Carbon Molecular Sieve Membrane Reactors for Ammonia Cracking
Abstract
:1. Introduction
2. Material and Methods
2.1. Membrane Preparation
- Support preparation. The support was prepared starting from an asymmetric porous alpha alumina tube with an outer diameter (OD) of 10 mm, an inner diameter (ID) of 7 mm, and an external layer with an average pore size of about 100 nm (Rauschert GmbH, Steinbach am Wald, Germany). As reported in a previous study [40], the porous alumina tube is connected on one side to a dense alumina cap and on the other side to a dense alumina tube through appropriate glass sealing. This allows one of the sides to be completely closed, whereas the other one is open to ensure the gas outlet, resulting in a dead-end configuration.
- Polymeric precursor synthesis. Along with the support preparation, another preliminary step to the fabrication of the carbon membrane is the synthesis of the oligomer employed in the dipping solution. The resin is synthesized via an acid-catalyzed phenol–formaldehyde condensation, with the following procedure [40,41]. Phenol (69 g) was gradually melted at 60 °C in a four-necked round-bottom flask equipped with a Graham condenser. Upon liquefying, oxalic acid (1.5 g) was added to the solution, and the temperature was increased up to 90 °C while adding formaldehyde solution (54 g) to the flask at a rate of 2 mL/min. After 8 h, the obtained product was washed and separated by centrifugation (three cycles of 15 min at 4400 rpm and 10 °C). Finally, the obtained oligomer was dried under vacuum at 50 °C for 24 h.
- Dipping Solution Preparation. Then, the dipping solution was prepared by dissolving the Novolac synthesized (30 g) in N-Methyl-2-Pyrrolidone (83.2 g) with aluminum acetylacetonate (0.8 g) as an additive [40]. A high-shear mixer (Thinky ARE-250, Tokyo, Japan) was employed to ensure the efficient mixing of the chemicals at 2000 rpm for two cycles with a duration of 30 min each. Next, formaldehyde (1.6 g) was added with a subsequent mixing step, again at 2000 rpm for 30 min. Finally, oxalic acid (0.4 g) was added to the solution and mixed at 2000 rpm for an additional 30 min.
- Dip Coating. The support was dip-coated by a laboratory-made automated system where the machine lowers and raises the support inside a graduated cylinder containing the dipping solution.
- Polymerization. Once the dip coating has been completed, the coated support is dried-polymerized in a laboratory-made rotary oven at 80 °C for 24 h. The coated support is connected to a rotating mount while drying to ensure a more homogeneous active layer thickness. Furthermore, nitrogen gas was employed to provide an inert atmosphere.
- Carbonization. Finally, the polymeric layer on the porous support underwent carbonization in a tubular three-zone oven (Nabertherm R 170/1000/1, Lilienthal, Germany). A heating rate of approximately 1 ℃/min was applied until reaching a temperature of about 800 ℃, where it was held for 4 h. Throughout the carbonization step, a nitrogen flow of about 3 L/min was applied to avoid carbon combustion.
Chemical | CAS n. | Purity | Brand | Supplier |
---|---|---|---|---|
Formaldehyde solution | 50-00-0 | 37.0% | Sigma Aldrich | VWR International BV |
Phenol | 108-95-2 | 99.9% | Sigma Aldrich | VWR International BV |
N-Methyl-2-Pyrrolidone | 872-50-4 | 99.5% | Sigma Aldrich | Merck Life Science NV |
Aluminum acetylacetonate | 13963-57-0 | 99.9% | Sigma Aldrich | Merck Life Science NV |
Oxalic acid | 144-62-7 | 98.0% | Sigma Aldrich | VWR International BV |
2.2. Membrane Characterization
2.3. Experimental Setup
2.4. Experimental Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Membrane Characterization: Perm-Porometry Setup
References
- Dell, R.; Bridger, N. Hydrogen—The ultimate fuel. Appl. Energy 1975, 1, 279–292. [Google Scholar] [CrossRef]
- Rosen, M.A.; Koohi-Fayegh, S. The prospects for hydrogen as an energy carrier: An overview of hydrogen energy and hydrogen energy systems. Energy Ecol. Environ. 2016, 1, 10–29. [Google Scholar] [CrossRef]
- Abe, J.O.; Popoola, A.P.I.; Ajenifuja, E.; Popoola, O.M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrogen Energy 2019, 44, 15072–15086. [Google Scholar] [CrossRef]
- Bockris, J.O. The hydrogen economy: Its history. Int. J. Hydrogen Energy 2013, 38, 2579–2588. [Google Scholar] [CrossRef]
- Johnston, B.; Mayo, M.C.; Khare, A. Hydrogen: The energy source for the 21st century. Technovation 2005, 25, 569–585. [Google Scholar] [CrossRef]
- International Energy Agency. The Future of Hydrogen. Paris, 2019. Available online: https://www.iea.org/reports/the-future-of-hydrogen (accessed on 2 January 2024).
