Bibliometric Analysis: Use of Agricultural Waste in the Generation of Electrical Energy
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
N° | Words | Occurrences | N° | Words | Occurrences |
---|---|---|---|---|---|
1 | Biogas | 330 | 16 | Crops | 103 |
2 | Anaerobic Digestion | 214 | 17 | Nitrogen | 102 |
3 | Agriculture | 212 | 18 | Manures | 86 |
4 | Biomass | 193 | 19 | Animal | 82 |
5 | Manure | 177 | 20 | Sustainable Development | 82 |
6 | Agricultural Wastes | 169 | 21 | Biofuel | 77 |
7 | Fertilizers | 162 | 22 | Carbon Dioxide | 71 |
8 | Article | 153 | 23 | Greenhouse Gases | 71 |
9 | Farms | 141 | 24 | Controlled Study | 70 |
10 | Methane | 137 | 25 | Soil | 70 |
11 | Waste Management | 122 | 26 | Biofuels | 69 |
12 | Animals | 118 | 27 | China | 66 |
13 | Nonhuman | 108 | 28 | Wastewater Treatment | 58 |
14 | Agricultural Land | 103 | 29 | Pig | 57 |
15 | Bioremediation | 103 | 30 | Waste Water | 57 |
N° | Authors | H-Index | Citations | Most Cited Article | Number of Articles | Ref. |
---|---|---|---|---|---|---|
1 | Liu Z. | 6 | 117 | Effect of the carbonization temperature on the properties of biochar produced from the pyrolysis of crop residues | 6 | [52] |
2 | Koutinas A.A | 6 | 269 | Whole-crop biorefinery | 7 | [53] |
3 | Wang Y | 5 | 183 | Performance evaluation of a large-scale swine manure mesophilic biogas plant in China | 9 | [54] |
4 | Xu J | 5 | 168 | Performance evaluation of a full-scale innovative swine waste-to-energy system | 2 | [55] |
5 | Angenent L.T. | 4 | 131 | Integrating electrochemical, biological, physical, and thermochemical process units to expand the applicability of anaerobic digestion | 3 | [56] |
6 | Rodríguez-Rodríguez C.E. | 4 | 124 | On-farm biopurification systems: role of white rot fungi in depuration of pesticide-containing wastewaters | 3 | [57] |
7 | Tester JW | 4 | 131 | Cost analysis of oil, gas, and geothermal well drilling | 4 | [58] |
8 | Wang F | 4 | 56 | Effects of outdoor dry bale storage conditions on corn stover and the subsequent biogas production from anaerobic digestion. | 4 | [59] |
9 | Wang J | 4 | 160 | Decentralized biogas technology of anaerobic digestion and farm ecosystem: opportunities and challenges. | 6 | [60] |
10 | Zhang Y | 4 | 99 | Pretreatment of lignocellulosic biomass for enhanced biogas production | 4 | [61] |
4. Conclusions
- -
- The scientific journals most selected by the authors on this topic are the Journal of Environmental Management, Science of The Total Environment, Energies and Bioresource Technology, from Elsevier, and MDPI.
- -
- The keywords with the highest occurrence reported by researchers in their papers are biogas and anaerobic digestion, but starting in 2020, agricultural waste has begun to appear and gain importance.
- -
- The most significant number of scientific documents were published in China, the USA, and India, whose analysis connects the laboratories of these countries with different geographical areas.
