc. Am. Bull. 1985, 96, 336–346. [Google Scholar] [CrossRef]
- Haeberli, W.; Hallet, B.; Arenson, L.; Elconin, T.; Humlum, O.; Kääb, A.; Kaufmann, V.; Ladanyi, B.; Matsuoka, N.; Springman, S. Mountain permafrost-research. Permafr. Periglac. Process. 2006, 17, 189–214. [Google Scholar] [CrossRef]
- Lai, X.; Zhang, S.; Dai, J.; Wang, Z.; Xu, H. Multi-scale damage evolution characteristics of coal and rock under hydraulic coupling. Chin. J. Rock Mech. Eng. 2020, 39, 3217–3228. [Google Scholar]
- Zhang, L.; Tian, M.; Lu, S.; Li, M.; Li, Q. Analysis of permeability variation and stress sensitivity of liquid nitrogen fracturing coal with different water contents. Rock Soil Mech. 2022, 43, 107–116. [Google Scholar]
- Wang, X.; Qi, X.; Ma, H.; Gao, K.; Li, S. Experimental study on freeze–thaw damage characteristics of coal samples of different moisture contents in liquid nitrogen. Sci. Rep. 2022, 12, 18543. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zong, C.; Huang, L.; Ren, Y.; Lv, X. Study on the Influence of liquid nitrogen Cold Soaking on the Temperature Variations and Seepage Characteristics of Coal Samples with Different Moisture Contents. Geofluids 2021, 2021, 8924016. [Google Scholar] [CrossRef]
- Li, C.; Nie, B.; Feng, Z.; Wang, Q.; Yao, H.; Cheng, C. Experimental Study of the Influence of Moisture Content on the Pore Structure and Permeability of Anthracite Treated by liquid nitrogen Freeze–Thaw. ACS Omega 2022, 7, 7777–7790. [Google Scholar] [CrossRef]
- Qi, X.; Hou, S.; Ma, H.; Wang, P.; Liu, Y.; Wang, X. A Study of the Effect of Freeze–Thawing by liquid nitrogen on the Mechanical and Seepage Characteristics of Coal with Different Moisture Content Values. Processes 2023, 11, 1822. [Google Scholar] [CrossRef]
- Lin, H.; Li, J.; Yan, M.; Li, S.; Qin, L.; Zhang, Y. Damage caused by freeze-thaw treatment with liquid nitrogen on pore and fracture structures in a water-bearing coal mass. Energy Sci. Eng. 2020, 8, 1667–1680. [Google Scholar] [CrossRef]
- Li, B.; Huang, L.; Lv, X.; Ren, Y. Study on temperature variation and pore structure evolution within coal under the effect of liquid nitrogen mass transfer. ACS Omega 2021, 6, 19685–19694. [Google Scholar] [CrossRef]
- Cai, C.; Li, G.; Huang, Z.; Shen, Z.; Tian, S. Rock pore structure damage due to freeze during liquid nitrogen fracturing. Arab. J. Sci. Eng. 2014, 39, 9249–9257. [Google Scholar] [CrossRef]
- Cai, C.; Li, G.; Huang, Z.; Shen, Z.; Tian, S.; Wei, J. Experimental study of the effect of liquid nitrogen cooling on rock pore structure. J. Nat. Gas Sci. Eng. 2014, 21, 507–517. [Google Scholar] [CrossRef]
- Choi, H.; Lee, D.; Won, J.; Lee, H.; Choi, H. Influence of in-situ cryogenic freezing on thermal and mechanical characteristics of korean marine clay. KSCE J. Civ. Eng. 2020, 24, 3501–3515. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Liu, S.; ShangGuan, Y.; Fu, H.; Ma, B.; Chen, H.; Yuan, X. Experimental investigation of the geotechnical properties and microstructure of lime-stabilized saline soils under freeze-thaw cycling. Cold Reg. Sci. Technol. 2019, 161, 32–42. [Google Scholar] [CrossRef]
- Quan, X.; Gong, Y.; Wang, B.; Zhong, G.; Zhou, S. Experimental study on the shear strength of Qinghai-Tibet clay under freeze-thaw cycles. J. Glaciol. Geocryol. 2023, 45, 1016–1025. [Google Scholar]
- Chang, D.; Liu, J.; Li, X. A constitutive model with double yielding surfaces for silty sand after freeze-thaw cycles. Chin. J. Rock Mech. Eng. 2016, 35, 623–630. [Google Scholar]
