Catalytic Dehydrogenation on Ultradisperse Sn-Promoted Ir Catalysts Supported on MgAl2O4 Prepared by Different Techniques
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characterization of the Supports
3.2. Catalytic Evaluation
3.3. Characterization of Catalysts
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nawaz, Z. Light alkane dehydrogenation to light olefin technologies: A comprehensive review. Rev. Chem. Eng. 2015, 31, 413–436. [Google Scholar] [CrossRef]
- Bhasin, M.M.; McCain, J.H.; Vora, B.V.; Imai, T.; Pujadó, P.R. Dehydrogenation and oxydehydrogenation of paraffins to olefins. Appl. Catal. A 2001, 221, 397–419. [Google Scholar] [CrossRef]
- Sattler, J.J.H.B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B.M. Catalytic Dehydrogenation of Light Alkanes on Metals Metal Oxides. Chem. Rev. 2014, 114, 10613–10653. [Google Scholar] [CrossRef]
- Armendáriz, H.; Guzmán, A.; Toledo, J.A.; Llanos, M.E.; Vázquez, A.; Aguilar-Rıos, G. Isopentane dehydrogenation on Pt-Sn catalysts supported on Al-Mg-O mixed oxides: Effect of Al/Mg atomic ratio. Appl. Catal. A 2001, 211, 69–80. [Google Scholar] [CrossRef]
- Bocanegra, S.A.; Guerrero-Ruiz, A.; de Miguel, S.R.; Scelza, O.A. Performance of PtSn catalysts supported on MAl2O4 (M: Mg or Zn) in n-butane dehydrogenation: Characterization of the metallic phase. Appl. Catal. A 2004, 277, 11–22. [Google Scholar] [CrossRef]
- Sun, P.; Siddiqi, G.; Vining, W.C.; Chi, M.; Bell, A.T. Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation. J. Catal. 2011, 282, 165–174. [Google Scholar] [CrossRef]
- Bocanegra, S.A.; Castro, A.A.; Scelza, O.A.; de Miguel, S.R. Characterization and catalytic behavior in the n-butane dehydrogenation of trimetallic InPtSn/MgAl2O4 catalysts. Appl. Catal. A 2007, 333, 49–56. [Google Scholar] [CrossRef]
- Fang, S.; Bi, K.; Zhang, Q.; Sun, Y.; Huang, H.; Ma, L.; Wang, C. Performance of Ethane Dehydrogenation over PtSn Loaded onto a Calcined Mg(Al)O LDH with Three Mg:Al Molar Ratios Using a Novel Method. Catalysts 2018, 8, 296–310. [Google Scholar] [CrossRef]
- Ballarini, A.D.; Zgolicz, P.; Vilella, I.M.J.; de Miguel, S.R.; Castro, A.A.; Scelza, O.A. n-Butane dehydrogenation on Pt, PtSn and PtGe supported on γ-Al2O3 deposited on spheres of α-Al2O3 by washcoating. Appl. Catal. A 2010, 381, 83–91. [Google Scholar] [CrossRef]
- Homs, N.; Llorca, J.; Riera, M.; Jolis, J.; Fierro, J.L.G.; Sales, J.; Ramírez de la Piscina, P. Silica-supported PtSn alloy doped with Ga, In or, Tl: Characterization and catalytic behaviour in n-hexane dehydrogenation. J. Mol. Catal. A 2003, 200, 251–259. [Google Scholar] [CrossRef]
- Maina, S.C.P.; Ballarini, A.D.; Vilella, I.M.J.I.; de Miguel, S.R. Study of the performance and stability in the dry reforming of methane of doped alumina supported iridium catalysts. Catal. Today 2020, 344, 129–142. [Google Scholar] [CrossRef]
- Gallo, A.; Psaro, R.; Guidotti, M.; Dal Santo, V.; Della Pergola, R.; Masih, D.; Izumi, Y. Cluster-derived Ir–Sn/SiO2 catalysts for the catalytic dehydrogenation of propane: A spectroscopic study. Dalton Trans. 2013, 42, 12714–12724. [Google Scholar] [CrossRef]
- Lazar, K.; Bussiere, P.; Guenin, M.; Frety, R. Stabilization of Tin in bimetallic Iridium-Tin systems supported on alumina and silica. Mossbauer spectroscopy and catalytic activity. Appl. Catal. 1988, 38, 19–40. [Google Scholar] [CrossRef]
- Guidotti, M.; Dal Santo, V.; Gallo, A.; Gianotti, E.; Peli, G.; Psaro, R.; Sordelli, L. Catalytic dehydrogenation of propane over cluster-derived Ir–Sn/SiO2-Catalysts. Catal. Lett. 2006, 112, 89–95. [Google Scholar] [CrossRef]