- -
- The authors with the highest number of citations during the analyzed period are Liu Y., Wang X., and Wang Y., with an interaction of research works carried out between them or other researchers with a large number of citations.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Koul, B.; Yakoob, M.; Shah, M.P. Agricultural waste management strategies for environmental sustainability. Environ. Res. 2022, 206, 112285. [Google Scholar] [CrossRef] [PubMed]
- Capanoglu, E.; Nemli, E.; Tomas-Barberan, F. Novel approaches in the valorization of agricultural wastes and their applications. J. Agric. Food Chem. 2022, 70, 6787–6804. [Google Scholar] [CrossRef] [PubMed]
- Chilakamarry, C.R.; Sakinah, A.M.; Zularisam, A.W.; Sirohi, R.; Khilji, I.A.; Ahmad, N.; Pandey, A. Advances in solid-state fermentation for bioconversion of agricultural wastes to value-added products: Opportunities and challenges. Bioresour. Technol. 2022, 343, 126065. [Google Scholar] [CrossRef] [PubMed]
- Karić, N.; Maia, A.S.; Teodorović, A.; Atanasova, N.; Langergraber, G.; Crini, G.; Ribeiro, A.R.; Đolić, M. Bio-waste valorisation: Agricultural wastes as biosorbents for removal of (in) organic pollutants in wastewater treatment. Chem. Eng. J. Adv. 2022, 9, 100239. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Sindhu, R.; Sirohi, R.; Kumar, V.; Ahluwalia, V.; Binod, P.; Juneja, A.; Kumar, D.; Yan, B.; Sarsaiya, S.; et al. Agricultural waste biorefinery development towards circular bioeconomy. Renew. Sustain. Energy Rev. 2022, 158, 112122. [Google Scholar] [CrossRef]
- Al-Gheethi, A.A.; Azhar, Q.M.; Kumar, P.S.; Yusuf, A.A.; Al-Buriahi, A.K.; Mohamed, R.M.S.R.; Al-Shaibani, M.M. Sustainable approaches for removing Rhodamine B dye using agricultural waste adsorbents: A review. Chemosphere 2022, 287, 132080. [Google Scholar] [CrossRef] [PubMed]
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Cortés-García, F.J.; Camacho-Ferre, F. Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Glob. Ecol. Conserv. 2020, 22, e00902. [Google Scholar] [CrossRef]
- Maraveas, C. Production of sustainable and biodegradable polymers from agricultural waste. Polymers 2020, 12, 1127. [Google Scholar] [CrossRef] [PubMed]
- Mujtaba, M.; Fraceto, L.F.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; de Medeiros, G.A.; Pereira, A.D.E.S.; Mancini, S.D.; Lipponen, J.; Vilaplana, F. Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. J. Clean. Prod. 2023, 402, 136815. [Google Scholar] [CrossRef]
- Kadhom, M.; Albayati, N.; Alalwan, H.; Al-Furaiji, M. Removal of dyes by agricultural waste. Sustain. Chem. Pharm. 2020, 16, 100259. [Google Scholar] [CrossRef]
- Sharma, A.K.; Ghodke, P.K.; Goyal, N.; Nethaji, S.; Chen, W.H. Machine learning technology in biohydrogen production from agriculture waste: Recent advances and future perspectives. Bioresour. Technol. 2022, 364, 128076. [Google Scholar] [CrossRef] [PubMed]
- Mengqi, Z.; Shi, A.; Ajmal, M.; Ye, L.; Awais, M. Comprehensive review on agricultural waste utilization and high-temperature fermentation and composting. Biomass Convers. Biorefinery 2021, 13, 5445–5468. [Google Scholar] [CrossRef]
- Awogbemi, O.; Von Kallon, D.V. Valorization of agricultural wastes for biofuel applications. Heliyon 2022, 8, e11117. [Google Scholar] [CrossRef] [PubMed]
