Dynamic Numerical Simulation and Transfer Learning-Based Rapid Rock Identification during Measurement While Drilling (MWD)
Abstract
:1. Introduction
2. Methodology
2.1. Laboratory Drilling Experiment
2.1.1. Laboratory MWD Platform
2.1.2. Laboratory MWD Method
2.2. MWD Dynamic Numerical Simulation
2.2.1. Construction of Dynamic Numerical Simulation Model
2.2.2. Dynamic Numerical Simulation Process of MWD Experiments
2.3. Rapid Rock Identification Method Based on the Transfer Learning
2.3.1. Rapid Prediction Model for Rocks Based on Dynamic Numerical Simulation
2.3.2. Rapid Prediction for Rocks Using Transfer Learning Method
3. Results
3.1. Results of the Laboratory MWD Experiments
3.2. Results of the Dynamic Numerical Simulation
3.3. Results of the Rock Prediction
3.3.1. Dynamic Numerical Simulation Rock Prediction Results
3.3.2. Laboratory Drilling Experiment Rock Prediction Results
3.3.3. Rock Rapid Identification Results Based on the Transfer Learning
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martins, A.C.; Terenci, E.R.; Tomi, G.D.; Tichauer, R.M. Impact of geophysics in small-scale mining. J. Remote Sens. GIS 2016, 5, 2. [Google Scholar] [CrossRef]
- Horner, P.C.; Sherrell, F.W. Application of Air-Flush Rotary-Percussion Techniques in Site Investigation. Am. J. Pathol. 1977, 10, 207–220. [Google Scholar] [CrossRef]
- Pfister, P. Recording drilling parameters in ground engineering. Ground Eng. 1985, 18, 16–21. [Google Scholar]
- Suzuki, Y.; Sasao, H.; Nishi, K.; Takesue, K. Ground Exploration System Using Seismic Cone and Rotary Percussion Drill. J. Technol. Des. Archit. Inst. Jpn. 1995, 1, 180–184. [Google Scholar]
- Fortunati, F.; Pelligrino, G. The Use of Electronics in the Management of Site Investigation and Soil Improvement Works: Principles and Applications. In Proceedings of the Geotechnical Site Characterization, Atlanta, Georgia, 19–22 April 1998; pp. 359–364. [Google Scholar]
- Colosimo, P. On the Use of Drilling Parameters in Rock Foundations. In Proceedings of the Geotechnical Site Characterization, Atlanta, Georgia, 19–22 April 1998; pp. 347–352. [Google Scholar]
- Nishi, K.; Suzuki, Y.; Sasao, H. Estimation of Soil Resistance Using Rotary Percussion Drill. In Proceedings of the Geotechnical Site Characterization, Atlanta, Georgia, 19–22 April 1998; pp. 393–398. [Google Scholar]
- Sugawara, J.; Yue, Z.Q.; Tham, L.G.; Law, K.T.; Lee, C.F. Weathered Rock Characterization Using Drilling Parameters. Can. Geotech. J. 2003, 40, 661–668. [Google Scholar] [CrossRef]
- Smith, H.J. New Approaches for Determination of Rock and Rock Mass Properties at Dredging Sites; ASCE: Reston, VA, USA, 1994; pp. 259–268. [Google Scholar]
- Lu, J.; Guo, W.; Liu, J.; Zhao, R.; Ding, Y.; Shi, S. An Intelligent Advanced Classification Method for Tunnel-Surrounding Rock Mass Based on the Particle Swarm Optimization Least Squares Support Vector Machine. Appl. Sci. 2023, 13, 2068. [Google Scholar] [CrossRef]
- Yi, W.; Wang, M.; Tong, J.; Zhao, S.; Li, J.; Gui, D.; Zhang, X. Heterogeneity identification method for surrounding rock of large-section rock tunnel faces based on support vector machine. Railw. Sci. 2023, 2, 48–67. [Google Scholar] [CrossRef]