- Memon, K.R.; Mahesar, A.A.; Ali, M.; Tunio, A.H.; Mohanty, U.S.; Akhondzadeh, H.; Awan, F.R.; Iglauer, S.; Keshavarz, A. Influence of Cryogenic liquid nitrogen on Petro-Physical Characteristics of Mancos Shale: An Experimental Investigation. Energy Fuels 2020, 34, 2160–2168. [Google Scholar] [CrossRef]
- Jin, X.; Gao, J.; Su, C.; Liu, J. Influence of liquid nitrogen cryotherapy on mechanic properties of coal and constitutive model study. Energy Sources. Part A Recov. Util. Environ. Eff. 2019, 41, 2364–2376. [Google Scholar] [CrossRef]
- Qin, L.; Zhai, C.; Liu, S.; Xu, J.; Tang, Z.; Yu, G. Failure mechanism of coal after cryogenic freezing with cyclic liquid nitrogen and its influences on coalbed methane exploitation. Energy Fuels 2016, 30, 8567–8578. [Google Scholar] [CrossRef]
- Davidson, G.P.; Nye, J.F. A photoelastic study of ice pressure in rock cracks. Cold Reg. Sci. Technol. 1985, 11, 141–153. [Google Scholar] [CrossRef]
- Li, S.; Tang, D.; Pan, Z.; Xu, H.; Huang, W. Characterization of the stress sensitivity of pores for different rank coals by nuclear magnetic resonance. Fuel 2013, 111, 746–754. [Google Scholar] [CrossRef]
- Cai, Y.; Xue, Y.; Dang, F.; Wang, L.; Li, X.; Su, S.; Wang, S.; Liang, X.; Zhang, S. Effect of liquid nitrogen Cooling and Heating on Mechanical Properties and Acoustic Emission Characteristics of Coal. Geofluids 2023, 2023, 7466248. [Google Scholar] [CrossRef]
- Lu, S. Experimental Study on Seepage Characteristics and Influencing Factors of Liquid Nitrogen Fracturing Coal. Master’s Thesis, China University of Mining and Technology, Xuzhou, China, 2021. [Google Scholar]
- Zhai, C.; Qin, L.; Liu, S.; Xu, J.; Tang, Z.; Wu, S. Pore Structure in Coal: Pore Evolution after Cryogenic Freezing with Cyclic liquid nitrogen Injection and Its Implication on Coalbed Methane Extraction. Energy Fuels 2016, 30, 6009–6020. [Google Scholar] [CrossRef]
- Chen, S.; Dou, L.; Zhang, L.; Song, J.; Xu, J.; Han, Z. Mechanism of Reducing the Bursting Liability of Coal using liquid nitrogen Cyclic Fracturing. Nat. Resour. Res. 2023, 32, 1415–1433. [Google Scholar] [CrossRef]
- Qin, L.; Zhai, C.; Liu, S.; Xu, J. Mechanical behavior and fracture spatial propagation of coal injected with liquid nitrogen under triaxial stress applied for coalbed methane recovery. Eng. Geol. 2018, 233, 1–10. [Google Scholar] [CrossRef]
- Qin, L.; Zhai, C.; Liu, S.; Xu, J.; Yu, G.; Sun, Y. Changes in the petrophysical properties of coal subjected to liquid nitrogen freeze-thaw—A nuclear magnetic resonance investigation. Fuel 2017, 194, 102–114. [Google Scholar] [CrossRef]
- Qin, L.; Li, S.; Zhai, C.; Lin, H.; Zhao, P.; Shi, Y.; Bai, Y. Changes in the pore structure of lignite after repeated cycles of liquid nitrogen freezing as determined by nitrogen adsorption and mercury intrusion. Fuel 2020, 267, 117214. [Google Scholar] [CrossRef]
- Ghobadi, M.H.; Babazadeh, R. Experimental Studies on the Effects of Cyclic Freezing–Thawing, Salt Crystallization, and Thermal Shock on the Physical and Mechanical Characteristics of Selected Sandstones. Rock Mech. Rock Eng. 2015, 48, 1001–1016. [Google Scholar] [CrossRef]
- Wang, P.; Xu, J.; Fang, X.; Wen, M.; Zheng, G.; Wang, P. Dynamic splitting tensile behaviors of red-sandstone subjected to repeated thermal shocks: Deterioration and micro-mechanism. Eng. Geol. 2017, 223, 1–10. [Google Scholar] [CrossRef]
- Xu, J.; Zhai, C.; Liu, S.; Qin, L.; Sun, Y. Feasibility investigation of cryogenic effect from liquid carbon dioxide multi cycle fracturing technology in coalbed methane recovery. Fuel 2017, 206, 371–380. [Google Scholar] [CrossRef]
- Xu, J.; Zhai, C.; Liu, S.; Qin, L.; Wu, S. Pore variation of three different metamorphic coals by multiple freezing-thawing cycles of liquid CO2 injection for coalbed methane recovery. Fuel 2017, 208, 41–51. [Google Scholar] [CrossRef]