- Donner, M.; Verniquet, A.; Broeze, J.; Kayser, K.; De Vries, H. Critical success and risk factors for circular business models valorising agricultural waste and by-products. Resour. Conserv. Recycl. 2021, 165, 105236. [Google Scholar] [CrossRef]
- Kamel, R.; El-Wakil, N.A.; Dufresne, A.; Elkasabgy, N.A. Nanocellulose: From an agricultural waste to a valuable pharmaceutical ingredient. Int. J. Biol. Macromol. 2020, 163, 1579–1590. [Google Scholar] [CrossRef]
- Kapoor, R.; Ghosh, P.; Kumar, M.; Sengupta, S.; Gupta, A.; Kumar, S.S.; Vijay, V.; Kumar, V.; Vijay, V.K.; Pant, D. Valorization of agricultural waste for biogas based circular economy in India: A research outlook. Bioresour. Technol. 2020, 304, 123036. [Google Scholar] [CrossRef]
- Mpatani, F.M.; Han, R.; Aryee, A.A.; Kani, A.N.; Li, Z.; Qu, L. Adsorption performance of modified agricultural waste materials for removal of emerging micro-contaminant bisphenol A: A comprehensive review. Sci. Total Environ. 2021, 780, 146629. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Yek, P.N.Y.; Cheng, Y.W.; Xia, C.; Mahari, W.A.W.; Liew, R.K.; Peng, W.; Yuan, T.-Q.; Tabatabaei, M.; Aghbashlo, M.; et al. Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach. Renew. Sustain. Energy Rev. 2021, 135, 110148. [Google Scholar] [CrossRef]
- Wang, Y.S.; Zhu, W.L.; Li, T.; Chen, W.; Wang, W.B. Changes in newly notified cases and control of tuberculosis in China: Time-series analysis of surveillance data. Infect. Dis. Poverty 2021, 10, 1–10. [Google Scholar] [CrossRef]
- Liu, C.; Shi, J.; Wang, H.; Yan, X.; Wang, L.; Ren, J.; Parascandola, M.; Chen, W.; Dai, M. Population-level economic burden of lung cancer in China: Provisional prevalence-based estimations, 2017−2030. Chin. J. Cancer Res. 2021, 33, 79–92. [Google Scholar] [CrossRef]
- Baseri, H.; Farhadi, A. Valorization of pistachio bark as the biosorbent for adsorption of dye and heavy metal ions from the contaminated water. Biomass Convers. Biorefinery 2024, 1–12. [Google Scholar] [CrossRef]
- Granado-Castro, M.D.; Galindo-Riaño, M.D.; Gestoso-Rojas, J.; Sánchez-Ponce, L.; Casanueva-Marenco, M.J.; Díaz-de-Alba, M. Ecofriendly Application of Calabrese Broccoli Stalk Waste as a Biosorbent for the Removal of Pb (II) Ions from Aqueous Media. Agronomy 2024, 14, 554. [Google Scholar] [CrossRef]
- Tang, X.; Wang, L.; Zhang, Q.; Xu, D.; Tao, Z. Performance optimization for Pb (II)-containing wastewater treatment in constructed wetland-microbial fuel cell triggered by biomass dosage and Pb (II) level. Environ. Sci. Pollut. Res. 2024, 31, 15039–15049. [Google Scholar] [CrossRef] [PubMed]
- Hofifah, S.N.; Nandiyanto, A.B.D. Water hyacinth and education research trends from the scopus database: A bibliometric literature review. ASEAN J. Sci. Eng. Educ. 2024, 4, 121–132. [Google Scholar]
- Farooq, R. A review of knowledge management research in the past three decades: A bibliometric analysis. VINE J. Inf. Knowl. Manag. Syst. 2024, 54, 339–378. [Google Scholar] [CrossRef]
- Lim, W.M.; Kumar, S. Guidelines for interpreting the results of bibliometric analysis: A sensemaking approach. Glob. Bus. Organ. Excell. 2024, 43, 17–26. [Google Scholar] [CrossRef]