- Alkassis, C.; Nassif, E.; Elhajj, I.; Najjar, S.; Sadek, S. Exploratory Drilling with Recorded Parameters using Wireless Technology. In Proceedings of the Information Technology in Geo-Engineering: Proceedings of the 1st International Conference (ICITG), Shanghai, China, August 2021; pp. 199–206. [Google Scholar]
- Teale, R. The Concept of Specific Energy in Rock Drilling. Int. J. Rock Mech. Min. Sci. 1965, 2, 245–250. [Google Scholar] [CrossRef]
- Simon, R. Energy Balance in Rock Drilling. Soc. Pet. Eng. J. 1963, 3, 298–306. [Google Scholar] [CrossRef]
- Hoberock, L.L.; Bratcher, G.J. A New Approach for Determining In-Situ Rock Strength While Drilling. J. Energy Resour. Technol. 1996, 118, 249–255. [Google Scholar] [CrossRef]
- Hamrick, T. Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling. Ph.D. Thesis, West Virginia University, Morgantown, WV, USA, 2011. [Google Scholar]
- Finfinger, G.L.; Peng, S.; Gu, Q.; Wilson, G.; Thomas, B. An Approach to Identifying Geological Properties from Roof Bolter Drilling Parameters. In Proceedings of the 19th International Conference on Ground Control in Mining, Morgantown, WV, USA, 8–10 August 2000; pp. 1–11. [Google Scholar]
- Finfinger, G.L. A Methodology for Determining the Character of Mine Roof Rocks. Ph.D. Thesis, West Virginia University, Morgantown, WV, USA, 2003. [Google Scholar]
- Manzoor, S.; Liaghat, S.; Gustafson, A.; Johansson, D.; Schunnesson, H. Establishing relationships between structural data from close-range terrestrial digital photogrammetry and measurement while drilling data. Eng. Geol. 2020, 267, 105480. [Google Scholar] [CrossRef]
- Prasad, U.; Jonsbraten, F.; Holbrough, D.; Saint, C. An Innovative and Independent Method for Formation Strengths and Facies Identification Using Real-Time Downhole Drilling Data, and its Application in Geosteering for Optimal Well Placement. In Proceedings of the SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, 19–21 February 2023. D021S052R001. [Google Scholar]
- Bout, G.; Brito, D.; Gómez, R.; Carvajal, G.; Ramírez, G. Physics-Based Observers for Measurement-While-Drilling System in Down-the-Hole Drills. Mathematics 2022, 10, 4814. [Google Scholar] [CrossRef]
- Schunnesson, H. RQD Predictions Based on Drill Performance Parameters. Tunn. Undergr. Space Technol. 1996, 11, 345–351. [Google Scholar] [CrossRef]
- Schunnesson, H. Rock Characterisation Using Percussive Drilling. Int. J. Rock Mech. Min. Sci. 1998, 35, 711–725. [Google Scholar] [CrossRef]
- Navarro, J.; Sanchidrián, J.A.; Segarra, P.; Castedo, R.; Costamagna, E.; López, L.M. Detection of Potential Overbreak Zones in Tunnel Blasting from MWD Data. Tunn. Undergr. Space Technol. 2018, 82, 504–516. [Google Scholar] [CrossRef]
- van Eldert, J.; Funehag, J.; Saiang, D.; Schunnesson, H. Rock support prediction based on measurement while drilling technology. Bull. Eng. Geol. Environ. 2021, 80, 1449–1465. [Google Scholar] [CrossRef]
- Lakshminarayana, C.R.; Tripathi, A.K.; Pal, S.K. MWD technique to estimate the uniaxial compressive strength of rocks. AIP Conf. Proc. 2020, 2204, 040011. [Google Scholar]
- Khoshouei, M.; Bagherpour, R. Predicting the geomechanical properties of hard rocks using analysis of the acoustic and vibration signals during the drilling operation. Geotech. Geol. Eng. 2021, 39, 2087–2099. [Google Scholar] [CrossRef]