- Chen, X.; Qin, X.; Jiao, Y.; Peng, M.; Diao, J.; Ren, P.; Li, C.; Xiao, D.; Wen, X.; Jiang, Z.; et al. Structure-dependence and metal-dependence on atomically dispersed Ir catalysts for efficient n-butane dehydrogenation. Nat. Commun. 2023, 14, 2588–2599. [Google Scholar] [CrossRef]
- Sommerville, D.M.; Shapley, J.R. Zeolite-NaY-supported Ir/Sn catalysts derived from single- and dual-source organometallic precursors. Preparation and characterization of highly selective dehydrogenation catalysts. Catal. Lett. 1998, 52, 123–129. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, S.; Wang, Z.; Lan, H.; Liu, L.; Sun, Q.; Guo, G.; He, X.; Ji, H. Propane dehydrogenation on Ir single-atom catalyst modified by atomically dispersed Sn promoters in silicalite-1 zeolite. AIChE J. 2024; in press. [Google Scholar] [CrossRef]
- de Miguel, S.R.; Vilella, I.M.J.; Zgolicz, P.; Bocanegra, S.A. Bimetallic catalysts supported on novel spherical MgAl2O4-coated supports for dehydrogenation processes. Appl. Catal. A 2018, 567, 36–44. [Google Scholar] [CrossRef]
- Li, J.; Ikegami, T.; Lee, J.; Mori, T.; Yajima, Y. Synthesis of Mg–Al spinel powder via precipitation using ammonium bicarbonate as the precipitant. J. Eur. Ceram. Soc. 2001, 21, 139–148. [Google Scholar] [CrossRef]
- Wajler, A.; Tomaszewski, H.; Drożdż-Cieśla, E.; Węglarz, H.; Kaszkur, Z. Study of magnesium aluminate spinel formation from carbonate precursors. J. Eur. Ceram. Soc. 2008, 28, 2495–2500. [Google Scholar] [CrossRef]
- Cordoba, M.; Betti, C.; Martínez Bovier, L.; García, L.; Coloma-Pascual, F.; Ramírez, A.; Quiroga, M.; Lederhos, C. Role of the support and chloride during the purification of 1-pentene in alkyne/alkene streams over Pd catalysts. J. Chem. Technol. Biotechnol. 2021, 96, 2283–2297. [Google Scholar] [CrossRef]
- Guisnet, M.; Magnoux, P. Organic Chemistry of Coke Formation. Appl. Catal. A 2001, 212, 83–96. [Google Scholar] [CrossRef]
- Cheng, Z.X.; Ponec, V. Selective Isomerization of Butene to Isobutene. J. Catal. 1994, 148, 607–616. [Google Scholar] [CrossRef]
- Flaherty, D.W.; Hibbitts, D.D.; Iglesia, E. Metal-catalyzed C-C bond cleavage in alkanes: Effects of methyl substitution on transition-state structures and stability. J. Am. Chem. Soc. 2014, 136, 9664–9676. [Google Scholar] [CrossRef]
- Boudart, M.; Djéga-Mariadassou, G. Kinetics of Heterogeneous Catalytic Reactions; Princeton University Press: Princeton, NJ, USA, 2014. [Google Scholar]
- Zhang, X.; Lu, Y.; Kovarik, L.; Dasari, P.; Nagaki, D.; Karim, A.M. Structure sensitivity of n-butane hydrogenolysis on supported Ir Catalysts. J. Catal. 2021, 394, 376–386. [Google Scholar] [CrossRef]
- Foger, K.; Anderson, J.R. Hydrocarbon reactions on supported iridium catalysts. J. Catal. 1979, 59, 325–339. [Google Scholar] [CrossRef]
- Walter, C.G.; Coq, B.; Figueras, F.; Boulet, M. Competitive reaction of methylcyclohexane and n-hexane over alumina-supported platinum, iridium and ruthenium catalysts. Appl. Catal. A 1995, 133, 95–102. [Google Scholar] [CrossRef]
- Locatelli, F.; Uzio, D.; Niccolai, G.; Basset, J.; Candy, J.P. Hydrogenolysis of 1,4-dimethylcyclohexane on silica supported iridium catalyst: Influence of time on stream on activity and selectivity. Catal. Commun. 2003, 4, 189–194. [Google Scholar] [CrossRef]
- Deng, C.; Duan, X.; Zhou, J.; Zhou, X.; Yuan, W.; Scott, S.L. Ir-Re alloy as a highly active catalyst for the hydrogenolysis of glycerol to 1,3-propanediol. Catal. Sci. Technol. 2015, 5, 1540–1547. [Google Scholar] [CrossRef]