- Alfaro-Ponce, B.; Durán-González, R.; Morales-Maure, L.; Sanabria, Z.J. Citizen science as a relevant approach to the challenges of complex thinking development in higher education: Mapping and bibliometric analysis. Humanit. Soc. Sci. Commun. 2024, 11, 1–13. [Google Scholar] [CrossRef]
- Demir, G.; Chatterjee, P.; Pamucar, D. Sensitivity analysis in multi-criteria decision making: A state-of-the-art research perspective using bibliometric analysis. Expert Syst. Appl. 2024, 237, 121660. [Google Scholar] [CrossRef]
- Rejeb, A.; Abdollahi, A.; Rejeb, K.; Treiblmaier, H. Drones in agriculture: A review and bibliometric analysis. Comput. Electron. Agric. 2022, 198, 107017. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; López-Serrano, M.J. Advances in water use efficiency in agriculture: A bibliometric analysis. Water 2018, 10, 377. [Google Scholar] [CrossRef]
- Bertoglio, R.; Corbo, C.; Renga, F.M.; Matteucci, M. The digital agricultural revolution: A bibliometric analysis literature review. IEEE Access 2021, 9, 134762–134782. [Google Scholar] [CrossRef]
- Armenta-Medina, D.; Ramirez-delReal, T.A.; Villanueva-Vásquez, D.; Mejia-Aguirre, C. Trends on advanced information and communication technologies for improving agricultural productivities: A bibliometric analysis. Agronomy 2020, 10, 1989. [Google Scholar] [CrossRef]
- Matkin, C.; Felgenhauer, B.; Klerks, P. Gonadal histology of adult western mosquitofish (Gambusia affinis) following early life exposure to 17α-ethynylestradiol, 17β-trenbolone, and/or atrazine. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Rajput, A.; Sharma, T. Systematic review on the properties of CSEBs with the addition of industrial and agricultural wastes. AIP Conf. Proc. 2024, 3050, 030002. [Google Scholar]
- Mardawati, E.; Hariry, A.; Hartono, A.T. Research Trends of Xylitol from Agricultural Wastes in Indonesia Based on Bibliometric Analysis by Employing VOSviewer. Biomass Biorefinery Bioecon. 2023, 2, 109–117. [Google Scholar]
- Sarkar, J.; Mridha, D.; Sarkar, J.; Orasugh, J.T.; Gangopadhyay, B.; Chattopadhyay, D.; Roychowdhury, T.; Acharya, K. Synthesis of nanosilica from agricultural wastes and its multifaceted applications: A review. Biocatal. Agric. Biotechnol. 2021, 37, 102175. [Google Scholar] [CrossRef]
- Niknejad, N.; Ismail, W.; Bahari, M.; Hendradi, R.; Salleh, A.Z. Mapping the research trends on blockchain technology in food and agriculture industry: A bibliometric analysis. Environ. Technol. Innov. 2021, 21, 101272. [Google Scholar] [CrossRef]
- Maryani, A.T.; Kartika, E.; Junedi, H. Use of Palm Oil Waste as Organic Fertilizer to Support Sustainable Environmental Agriculture. J. Prajaiswara 2023, 4, 187–195. [Google Scholar]
- Colares, G.S.; Dell’Osbel, N.; Wiesel, P.G.; Oliveira, G.A.; Lemos, P.H.Z.; da Silva, F.P.; Lutterbeck, C.A.; Kist, L.T.; Machado, Ê.L. Floating treatment wetlands: A review and bibliometric analysis. Sci. Total Environ. 2020, 714, 136776. [Google Scholar] [CrossRef]
- Luo, J.; Ji, C.; Qiu, C.; Jia, F. Agri-food supply chain management: Bibliometric and content analyses. Sustainability 2018, 10, 1573. [Google Scholar] [CrossRef]
- Anglada-Tort, M.; Sanfilippo, K.R.M. Visualizing music psychology: A bibliometric analysis of psychology of music, music perception, and musicae scientiae from 1973 to 2017. Music. Sci. 2019, 2, 2059204318811786. [Google Scholar] [CrossRef]