- Asadi, A. Application of Artificial Neural Networks in Prediction of Uniaxial Compressive Strength of Rocks Using Well Logs and Drilling Data. Procedia Eng. 2017, 191, 279–286. [Google Scholar] [CrossRef]
- Labelle, D. Lithological Classification by Drilling; Thesis Proposal; Carnegie Mellon University: Pittsburgh, PA, USA, 2011. [Google Scholar]
- Zhou, H.; Hatherly, P.; Ramos, F.; Nettleton, E. An Adaptive Data Driven Model for Characterizing Rock Properties from Drilling Data. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; IEEE: New York, NY, USA, 2011; pp. 1909–1915. [Google Scholar]
- Klyuchnikov, N.; Zaytsev, A.; Gruzdev, A.; Ovchinnikov, G.; Antipova, K.; Ismailova, L.; Muravleva, E.; Burnaev, E.; Semenikhin, A.; Cherepanov, A. Data-Driven Model for the Identification of the Rock Type at a Drilling Bit. J. Pet. Sci. Eng. 2019, 178, 506–516. [Google Scholar] [CrossRef]
- Vezhapparambu, V.S.; Eidsvik, J.; Ellefmo, S.L. Rock Classification Using Multivariate Analysis of Measurement While Drilling Data: Towards a Better Sampling Strategy. Minerals 2018, 8, 384. [Google Scholar] [CrossRef]
- Romanenkova, E.; Zaytsev, A.; Klyuchnikov, N.; Gruzdev, A.; Koroteev, D.; Ismailova, L.; Burnaev, E.; Semenikhin, A.; Koryabkin, V.; Simon, I. Real-Time Data-Driven Detection of the Rock-Type Alteration During a Directional Drilling. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1861–1865. [Google Scholar] [CrossRef]
- Fang, Y.; Wu, Z.; Sheng, Q.; Tang, H.; Liang, D. Tunnel Geology Prediction Using a Neural Network Based on Instrumented Drilling Test. Appl. Sci. 2020, 11, 217. [Google Scholar] [CrossRef]
- Cheng, X.; Tang, H.; Wu, Z.; Liang, D.; Xie, Y. BILSTM-Based Deep Neural Network for Rock-Mass Classification Prediction Using Depth-Sequence MWD Data: A Case Study of a Tunnel in Yunnan. China. Appl. Sci. 2023, 13, 6050. [Google Scholar] [CrossRef]
- Gupta, I.; Tran, N.; Devegowda, D.; Jayaram, V.; Rai, C.; Sondergeld, C.; Karami, H. Looking ahead of the bit using surface drilling and petrophysical data: Machine-learning-based real-time geosteering in volve field. SPE J. 2020, 25, 990–1006. [Google Scholar] [CrossRef]
- Amadi, K.W.; Alsaba, M.T.; Iyalla, I.; Prabhu, R.; Elgaddafi, R.M. Machine Learning Techniques for Real-Time Prediction of Essential Rock Properties Whilst Drilling. In Proceedings of the SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, 31 July–2 August 2023; p. D031S017R004. [Google Scholar]
- Chiang, L.E.; Elías, D.A. A 3D FEM Methodology for Simulating the Impact in Rock-Drilling Hammers. Int. J. Rock Mech. Min. Sci. 2008, 45, 701–711. [Google Scholar] [CrossRef]
- Liu, H.Y.; Kou, S.Q.; Lindqvist, P.A. Numerical Studies on Bit-Rock Fragmentation Mechanisms. Int. J. Geomech. 2008, 8, 45–67. [Google Scholar] [CrossRef]
- Saksala, T. Numerical Modelling of Bit–Rock Fracture Mechanisms in Percussive Drilling with a Continuum Approach. Int. J. Numer. Anal. Methods Geomech. 2011, 35, 1483–1505. [Google Scholar] [CrossRef]
- Han, Y.; Kuang, Y.; Yang, B.; Ai, Z. Nonlinear dynamic modeling of drill string-bit-rock coupling system based on bit/rock interaction simulation. SPE J. 2022, 27, 2161–2182. [Google Scholar] [CrossRef]
- Zhang, C.L.; Yang, Y.X.; Qi, Q.L.; Ren, H.T.; Wang, J.C. Research on numerical drilling technology of mesh-like cutting PDC bit. Energy Rep. 2021, 7, 2068–2080. [Google Scholar] [CrossRef]