- Taketoshi, A.; Haruta, M. Size- and Structure-specificity in Catalysis by Gold Clusters. Chem. Lett. 2014, 43, 380–387. [Google Scholar] [CrossRef]
- Ishida, T.; Murayama, T.; Taketoshi, A.; Haruta, M. Importance of Size and Contact Structure of Gold Nanoparticles for the Genesis of Unique Catalytic Processes. Chem. Rev. 2020, 120, 464–525. [Google Scholar] [CrossRef] [PubMed]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Waltham, MA, USA, 1992. [Google Scholar]
- Maity, A.K.; Bhattacharjee, M.; Roy, S. SnCl2 insertion into Ir-Cl and Rh-Cl bonds: Synthesis, characterization and catalytic activity of three-legged piano-stool trichlorostannyl iridium and rhodium complexes. J. Organomet. Chem. 2014, 768, 42–49. [Google Scholar] [CrossRef]
- Ballarini, A.; Zgolicz, P.; de Miguel, S.; Bocanegra, S. Stability studies of PtSn structured catalysts supported on thin layers of MAl2O4 (M: Mg, or Zn) for paraffins dehydrogenation reactions. Can. J. Chem. Eng. 2023, 101, 431–443. [Google Scholar] [CrossRef]
Property | MgAl2O4-citr | MgAl2O4-cop |
---|---|---|
Specific surface (SBET) | 129 m2 g−1 | 191 m2 g−1 |
Pore volume | 0.089 cm3 g−1 | 0.801 cm3 g−1 |
Average pore diameter | 28 Å | 168 Å |
Catalyst | X0 (%) | Xf (%) | ΔX (%) | S0 (%) | Sf (%) | Y0 (%) | Yf (%) |
---|---|---|---|---|---|---|---|
Ir(0.5)-MgAl2O4-cop | 26 | 17 | 36 | 20 | 25 | 5 | 4 |
Ir(0.5)-MgAl2O4-citr | 22 | 11 | 49 | 22 | 26 | 5 | 3 |
Ir(0.5)Sn(0.5)-MgAl2O4-cop | 29 | 19 | 33 | 60 | 81 | 17 | 16 |
Ir(0.5)Sn(0.5)-MgAl2O4-citr | 21 | 17 | 17 | 72 | 84 | 15 | 14 |
Ir(0.5)Sn(0.7)-MgAl2O4-cop | 28 | 21 | 25 | 71 | 85 | 20 | 18 |
Ir(0.5)Sn(0.7)-MgAl2O4-citr | 21 | 18 | 15 | 80 | 90 | 17 | 16 |
Ir(0.5)Sn(0.9)-MgAl2O4-cop | 32 | 24 | 25 | 65 | 84 | 21 | 20 |
Ir(0.5)Sn(0.9)-MgAl2O4-citr | 28 | 21 | 24 | 66 | 86 | 18 | 17 |
Catalysts | S to Light Products (%) | S to n-pentane (%) | R°CP (mol h−1 gcat−1) |
---|---|---|---|
Ir(0.5)/MgAl2O4 citr | 97.4 | 2.6 | 96.1 |
Ir(0.5)Sn(0.5)/MgAl2O4 citr | 22.6 | 77.4 | 9.6 |
Ir(0.5)Sn(0.7)/MgAl2O4 citr | 15.2 | 84.8 | 7.5 |
Ir(0.5)Sn(0.9)/MgAl2O4 citr | 8.8 | 91.2 | 4.1 |
Ir(0.5)/MgAl2O4-cop | 99.9 | 0.1 | 185.1 |
Ir(0.5)Sn(0.5)MgAl2O4-cop | 18.3 | 81.7 | 5.7 |
Ir(0.5)Sn(0.7)/MgAl2O4-cop | 49.4 | 50.6 | 4.7 |
Ir(0.5)Sn(0.9)/MgAl2O4-cop | 66.7 | 33.3 | 3.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Miguel, S.; Fals, J.; Benitez, V.; Especel, C.; Epron, F.; Bocanegra, S. Catalytic Dehydrogenation on Ultradisperse Sn-Promoted Ir Catalysts Supported on MgAl2O4 Prepared by Different Techniques. Processes 2024, 12, 1161. https://doi.org/10.3390/pr12061161
de Miguel S, Fals J, Benitez V, Especel C, Epron F, Bocanegra S. Catalytic Dehydrogenation on Ultradisperse Sn-Promoted Ir Catalysts Supported on MgAl2O4 Prepared by Different Techniques. Processes. 2024; 12(6):1161. https://doi.org/10.3390/pr12061161
Chicago/Turabian Stylede Miguel, Sergio, Jayson Fals, Viviana Benitez, Catherine Especel, Florence Epron, and Sonia Bocanegra. 2024. "Catalytic Dehydrogenation on Ultradisperse Sn-Promoted Ir Catalysts Supported on MgAl2O4 Prepared by Different Techniques" Processes 12, no. 6: 1161. https://doi.org/10.3390/pr12061161
APA Stylede Miguel, S., Fals, J., Benitez, V., Especel, C., Epron, F., & Bocanegra, S. (2024). Catalytic Dehydrogenation on Ultradisperse Sn-Promoted Ir Catalysts Supported on MgAl2O4 Prepared by Different Techniques. Processes, 12(6), 1161. https://doi.org/10.3390/pr12061161