- Musa, N.L.W. Effects of combined application of selected food waste as bio-fertilizer on the growth of Capsicum annuum L. GADING J. Sci. Technol. 2023, 6, 56–65. [Google Scholar]
- SoUSANeto, A.R.D.; Carvalho, A.R.B.D.; Ferreira da Silva, M.D.; Rêgo Neta, M.M.; Sena, I.V.D.O.; Almeida, R.N.; Filha, F.S.S.C.; Lima e Silva, L.L.; Costa, G.R.d.; Lira, I.M.d.S.; et al. Bibliometric Analysis of Global Scientific Production on COVID-19 and Vaccines. Int. J. Environ. Res. Public Health 2023, 20, 4796. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Tanaka, M. Crowdsourcing Knowledge Production of COVID-19 Information on Japanese Wikipedia in the Face of Uncertainty: Empirical Analysis. J. Med. Internet Res. 2023, 25, e45024. [Google Scholar] [CrossRef]
- Yuan, T.; Liu, Y.; Wang, Y.; Wang, Y.; Zhao, H. Streammapnet: Streaming mapping network for vectorized online hd map construction. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2024; pp. 7356–7365. [Google Scholar]
- Wang, R.; Wang, Q.; Dong, L.; Zhang, J. Cleaner agricultural production in drinking-water source areas for the control of non-point source pollution in China. J. Environ. Manag. 2021, 285, 112096. [Google Scholar] [CrossRef] [PubMed]
- Battini, F.; Agostini, A.; Boulamanti, A.K.; Giuntoli, J.; Amaducci, S. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: Case study of a dairy farm in the Po Valley. Sci. Total Environ. 2014, 481, 196–208. [Google Scholar] [CrossRef]
- Su, X.; Ma, L.; Fang, Q.; Yin, C.; Zhuang, H.; Qiao, Y.; Zhang, C.; Chen, G. Optimizing biomass combustion in a 130 t/h grate boiler: Assessing gas-phase reaction models and primary air distribution strategies. Appl. Therm. Eng. 2024, 238, 122043. [Google Scholar] [CrossRef]
- Archana, K.; Visckram, A.S.; Kumar, P.S.; Manikandan, S.; Saravanan, A.; Natrayan, L. A review on recent technological breakthroughs in anaerobic digestion of organic biowaste for biogas generation: Challenges towards sustainable development goals. Fuel 2024, 358, 130298. [Google Scholar] [CrossRef]
- Patel, A.; Gami, B.; Patel, B.; Parmar, V.; Patel, P. Cost benefit and environmental impact assessment of compressed biogas (CBG) production from industrial, agricultural, and community organic waste from India. Biomass Convers. Biorefinery 2024, 14, 4123–4137. [Google Scholar] [CrossRef]
- Rozakis, S.; Troullaki, K.; Jurga, P. Theory and practice in strategic niche planning: The Polish biogas case. In Biogas Plants: Waste Management, Energy Production and Carbon Footprint Reduction; Wiley & Sons Ltd.: Hoboken, NJ, USA, 2024; pp. 243–278. [Google Scholar]
- Liu ZhaoXia, L.Z.; Niu WenJuan, N.W.; Chu HeYing, C.H.; Zhou Tan, Z.T.; Niu ZhiYou, N.Z. Effect of the carbonization temperature on the properties of biochar produced from the pyrolysis of crop residues. BioResources 2018, 13, 3429–3446. [Google Scholar]
- Koutinas, A.A.; Lin, C.; Du, C.; Webb, C. Whole-crop biorefinery. In Sustainable Bioenergy Production; CRC Press: Boca Raton, FL, USA, 2014; pp. 501–534. [Google Scholar]
- Wang, Y.; Zhang, W.; Dong, H.; Zhu, Z.; Li, B. Performance evaluation of a large-scale swine manure mesophilic biogas plant in China. Trans. ASABE 2017, 60, 1713–1720. [Google Scholar] [CrossRef]