- Lan, R.; Tao, S. Ammonia as a Suitable Fuel for Fuel Cells. Front. Energy Res. 2014, 2, 110206. [Google Scholar] [CrossRef]
- Lamb, K.E.; Dolan, M.D.; Kennedy, D.F. Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification. Int. J. Hydrogen Energy 2019, 44, 3580–3593. [Google Scholar] [CrossRef]
- Klerke, A.; Christensen, C.H.; Nørskov, J.K.; Vegge, T. Ammonia for hydrogen storage: Challenges and opportunities. J. Mater. Chem. 2008, 18, 2304–2310. [Google Scholar] [CrossRef]
- Valera-Medina, A.; Xiao, H.; Owen-Jones, M.; David, W.I.F.; Bowen, P.J. Ammonia for power. Prog. Energy Combust. Sci. 2018, 69, 63–102. [Google Scholar] [CrossRef]
- Cechetto, V.; Di Felice, L.; Gallucci, F. Advances and Perspectives of H2 Production from NH3 Decomposition in Membrane Reactors. Energy Fuels 2023, 37, 10775–10798. [Google Scholar] [CrossRef]
- Li, G.; Kanezashi, M.; Tsuru, T. Highly enhanced ammonia decomposition in a bimodal catalytic membrane reactor for CO -free hydrogen production. Catal. Commun. 2011, 15, 60–63. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, H.; Li, W. High-purity COx-free H2 generation from NH3 via the ultra permeable and highly selective Pd membranes. J. Membr. Sci. 2006, 277, 85–93. [Google Scholar] [CrossRef]
- Chellappa, A.; Fischer, C.; Thomson, W. Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications. Appl. Catal. A Gen. 2002, 227, 231–240. [Google Scholar] [CrossRef]
- Le, T.A.; Kim, Y.; Kim, H.W.; Lee, S.-U.; Kim, J.-R.; Kim, T.-W.; Lee, Y.-J.; Chae, H.-J. Ru-supported lanthania-ceria composite as an efficient catalyst for COx-free H2 production from ammonia decomposition. Appl. Catal. B Environ. 2021, 285, 119831. [Google Scholar] [CrossRef]
- Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef]
- Yin, S.; Xu, B.; Zhou, X.; Au, C. A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications. Appl. Catal. A Gen. 2004, 277, 1–9. [Google Scholar] [CrossRef]
- Cha, J.; Jo, Y.S.; Jeong, H.; Han, J.; Nam, S.W.; Song, K.H.; Yoon, C.W. Ammonia as an efficient COX-free hydrogen carrier: Fundamentals and feasibility analyses for fuel cell applications. Appl. Energy 2018, 224, 194–204. [Google Scholar] [CrossRef]
- Sørensen, R.Z.; Nielsen, L.J.; Jensen, S.; Hansen, O.; Johannessen, T.; Quaade, U.; Christensen, C.H. Catalytic ammonia decomposition: Miniaturized production of COx-free hydrogen for fuel cells. Catal. Commun. 2005, 6, 229–232. [Google Scholar] [CrossRef]
- Valera-Medina, A.; Amer-Hatem, F.; Azad, A.K.; Dedoussi, I.C.; de Joannon, M.; Fernandes, R.X.; Glarborg, P.; Hashemi, H.; He, X.; Mashruk, S.; et al. Review on Ammonia as a Potential Fuel: From Synthesis to Economics. Energy Fuels 2021, 35, 6964–7029. [Google Scholar] [CrossRef]