- Wang, H.; Fu, X.; Jian, K.; Li, T.; Luo, P. Changes in coal pore structure and permeability during N2 injection. J. Nat. Gas Sci. Eng. 2015, 27, 1234–1241. [Google Scholar] [CrossRef]
- Wei, H. Research progress on fracture propagation patterns of hydraulic fracturing in heterogeneous shale. Pet. Geol. Recovery Effic. 2023, 30, 156–166. [Google Scholar]
- Zhao, Z. The Combination Types of Pores and Fracture of Structural Coal and the Variation of Porosity and Permeability Caused by Matrix Deformation. Master’s Thesis, Henan Polytechnic University, Jiaozuo, China, 2021. [Google Scholar]
- Wei, J.; Wei, L.; Wang, D. Experimental study of moisture content influences on permeability of coal containing gas. J. China Coal Soc. 2014, 39, 97–103. [Google Scholar]
- Li, C.; Yao, H.; Xin, C.; Li, H.; Guan, J.; Liu, Y. Changes in pore structure and permeability of middle–high rank coal subjected to liquid nitrogen freeze–thaw. Energy Fuels 2020, 35, 226–236. [Google Scholar] [CrossRef]
- Su, S.; Gao, F.; Cai, C.; Du, M.; Wang, Z. Experimental study on coal permeability and cracking characteristics under LN2 freeze-thaw cycles. J. Nat. Gas Sci. Eng. 2020, 83, 103526. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; Jiang, Y.; Wang, K.; Yan, J.; Yue, S.; Wei, M. Mechanical properties and fracture damage law of coal-rock composition under the action of supercritical CO2. J. China Coal Soc. 2023, 48, 4049–4064. [Google Scholar]
- Yang, Z.; Li, Y.; Li, X.; Li, C. Key Technology Progress and Enlightenment in Refracturing of Shale Gas Horizontal Wells. J. Southwest Pet. Univ. 2019, 41, 75–86. [Google Scholar]
- Xiao, Z.; Xiao, L. Method to Calculate Reservoir Permeability Using Nuclear Magnetic Resonance Logging and Capillary Pressure Date. At. Energy Sci. Technol. 2008, 42, 868–871. [Google Scholar]
- Liu, K.; Yin, D.; Sun, Y.; Xia, L. Analytical and experimental study of stress sensitivity effect on matrix / fracture transfer in fractured tight reservoir. J. Pet. Sci. Eng. 2020, 195, 107958. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, Y.; Zhang, P. Application of CBM horizontal well development technology in the roof strata close to broken-soft coal seams. Nat. Gas Ind. B 2019, 6, 168–174. [Google Scholar] [CrossRef]
- Hu, X. Anti-deviation Craft in Construction of Large Angle Strata Coalbed Gas Well Drilling. China Energy Environ. Prot. 2010, 9, 48–50. [Google Scholar]
- Li, Z.; Xu, H.; Zhang, C. LN2 gasification fracturing technology for shale gas development. J. Pet. Sci. Eng. 2016, 138, 253–256. [Google Scholar] [CrossRef]
- Yang, R.; Hong, C.; Huang, Z.; Song, X.; Zhang, S.; Wen, H. Coal breakage using abrasive LN2 jet and its implications for coalbed methane recovery. Appl. Energy 2019, 253, 113485. [Google Scholar] [CrossRef]
- Santiago, V.; Ribeiro, A.; Johnson, R.L. Modelling and Economic Analyses of Graded Particle Injections in Conjunction with Hydraulically Fracturing of Coal Seam Gas Reservoirs. SPE J. 2022, 27, 1633–1647. [Google Scholar] [CrossRef]
- Shouldice, S.P. Liquid nitrogen developments and applications in drilling and completion operations. J. Can. Pet. Technol. 1964, 3, 158–164. [Google Scholar] [CrossRef]
- Halbert, W.G. Method of Increasing the Permeability of a Subterranean Hydrocarbon Bearing Formation. U.S. Patent 3,602,310, 31 August 1971. [Google Scholar]
- Hatherly, P.; Poole, G.; Mason, I.; Zhou, B.; Bassingthwaighte, H. 3D seismic surveying for coal mine applications at Appin Colliery, NSW. Explor. Geophys. 1998, 29, 407–409. [Google Scholar] [CrossRef]