- Xu, J.; Adair, C.W.; Deshusses, M.A. Performance evaluation of a full-scale innovative swine waste-to-energy system. Bioresour. Technol. 2016, 216, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Angenent, L.T.; USAck, J.G.; Xu, J.; Hafenbradl, D.; Posmanik, R.; Tester, J.W. Integrating electrochemical, biological, physical, and thermochemical process units to expand the applicability of anaerobic digestion. Bioresour. Technol. 2018, 247, 1085–1094. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, C.E.; Castro-Gutiérrez, V.; Chin-Pampillo, J.S.; Ruiz-Hidalgo, K. On-farm biopurification systems: Role of white rot fungi in depuration of pesticide-containing wastewaters. FEMS Microbiol. Lett. 2013, 345, 1–12. [Google Scholar] [CrossRef]
- Lukawski, M.Z.; Anderson, B.J.; Augustine, C.; Capuano Jr, L.E.; Beckers, K.F.; Livesay, B.; Tester, J.W. Cost analysis of oil, gas, and geothermal well drilling. J. Pet. Sci. Eng. 2014, 118, 1–14. [Google Scholar] [CrossRef]
- Wang, F.; Xu, F.; Liu, Z.; Cui, Z.; Li, Y. Effects of outdoor dry bale storage conditions on corn stover and the subsequent biogas production from anaerobic digestion. Renew. Energy 2019, 134, 276–283. [Google Scholar] [CrossRef]
- Wang, J. Decentralized biogas technology of anaerobic digestion and farm ecosystem: Opportunities and challenges. Front. Energy Res. 2014, 2, 10. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, J.; Xu, F.; Li, Y. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog. Energy Combust. Sci. 2014, 42, 35–53. [Google Scholar] [CrossRef]
- Jin, T.; Wu, Q.; Ou, X.; Yu, J. Community detection and co-author recommendation in co-author networks. Int. J. Mach. Learn. Cybern. 2021, 12, 597–609. [Google Scholar] [CrossRef]
- Hu, K.; Govindjee, G.; Tan, J.; Xia, Q.; Dai, Z.; Guo, Y. Co-author and co-cited reference network analysis for chlorophyll fluorescence research from 1991 to 2018. Photosynthetica 2020, 58, 110–124. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Y.; Xia, R.; Ding, X.; Xu, Z.; Li, G.; Nghiem, L.D.; Luo, W. Occurrence and fate of antibiotics in swine waste treatment: An industrial case. Environ. Pollut. 2023, 331, 121945. [Google Scholar] [CrossRef] [PubMed]
- Hinderink, J.; Sterkenburg, J.J. Agricultural Commercialization and Government Policy in Africa; Routledge: London, UK, 2022. [Google Scholar]
- Sisaye, S. The influence of non-governmental organizations (NGOs) on the development of voluntary sustainability accounting reporting rules. J. Bus. Socio-Econ. Dev. 2021, 1, 5–23. [Google Scholar] [CrossRef]
- Jahanbakhsh-Bonab, P.; Sardroodi, J.J.; Heidaryan, E. Understanding the performance of amine-based DESs for acidic gases capture from biogas. Renew. Energy 2024, 223, 120069. [Google Scholar] [CrossRef]
- Ye, Y.; Peng, C.; Zhu, D.; Yang, R.; Deng, L.; Wang, T.; Tang, Y.; Lu, L. Identification of sulfamethazine degraders in swine farm-impacted river and farmland: A comparative study of aerobic and anaerobic environments. Sci. Total Environ. 2024, 912, 169299. [Google Scholar] [CrossRef]
- Oliveira, H.R.; Kozlowsky-Suzuki, B.; Björn, A.; Yekta, S.S.; da Silva, C.F.C.; Pinheiro, F.M.; Marotta, H.; Bassin, J.P.; Oliveira, L.; Reis, M.d.M.; et al. Biogas potential of biowaste: A case study in the state of Rio de Janeiro, Brazil. Renew. Energy 2024, 221, 119751. [Google Scholar] [CrossRef]
