Properties of Binderless Insulating Boards Made from Canary Island Date Palm and Cork Particles
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silvestre, J.D.; Pargana, N.; De Brito, J.; Pinheiro, M.D.; Durão, V. Insulation cork boards—Environmental life cycle assessment of an organic construction material. Materials 2016, 9, 394. [Google Scholar] [CrossRef]
- Sierra-Pérez, J.; Boschmonart-Rives, J.; Gabarrell, X. Production and trade analysis in the Iberian cork sector: Economic characterization of a forest industry. Resour. Conserv. Recycl. 2015, 98, 55–66. [Google Scholar] [CrossRef]
- Pereira, H. Cork: Biology, Production and Uses, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2017; p. 336. ISBN 13: 978-0-444-52967-1. [Google Scholar]
- Gil, L. Cork composites: A review. Materials 2009, 2, 776–789. [Google Scholar] [CrossRef]
- Yay, Ö.; Hasanzadeh, M.; Diltemiz, S.F.; Kuşhan, M.C.; Gürgen, S. Thermal Insulation with Cork-Based Materials. In Cork-Based Materials in Engineering: Design and Applications for Green and Sustainable Systems; Springer Nature: Cham, Switzerland, 2024; pp. 3–15. [Google Scholar] [CrossRef]
- Jardin, R.T.; Fernandes, F.A.O.; Pereira, A.B.; Alves de Sousa, R.J. Static and dynamic mechanical response of different cork agglomerates. Mater. Des. 2015, 68, 121–126. [Google Scholar] [CrossRef]
- Knapic, S.; Oliveira, V.; Machado, J.S.; Pereira, H. Cork as a building material: A review. Eur. J. Wood Prod. 2016, 74, 775–791. [Google Scholar] [CrossRef]
- Fernandes, E.M.; Correlo, V.M.; Mano, J.F.; Reis, R.L. Cork–polymer biocomposites: Mechanical, structural and thermal properties. Mater. Des. 2015, 82, 282–289. [Google Scholar] [CrossRef]
- Carvalho, R.; Fernandes, M.; Fangueiro, R. The influence of cork on the thermal insulation properties of home textiles. Procedia Eng. 2017, 200, 252–259. [Google Scholar] [CrossRef]
- Lakreb, N.; Şen, U.; Toussaint, E.; Amziane, S.; Djakab, E.; Pereira, H. Physical properties and thermal conductivity of cork-based sandwich panels for building insulation. Constr. Build. Mater. 2023, 368, 130420. [Google Scholar]
- Sarasini, F.; Tirillò, J.; Lampani, L.; Sasso, M.; Mancini, E.; Burgstaller, C.; Calzolari, A. Static and dynamic characterization of agglomerated cork and related sandwich structures. Compos. Struct. 2019, 212, 439–451. [Google Scholar] [CrossRef]
- Boria, S.; Raponi, E.; Sarasini, F.; Tirillò, J.; Lampani, L. Green sandwich structures under impact: Experimental vs numerical analysis. Procedia Struct. Integrity 2018, 12, 317–329. [Google Scholar] [CrossRef]
- Reis, L.; Silva, A. Mechanical behavior of sandwich structures using natural cork agglomerates as core materials. J. Sandw. Struct. Mater. 2009, 11, 487–500. [Google Scholar] [CrossRef]
- Simões, I.; Simões, N.; Tadeu, A. Thermal delay simulation in multilayer systems using analytical solutions. Energy Build. 2012, 49, 631–639. [Google Scholar] [CrossRef]
- Malanho, S.; Veiga, R.; Farinha, C.B. Global performance of sustainable thermal insulating systems with cork for building facades. Buildings 2021, 11, 83. [Google Scholar] [CrossRef]