- Senfaute, G.; Chambon, C.; Bigarre, P.; Guise, Y.; Josien, J.P. Spatial distribution of mining tremors and the relationship to rockburst hazard. Pure Appl. Geophys. 1997, 150, 451–459. [Google Scholar] [CrossRef]
- Qin, L.; Zhang, X.; Zhai, C.; Lin, H.; Lin, S.; Wang, P.; Li, S. Advances in liquid nitrogen fracturing for unconventional oil and gas development: A review. Energy Fuels 2022, 36, 2971–2992. [Google Scholar] [CrossRef]
- Cha, M.; Alqahtani, N.B.; Yin, X.; Wang, L.; Yao, B.; Kneafsey, T.N.; Miskimins, J.L.; Wu, Y.S. Propagation of Cryogenic Thermal Fractures from Unconfined PMMA Boreholes. Energies 2021, 14, 5433. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, H.; Li, H.; Yang, R.; Wu, X.; Hui, C.; Li, X. Liquid Nitrogen Fracturing Process Method. 202010078796.8, 12 June 2020. [Google Scholar]
- Wang, D.; You, Z.; Johnson Jr, R.L.; Wu, L.; Bedrikovetsky, P.; Aminossadati, S.M.; Leonardi, C.R. Numerical investigation of the effects of proppant embedment on fracture permeability and well production in Queensland coal seam gas reservoirs. Int. J. Coal Geol. 2021, 242, 103689. [Google Scholar] [CrossRef]
- Huang, F.; Dong, C.; You, Z.; Shang, X. Detachment of coal fines deposited in fracturing proppants induced by single-phase water flow: Theoretical and experimental analyses. Int. J. Coal Geol. 2021, 239, 103728. [Google Scholar] [CrossRef]
- Huang, F.; Dong, C.; Shang, X.; You, Z. Effects of proppant wettability and size on transport and retention of coal fines in saturated proppant packs: Experimental and theoretical studies. Energy Fuels 2021, 35, 11976–11991. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, S.; Wang, G.; Wu, B.; Zhang, Y. Coalbed methane reservoir stimulation using guar-based fracturing fluid: A review. J. Nat. Gas Sci. Eng. 2019, 66, 107–125. [Google Scholar] [CrossRef]
- Cao, Z.; Li, P.; Li, Q.; Lu, D. Integrated workflow of temperature transient analysis and pressure transient analysis for multistage fractured horizontal wells in tight oil reservoirs. Int. J. Heat Mass Transf. 2020, 158, 119695. [Google Scholar] [CrossRef]
- Mohammed, I.; Olayiwola, T.O.; Alkathim, M.; Awotunde, A.A.; Alafnan, S.F. A review of pressure transient analysis in reservoirs with natural fractures, vugs and/or caves. Pet. Sci. 2021, 18, 154–172. [Google Scholar] [CrossRef]
- Muradov, K.; Davies, D. Temperature transient analysis in horizontal wells: Application workflow, problems and advantages. J. Pet. Sci. Eng. 2012, 92, 11–23. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Li, Y.; Song, D.; Lin, M.; Guo, X.; Shi, X. Mechanism and Model Analysis of Ultralow-Temperature Fluid Fracturing in Low-Permeability Reservoir: Insights from Liquid Nitrogen Fracturing. Processes 2024, 12, 1117. https://doi.org/10.3390/pr12061117
Wang H, Li Y, Song D, Lin M, Guo X, Shi X. Mechanism and Model Analysis of Ultralow-Temperature Fluid Fracturing in Low-Permeability Reservoir: Insights from Liquid Nitrogen Fracturing. Processes. 2024; 12(6):1117. https://doi.org/10.3390/pr12061117
Chicago/Turabian StyleWang, Haifeng, Yunbo Li, Dangyu Song, Meng Lin, Xingxin Guo, and Xiaowei Shi. 2024. "Mechanism and Model Analysis of Ultralow-Temperature Fluid Fracturing in Low-Permeability Reservoir: Insights from Liquid Nitrogen Fracturing" Processes 12, no. 6: 1117. https://doi.org/10.3390/pr12061117
APA StyleWang, H., Li, Y., Song, D., Lin, M., Guo, X., & Shi, X. (2024). Mechanism and Model Analysis of Ultralow-Temperature Fluid Fracturing in Low-Permeability Reservoir: Insights from Liquid Nitrogen Fracturing. Processes, 12(6), 1117. https://doi.org/10.3390/pr12061117