Criteria | |
---|---|
SS | (TITLE-ABS-KEY (agricultural AND waste) AND TITLE-ABS-KEY (farm AND waste) AND TITLE-ABS-KEY (bioenergy) OR TITLE-ABS-KEY (bioremediation) OR TITLE-ABS-KEY (bioelectricity) OR TITLE-ABS-KEY (electric power generation) OR TITLE-ABS-KEY (biogas) OR TITLE-ABS-KEY (fuel)) AND PUBYEAR > 2012 AND PUBYEAR < 2025 |
Languages | English |
Document types | Article |
Period | 2013–2024 |
Database | Scopus |
Total documents published | 463 |
N° | Journal | Number of Articles | Publisher | Impact Factor | Citations | Start |
---|---|---|---|---|---|---|
1 | Journal of Environmental Management | 24 | Elsevier | 8.7 | 782 | 2013 |
2 | Science of The Total Environment | 24 | Elsevier | 9.8 | 567 | 2015 |
3 | Energies | 21 | MDPI | 3.3 | 167 | 2015 |
4 | Bioresource Technology | 16 | Elsevier | 11.4 | 927 | 2013 |
5 | Journal of Cleaner Production | 14 | Elsevier | 11.1 | 567 | 2015 |
6 | Waste Management | 14 | Elsevier | 12 | 568 | 2015 |
7 | Nongye Gongcheng Xuebao/Transactions of The Chinese Society Of Agricultural Engineering | 12 | Chinese Society of Agricultural Engineering | 5 | 66 | 2014 |
8 | Biomass and Bioenergy | 10 | Elsevier | 6 | 261 | 2013 |
9 | Renewable Energy | 10 | Elsevier | 8.7 | 311 | 2013 |
10 | Bioenergy Research | 9 | Springer New York | 7 | 277 | 2013 |
N° | Country | Citations | Documents | Average Citations | Institution |
---|---|---|---|---|---|
1 | China | 1900 | 469 | 24.10 | China Agricultural University |
2 | USA | 1060 | 296 | 24.70 | Cornell University |
3 | India | 967 | 185 | 8.10 | University Of Agriculture |
4 | Italy | 906 | 216 | 26.60 | Università Degli Studi Di Milano |
5 | Germany | 587 | 95 | 34.50 | Harper Adams University |
6 | United Kingdom | 549 | 111 | 27.40 | Newcastle University |
7 | Australia | 432 | 31 | 48.00 | Universidad De Melbourne |
8 | Denmark | 399 | 49 | 39.90 | Aarhus University |
9 | Poland | 355 | 48 | 14.20 | Poznań University Of Life Sciences |
10 | Canada | 289 | 51 | 36.10 | University Of Toronto |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segundo, R.-F.; Magaly, D.L.C.-N.; Luis, C.-C.; Otiniano, N.M.; Soto-Deza, N.; Terrones-Rodriguez, N.; Mayra, D.L.C.-C. Bibliometric Analysis: Use of Agricultural Waste in the Generation of Electrical Energy. Processes 2024, 12, 1178. https://doi.org/10.3390/pr12061178
Segundo R-F, Magaly DLC-N, Luis C-C, Otiniano NM, Soto-Deza N, Terrones-Rodriguez N, Mayra DLC-C. Bibliometric Analysis: Use of Agricultural Waste in the Generation of Electrical Energy. Processes. 2024; 12(6):1178. https://doi.org/10.3390/pr12061178
Chicago/Turabian StyleSegundo, Rojas-Flores, De La Cruz-Noriega Magaly, Cabanillas-Chirinos Luis, Nélida Milly Otiniano, Nancy Soto-Deza, Nicole Terrones-Rodriguez, and De La Cruz-Cerquin Mayra. 2024. "Bibliometric Analysis: Use of Agricultural Waste in the Generation of Electrical Energy" Processes 12, no. 6: 1178. https://doi.org/10.3390/pr12061178
APA StyleSegundo, R. -F., Magaly, D. L. C. -N., Luis, C. -C., Otiniano, N. M., Soto-Deza, N., Terrones-Rodriguez, N., & Mayra, D. L. C. -C. (2024). Bibliometric Analysis: Use of Agricultural Waste in the Generation of Electrical Energy. Processes, 12(6), 1178. https://doi.org/10.3390/pr12061178