- Morlanés, N.; Katikaneni, S.P.; Paglieri, S.N.; Harale, A.; Solami, B.; Sarathy, S.M.; Gascon, J. A technological roadmap to the ammonia energy economy: Current state and missing technologies. Chem. Eng. J. 2021, 408, 127310. [Google Scholar] [CrossRef]
- Zhang, Z.; Liguori, S.; Fuerst, T.F.; Way, J.D.; Wolden, C.A. Efficient Ammonia Decomposition in a Catalytic Membrane Reactor To Enable Hydrogen Storage and Utilization. ACS Sustain. Chem. Eng. 2019, 7, 5975–5985. [Google Scholar] [CrossRef]
- Itoh, N.; Oshima, A.; Suga, E.; Sato, T. Kinetic enhancement of ammonia decomposition as a chemical hydrogen carrier in palladium membrane reactor. Catal. Today 2014, 236, 70–76. [Google Scholar] [CrossRef]
- Itoh, N.; Kikuchi, Y.; Furusawa, T.; Sato, T. Tube-wall catalytic membrane reactor for hydrogen production by low-temperature ammonia decomposition. Int. J. Hydrogen Energy 2020, 46, 20257–20265. [Google Scholar] [CrossRef]
- Cechetto, V.; Di Felice, L.; Martinez, R.G.; Plazaola, A.A.; Gallucci, F. Ultra-pure hydrogen production via ammonia decomposition in a catalytic membrane reactor. Int. J. Hydrogen Energy 2022, 47, 21220–21230. [Google Scholar] [CrossRef]
- Cechetto, V.; Di Felice, L.; Medrano, J.A.; Makhloufi, C.; Zuniga, J.; Gallucci, F. H2 production via ammonia decomposition in a catalytic membrane reactor. Fuel Process. Technol. 2021, 216, 106772. [Google Scholar] [CrossRef]
- Cechetto, V.; Agnolin, S.; Di Felice, L.; Tanaka, A.P.; Tanco, M.L.; Gallucci, F. Metallic Supported Pd-Ag Membranes for Simultaneous Ammonia Decomposition and H2 Separation in a Membrane Reactor: Experimental Proof of Concept. Catalysts 2023, 13, 920. [Google Scholar] [CrossRef]
- Rizzuto, E.; Palange, P.; Del Prete, Z. Characterization of an ammonia decomposition process by means of a multifunctional catalytic membrane reactor. Int. J. Hydrogen Energy 2014, 39, 11403–11410. [Google Scholar] [CrossRef]
- Israni, S.H.; Nair, B.K.R.; Harold, M.P. Hydrogen generation and purification in a composite Pd hollow fiber membrane reactor: Experiments and modeling. Catal. Today 2009, 139, 299–311. [Google Scholar] [CrossRef]
- Li, G.; Kanezashi, M.; Lee, H.R.; Maeda, M.; Yoshioka, T.; Tsuru, T. Preparation of a novel bimodal catalytic membrane reactor and its application to ammonia decomposition for COx-free hydrogen production. Int. J. Hydrogen Energy 2012, 37, 12105–12113. [Google Scholar] [CrossRef]
- Park, Y.; Cha, J.; Oh, H.-T.; Lee, T.; Lee, S.H.; Park, M.G.; Jeong, H.; Kim, Y.; Sohn, H.; Nam, S.W.; et al. A catalytic composite membrane reactor system for hydrogen production from ammonia using steam as a sweep gas. J. Membr. Sci. 2020, 614, 118483. [Google Scholar] [CrossRef]
- Jo, Y.S.; Cha, J.; Lee, C.H.; Jeong, H.; Yoon, C.W.; Nam, S.W.; Han, J. A viable membrane reactor option for sustainable hydrogen production from ammonia. J. Power Sources 2018, 400, 518–526. [Google Scholar] [CrossRef]