- Gil, L. New Cork-Based Materials and Applications. Materials 2015, 8, 625–637. [Google Scholar] [CrossRef]
- Sajdak, M.; Velázquez-Martí, B.; López-Cortés, I. Quantitative and qualitative characteristics of biomass derived from pruning Phoenix canariensis hort. ex Chabaud and Phoenix dactilifera L. Renew. Energy 2014, 71, 545–552. [Google Scholar] [CrossRef]
- Ferrandez-Garcia, M.T.; Ferrandez-Garcia, A.; Garcia-Ortuño, T.; Ferrandez-Garcia, C.E.; Ferrandez-Villena, M. Influence of particle size on the properties of boards made from Washingtonia palm rachis with citric acid. Sustainability 2020, 12, 4841. [Google Scholar] [CrossRef]
- Mawardi, I.; Aprilia, S.; Faisal, M.; Rizal, S. Characterization of thermal bio-insulation materials based on oil palm wood: The effect of hybridization and particle size. Polymers 2021, 13, 3287. [Google Scholar] [CrossRef]
- Ali, M.; Alabdulkarem, A.; Nuhait, A.; Al-Salem, K.; Iannace, G.; Almuzaiqer, R. Characteristics of agro waste fibers as new thermal insulation and sound absorbing materials: Hybrid of date palm tree leaves and wheat straw fibers. J. Nat. Fibers 2022, 19, 6576–6594. [Google Scholar] [CrossRef]
- Ferrandez-Garcia, B.E.; Garcia-Ortuño, T.; Ferrandez-Villena, M.; Ferrandez-Garcia, M.T. Evaluation of the Properties and Reaction-to-Fire Performance of Binderless Particleboards Made from Canary Island Palm Trunks. Fire 2024, 7, 193. [Google Scholar] [CrossRef]
- EN 323; Wood-Based Panels. Determination of Density. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 317; Particleboards and Fiberboards. Determination of Swelling in Thickness after Immersion in Water. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 310; Wood-Based Panels. Determination of Modulus of Elasticity in Bending and of Bending Strength. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 319; Particleboards and Fiberboards. Determination of Tensile Strength Perpendicular to the Plane of de Board. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 12667; Thermal Performance of Building Materials and Products: Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods: Products of High and Medium Thermal Resistance. Committee for Standardization: Brussels, Belgium, 2001.
- Zhou, X.Y.; Zheng, F.; Li, H.G.; Lu, C.L. An environment-friendly thermal insulation material from cotton stalk fibers. Energy Build. 2010, 42, 1070–1074. [Google Scholar] [CrossRef]
- Xu, J.; Sugawara, R.; Widyorini, R.; Han, G.; Kawai, S. Manufacture and properties of low-density binderless particleboard from kenaf core. J. Wood Sci. 2004, 50, 62–67. [Google Scholar] [CrossRef]
- Liao, R.; Xu, J.; Umemura, K. Low density sugarcane bagasse particleboard bonded with citric acid and sucrose: Effect of board density and additive content. BioResources 2016, 11, 2174–2185. [Google Scholar]