- Liu, J.; Ju, X.; Tang, C.; Liu, L.; Li, H.; Chen, P. High performance stainless-steel supported Pd membranes with a finger-like and gap structure and its application in NH3 decomposition membrane reactor. Chem. Eng. J. 2020, 388, 124245. [Google Scholar] [CrossRef]
- Jiang, J.; Dong, Q.; McCullough, K.; Lauterbach, J.; Li, S.; Yu, M. Novel hollow fiber membrane reactor for high purity H2 generation from thermal catalytic NH3 decomposition. J. Membr. Sci. 2021, 629, 119281. [Google Scholar] [CrossRef]
- Cerrillo, J.L.; Morlanés, N.; Kulkarni, S.R.; Realpe, N.; Ramírez, A.; Katikaneni, S.P.; Paglieri, S.N.; Lee, K.; Harale, A.; Solami, B.; et al. High purity, self-sustained, pressurized hydrogen production from ammonia in a catalytic membrane reactor. Chem. Eng. J. 2021, 431, 134310. [Google Scholar] [CrossRef]
- Kim, T.-W.; Lee, E.-H.; Byun, S.; Seo, D.-W.; Hwang, H.-J.; Yoon, H.-C.; Kim, H.; Ryi, S.-K. Highly selective Pd composite membrane on porous metal support for high-purity hydrogen production through effective ammonia decomposition. Energy 2022, 260, 125209. [Google Scholar] [CrossRef]
- Sitar, R.; Shah, J.; Zhang, Z.; Wikoff, H.; Way, J.D.; Wolden, C.A. Compact ammonia reforming at low temperature using catalytic membrane reactors. J. Membr. Sci. 2022, 644, 120147. [Google Scholar] [CrossRef]
- Omata, K.; Sato, K.; Nagaoka, K.; Yukawa, H.; Matsumoto, Y.; Nambu, T. Direct high-purity hydrogen production from ammonia by using a membrane reactor combining V-10mol%Fe hydrogen permeable alloy membrane with Ru/Cs2O/Pr6O11 ammonia decomposition catalyst. Int. J. Hydrogen Energy 2022, 47, 8372–8381. [Google Scholar] [CrossRef]
- ISO 14687:2019; Hydrogen Fuel Quality—Product Specification. International Organization for Standardization: Geneva, Switzerland, 2019.
- Rahimalimamaghani, A.; Tanaka, D.P.; Tanco, M.L.; D’Angelo, F.N.; Gallucci, F. Effect of aluminium acetyl acetonate on the hydrogen and nitrogen permeation of carbon molecular sieves membranes. Int. J. Hydrogen Energy 2022, 47, 14570–14579. [Google Scholar] [CrossRef]
- Rahimalimamaghani, A.; Tanaka, D.A.P.; Tanco, M.A.L.; D’angelo, M.F.N.; Gallucci, F. Ultra-Selective CMSMs Derived from Resorcinol-Formaldehyde Resin for CO2 Separation. Membranes 2022, 12, 847. [Google Scholar] [CrossRef]
- Gilron, J.; Soffer, A. Knudsen diffusion in microporous carbon membranes with molecular sieving character. J. Membr. Sci. 2002, 209, 339–352. [Google Scholar] [CrossRef]
- Tanco, M.A.L.; Tanaka, D.A.P.; Rodrigues, S.C.; Texeira, M.; Mendes, A. Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part I: Preparation, characterization and gas permeation studies. Int. J. Hydrogen Energy 2015, 40, 5653–5663. [Google Scholar] [CrossRef]
- Tanco, M.A.L.; Medrano, J.A.; Cechetto, V.; Gallucci, F.; Tanaka, D.A.P. Hydrogen permeation studies of composite supported alumina-carbon molecular sieves membranes: Separation of diluted hydrogen from mixtures with methane. Int. J. Hydrogen Energy 2021, 46, 19758–19767. [Google Scholar] [CrossRef]
- Medrano, J.A.; Llosa-Tanco, M.A.; Cechetto, V.; Pacheco-Tanaka, D.A.; Gallucci, F. Upgrading biogas with novel composite carbon molecular sieve (CCMS) membranes: Experimental and techno-economic assessment. Chem. Eng. J. 2020, 394, 124957. [Google Scholar] [CrossRef]
- Suda, H.; Haraya, K. Gas Permeation through Micropores of Carbon Molecular Sieve Membranes Derived from Kapton Polyimide. J. Phys. Chem. B 1997, 101, 3988–3994. [Google Scholar] [CrossRef]
- Nordio, M.; Melendez, J.; Annaland, M.v.S.; Tanaka, D.A.P.; Tanco, M.L.; Gallucci, F. Comparison between carbon molecular sieve and Pd-Ag membranes in H2-CH4 separation at high pressure. Int. J. Hydrogen Energy 2020, 45, 28876–28892. [Google Scholar] [CrossRef]
- Choudhary, T.; Sivadinarayana, C.; Goodman, D. Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications. Catal. Lett. 2001, 72, 197–201. [Google Scholar] [CrossRef]
- Chellappa, A.S.; Powell, M.R.; Fountain, M.; Call, C.J.; Godshall, N.A. Compact fuel processors for PEM fuel cells. Fuel 2002, 10000, 12000. [Google Scholar]
- Alagharu, V.; Palanki, S.; West, K.N. Analysis of ammonia decomposition reactor to generate hydrogen for fuel cell applications. J. Power Sources 2010, 195, 829–833. [Google Scholar] [CrossRef]
- Luna, B.; Somi, G.; Winchester, J.; Grose, J.; Mulloth, L.; Perry, J. Evaluation of Commercial Off-the-Shelf Sorbents & Catalysts for Control of Ammonia and Carbon Monoxide. In Proceedings of the 40th International Conference on Environmental Systems, Barcelona, Spain, 11–15 July 2010; International Conference on Environmental Systems (ICES). American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2010. [Google Scholar] [CrossRef]
- Huang, P.; Xu, N.; Shi, J.; Lin, Y. Characterization of asymmetric ceramic membranes by modified permporometry. J. Membr. Sci. 1996, 116, 301–305. [Google Scholar] [CrossRef]
- Tsuru, T.; Hino, T.; Yoshioka, T.; Asaeda, M. Permporometry characterization of microporous ceramic membranes. J. Membr. Sci. 2001, 186, 257–265. [Google Scholar] [CrossRef]
- Nakao, S.-I. Determination of pore size and pore size distribution: 3. Filtration membranes. J. Membr. Sci. 1994, 96, 131–165. [Google Scholar] [CrossRef]
- Krantz, W.B.; Greenberg, A.R.; Kujundzic, E.; Yeo, A.; Hosseini, S.S. Evapoporometry: A novel technique for determining the pore-size distribution of membranes. J. Membr. Sci. 2013, 438, 153–166. [Google Scholar] [CrossRef]
Temperature [°C] | H2 Permeance [mol/s/m2/Pa] | N2 Permeance [mol/s/m2/Pa] | NH3 Permeance [mol/s/m2/Pa] | H2/N2 Ideal Perm-selectivity [-] | H2/NH3 Ideal Perm-selectivity [-] |
---|---|---|---|---|---|
400 | 9.8 × 10−8 | <5.9 × 10−10 | 6.0 × 10−9 | >165 | 16 |