- Ferrández-García, C.E.; Ferrández-García, A.; Ferrández-Villena, M.; Hidalgo-Cordero, J.F.; García-Ortuño, T.; Ferrández-García, M.T. Physical and mechanical properties of particleboard made from palm tree prunings. Forests 1018, 9, 755. [Google Scholar] [CrossRef]
- Peleteiro, S.; Rivas, S.; Alonso, J.L.; Santos, V.; Parajó, J.C. Furfural production using ionic liquids: A review. Bioresour. Technol. 2016, 202, 181–191. [Google Scholar] [CrossRef]
- Anglès, M.N.; Reguant, J.; Montané, D.; Ferrando, F.; Salvadó, J. Binderless composites from pretreated residual softwood. J. Appl. Polym. Sci. 1999, 73, 2485–2491. [Google Scholar] [CrossRef]
- Pintiaux, T.; Viet, D.; Vandenbossche, V.; Rigal, L.; Rouilly, A. Binderless Materials Obtained by Thermo-Compressive Processing of Lignocellulosic Fibers: A Comprehensive Review. BioResources 2015, 10, 1915–1963. [Google Scholar] [CrossRef]
- Ferrández-García, A.; Ferrández-Villena, M.; Ferrández-García, C.E.; García-Ortuño, T.; Ferrández-García, M.T. Potential use of Phoenix canariensis biomass in binderless particleboards at low temperature and pressure. BioResources 2017, 12, 6698–6712. [Google Scholar] [CrossRef]
Type | Particle Size (mm) | % Cork | % Canary Island Palm | Binder | Temperature (°C) | Pressure (MPa) | Time (min) | No. of Boards |
---|---|---|---|---|---|---|---|---|
A1 | <0.25 | 50 | 50 | No | 130 | 2.6 | 15 | 4 |
A2 | <0.25 | 50 | 50 | No | 130 | 2.6 | 15 + 15 | 4 |
A3 | <0.25 | 50 | 50 | No | 130 | 2.6 | 15 + 15 + 15 | 4 |
B1 | 0.25 to 1 | 50 | 50 | No | 130 | 2.6 | 15 | 4 |
B2 | 0.25 to 1 | 50 | 50 | No | 130 | 2.6 | 15 + 15 | 4 |
B3 | 0.25 to 1 | 50 | 50 | No | 130 | 2.6 | 15 + 15 + 15 | 4 |
A_ref | - | 100 | 0 | UF 8% | 130 | 2.6 | 6 | 4 |
B_ref | - | 100 | 0 | UF 8% | 130 | 2.6 | 15 | 4 |
Type of Board | Thickness (mm) | Density (kg/m3) | TS 2 h (%) | TS 24 h (%) | WA 2 h (%) | WA 24 h (%) |
---|---|---|---|---|---|---|
A1 | 10.81 (0.11) | 676.56 (9.52) | 4.59 (1.45) | 13.30 (2.58) | 25.42 (8.06) | 43.3 (7.06) |
A2 | 10.71 (0.47) | 718.66 (16.12) | 7.82 (3.20) | 14.00 (2.66) | 31.44 (6.97) | 49.96 (7.13) |
A3 | 10.66 (0.94) | 708.74 (24.39) | 7.70 (3.39) | 12.02 (1.99) | 34.92 (7.09) | 49.18 (10.32) |
B1 | 10.63 (0.24) | 698.37 (35.97) | 13.87 (3.39) | 19.71 (3.00) | 47.20 (6.40) | 63.15 (13.96) |
B2 | 10.49 (0.15) | 794.74 (52.24) | 10.28 (2.53) | 18.01 (3.40) | 31.58 (7.49) | 41.51 (10.93) |
B3 | 9.98 (0.26) | 850.13 (28.90) | 2.77 (3.00) | 13.04 (1.36) | 18.27 (3.97) | 24.64 (8.92) |
A_ref | 11.39 (0.47) | 330.96 (10.54) | 0.68 (0.35) | 1.61 (0.13) | 29.71 (5.74) | 54.50 (10.95) |
B_ref | 11.03 (0.84) | 331.36 (3.64) | 0.69 (0.20) | 1.62 (0.30) | 27.90 (4.11) | 45.64 (4.82) |
Sum of Squares | DF | Mean Square | F | Sig. | ||
---|---|---|---|---|---|---|
Type of board | Thickness | 43.142 | 7 | 6.163 | 12.707 | <0.001 |
Density | 1,446,845.1 | 7 | 206,692.1 | 242.17 | <0.001 | |
TS 2 h | 621.224 | 7 | 88.746 | 12.156 | <0.001 | |
TS 24 h | 1258.783 | 7 | 179.826 | 25.490 | <0.001 | |
WA 2 h | 2192.856 | 7 | 313.265 | 4.205 | 0.004 | |
WA 24 h | 3496.046 | 7 | 499.435 | 4.749 | 0.002 | |
MOR | 160.975 | 7 | 22.996 | 48.788 | <0.001 | |