450 | 1.0 × 10−7 | <5.9 × 10−10 | 6.2 × 10−9 | >169 | 16 |
500 | 1.0 × 10−7 | <5.9 × 10−10 | 8.1 × 10−9 | >170 | 12 |
Temperature [°C] | NH3 Conversion [%] | H2 Recovery [%] | NH3 Concentration in the Permeate [%] |
---|---|---|---|
450 | 91.38 ± 0.29 | 8.15 ± 0.01 | 4.01 ± 0.08 |
475 | 97.87 ± 0.18 | 8.98 ± 0.13 | 1.30 ± 0.05 |
500 | 98.49 ± 0.05 | 9.84 ± 0.02 | 0.59 ± 0.00 |
Reaction pressure of 5 bar and NH3 feed flow rate of 0.5 lN/min. |
Cechetto et al. [25] | Cechetto et al. [27] | Jiang et al. [34] | This Study | |
---|---|---|---|---|
Membrane | ||||
Membrane configuration | Supported tubular double-skinned Pd-based | Supported tubular Pd-based | Supported tubular carbon-based | Supported tubular carbon-based |
Support | Al2O3 | Hastelloy X | N/A | Al2O3 |
Selective layer composition | Pd-Ag | Pd-Ag | Carbon | Carbon |
Selective layer thickness [μm] | ~ 6–8 | ~ 6–8 | ~ 0.9 | < 1 |
Membrane length [mm] | 195 | 90 | 220 | 80 |
Membrane area [cm2] | 85.8 | 39.6 | 34.1 | 25.1 |
H2 permeance at 450 °C and 1 bar(g) [mol/s/m2/Pa] | 1.2 × 10−6 | 6.6 × 10−7 | N/A | 1.0 × 10−7 |
H2/N2 ideal perm-selectivity at 450 °C, 1 bar(g) [mol/s/m2/Pa] | 68,960 | 5,890 | N/A | 26 |
Reactor operating conditions | ||||
Catalyst | Ru/Al2O3 (2 wt.%) 250 g | Ru/Al2O3 (2 wt.%) 250 g | Ru/Y/K/Al2O3 (3 wt.%) 3 g | Ru/Al2O3 (2 wt.%) 250 g |
Reaction pressure [bar] | 5 | 5 | 7 | 5 |
Permeate pressure [bar] | 1 | 1 | 1 | 1 |
NH3 feed flow rate [mlN/min] | 500 | 500 | 250 | 500 |
GHSV [ml/(gcat h)] | 120 | 120 | 5000 | 120 |
Temperature [°C] | NH3 conversion [%] | |||
450 | 99.7 | 98.2 | 98.9 | 91.4 |
475 | 99.8 | 99.2 | N/A | 97.9 |
500 | 99.8 | 99.3 | N/A | 98.5 |
Temperature [°C] | H2 recovery [%] | |||
450 | 87.8 | 55.5 | 93.7 | 8.2 |
475 | 88.9 | 60.7 | N/A | 9.0 |
500 | 88.9 | 62.9 | N/A | 9.8 |
Temperature [°C] | NH3 concentration in the permeate | |||
450 | 11.8 | N/A | <10,000 | 40,000 |
475 | 6.1 | N/A | N/A | 13,000 |
500 | 1.6 | N/A | N/A | 6000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cechetto, V.; Anello, G.; Rahimalimamaghani, A.; Gallucci, F. Carbon Molecular Sieve Membrane Reactors for Ammonia Cracking. Processes 2024, 12, 1168. https://doi.org/10.3390/pr12061168
Cechetto V, Anello G, Rahimalimamaghani A, Gallucci F. Carbon Molecular Sieve Membrane Reactors for Ammonia Cracking. Processes. 2024; 12(6):1168. https://doi.org/10.3390/pr12061168
Chicago/Turabian StyleCechetto, Valentina, Gaetano Anello, Arash Rahimalimamaghani, and Fausto Gallucci. 2024. "Carbon Molecular Sieve Membrane Reactors for Ammonia Cracking" Processes 12, no. 6: 1168. https://doi.org/10.3390/pr12061168
APA StyleCechetto, V., Anello, G., Rahimalimamaghani, A., & Gallucci, F. (2024). Carbon Molecular Sieve Membrane Reactors for Ammonia Cracking. Processes, 12(6), 1168. https://doi.org/10.3390/pr12061168