MOE | 2,216,122.6 | 7 | 316,588.9 | 55.834 | <0.001 | |
IB | 0.179 | 7 | 0.026 | 19.505 | <0.001 | |
(λ) | 0.008 | 7 | 0.001 | 14.106 | <0.001 | |
Pressing time | Thickness | 31.413 | 3 | 10.471 | 12.546 | <0.001 |
Density | 961,465.5 | 3 | 320,488.5 | 17.739 | <0.001 | |
TS 2 h | 193.789 | 3 | 64.596 | 3.001 | 0.047 | |
TS 24 h | 562.92 | 3 | 187.643 | 6.073 | 0.199 | |
WA 2 h | 500.97 | 3 | 166.992 | 1.344 | 0.280 | |
WA 24 h | 1208.76 | 3 | 402.921 | 2.345 | 0.094 | |
MOR | 106.44 | 3 | 35.482 | 15.089 | <0.001 | |
MOE | 1,264,661.6 | 3 | 421,553.8 | 10.853 | <0.001 | |
IB | 0.030 | 3 | 0.010 | 1.528 | 0.229 | |
λ | 0.006 | 3 | 0.002 | 17.000 | <0.001 |
Density | TS 2 h | TS 24 h | WA 2 h | WA 24 h | MOR | MOE | IB | λ | ||
---|---|---|---|---|---|---|---|---|---|---|
Type | Pearson Correlation | −0.378 * | −0.444 * | −0.017 | −0.112 | −0.017 | −0.254 | −0.102 | −0.507 ** | −0.507 ** |
Sig. | 0.033 | 0.011 | 0.928 | 0.541 | 0.928 | 0.161 | 0.578 | 0.003 | 0.003 | |
N | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | |
Time | Pearson Correlation | 0.747 ** | 0.163 | −0.337 | −0.337 | −0.444 * | 0.773 ** | 0.696 ** | −0.193 | 0.799 ** |
Sig. | <0.001 | 0.374 | 0.059 | 0.059 | 0.011 | <0.001 | <0.001 | 0.289 | <0.001 | |
N | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 |
Name | Density (kg/m3) | Thermal Conductivity (W/m K) | Source |
---|---|---|---|
Cotton | 150–300 | 0.059 to 0.074 | [27] |
Kenaf | 150–250 | 0.051 to 0.058 | [28] |
Sugar cane | 350–500 | 0.079 to 0.098 | [29] |
Palm rachis | 797–841 | 0.053 to 0.061 | [30] |
Cork + polyurethane | 170 | 0.037 | [5] |
Cork–Canary Island Palm | 676–850 | 0.068 to 0.096 | This study |
Cork + UF | 321 | 0.052 | This study |
Specimen | Total Sugars (%) | Xylose (%) | Arabinose (%) | Acetic Acid (%) | Starch g/100 g |
---|---|---|---|---|---|
Canary Island date palm trunk | 1.19 | - | - | 3.96 | <0.5 |
Canary Island date palm and cork | < 0.1 | 0.35 | 0.48 | 1.29 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrandez-Garcia, B.E.; Garcia-Ortuño, T.; Ferrandez-Villena, M.; Ferrandez-Garcia, M.T. Properties of Binderless Insulating Boards Made from Canary Island Date Palm and Cork Particles. Processes 2024, 12, 1245. https://doi.org/10.3390/pr12061245
Ferrandez-Garcia BE, Garcia-Ortuño T, Ferrandez-Villena M, Ferrandez-Garcia MT. Properties of Binderless Insulating Boards Made from Canary Island Date Palm and Cork Particles. Processes. 2024; 12(6):1245. https://doi.org/10.3390/pr12061245
Chicago/Turabian StyleFerrandez-Garcia, Berta Elena, Teresa Garcia-Ortuño, Manuel Ferrandez-Villena, and Maria Teresa Ferrandez-Garcia. 2024. "Properties of Binderless Insulating Boards Made from Canary Island Date Palm and Cork Particles" Processes 12, no. 6: 1245. https://doi.org/10.3390/pr12061245
APA StyleFerrandez-Garcia, B. E., Garcia-Ortuño, T., Ferrandez-Villena, M., & Ferrandez-Garcia, M. T. (2024). Properties of Binderless Insulating Boards Made from Canary Island Date Palm and Cork Particles. Processes, 12(6), 1245. https://doi.org/10.3390/pr12061245