- Houshmand, N.; Mortazavi, A.; Hassani, F.P. Modeling drill bit wear mechanisms during rock drilling. Arab. J. Geosci. 2021, 14, 1970. [Google Scholar] [CrossRef]
- Tian, X.; Tao, T.; Lou, Q.; Xie, C. Modification and Application of Limestone HJC Constitutive Model under the Impact Load. Lithosphere 2022, 2021, 6443087. [Google Scholar] [CrossRef]
- Fang, Q.; Kong, X.-Z.; Wu, H.; Gong, Z.-M. Determination of Holmquist-Johnson-Cook Consitiutive Model Parameters of Rock. Eng. Mech. 2014, 31, 197–204. [Google Scholar]
- Wang, Z.; Wang, H.; Wang, J.; Tian, N. Finite Element Analyses of Constitutive Models Performance in the Simulation of Blast-Induced Rock Cracks. Eng. Mech. 2021, 135, 104172. [Google Scholar] [CrossRef]
- Zhang, G.; Qiang, H.; Wang, G.; Huang, Q.; Yang, Y. Numerical Simulation of the Penetration of Granite at Wide-Range Velocities with a New SPH Method. AIP Adv. 2019, 9, 015220. [Google Scholar] [CrossRef]
- Tian, X.; Tao, T.; Xie, C. Study of Impact Dynamic Characteristics and Damage Morphology of Layered Rock Mass. Geofluids 2022, 2022, e2835775. [Google Scholar] [CrossRef]
- Al-Faiz, M.Z.; Ibrahim, A.A.; Hadi, S.M. The Effect of Z-Score Standardization (Normalization) on Binary Input Due the Speed of Learning in Back-Propagation Neural Network. Ira. J. Inf. Commun. Technol. 2018, 1, 42–48. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Bai, Y. RELU-Function and Derived Function Review. SHS Web Conf. 2022, 144, 02006. [Google Scholar] [CrossRef]
- Jap, D.; Won, Y.-S.; Bhasin, S. Fault Injection Attacks on SoftMax Function in Deep Neural Networks. In Proceedings of the 18th ACM International Conference on Computing Frontiers, Virtual, 11–13 May 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 238–240. [Google Scholar]
- Karimpanal, T.G.; Bouffanais, R. Self-Organizing Maps for Storage and Transfer of Knowledge in Reinforcement Learning. Available online: https://arxiv.org/abs/1811.08318v1 (accessed on 9 January 2024).
Parameter | Technical Value |
---|---|
Drilling diameter (mm) | 0–50 |
Drilling depth (mm) | 0–190 |
Drilling system (drill bit rotation part) | |
Drilling speed (mm/s) | 0–100 |
Maximum drilling torque (N·m) | 0–±500 |
Engine model | YS7134 |
Rated power (W) | 750 |
Rated speed (r/min) | 0–1400 |
Working frequency (Hz) | 50 |
Drilling system (electric push rod part) | |
Maximum thrust stroke (mm) | 200 |
Thrust speed (mm/s) | 0–200 |
Maximum pulling force (kg) | 300 |
Pulling speed (mm/s) | 0–200 |
Maximum oil pressure of hydraulic station (MPa) | 50 |
Maximum thrust force (kg) | 300 |
Confining pressure system (pressure chamber) | |
Confining pressure (MPa) | 0–30 |
Working pressure of hydraulic system (MPa) | 50 |
Mass and dimensions | |
Total mass of the machine (kg) | 500 |
Dimensions (length × width × height) (m × m × m) | 1.4 × 0.8 × 1.5 |
Name | Technical Parameters | Measurable Parameters |
---|---|---|
Torque and rotational speed sensor (HY-5005, Beijing Hangyu Zhongrui Measurement and Control Technology Co., Ltd., Beijing, China) | Torque range: 0–±1000 N.m Rotational speed range: 0–1500 (r/min) Accuracy: ±0.2% FS Linearity: ±0.05% FS | Torque, Rotational speed |
Drilling pressure sensor (HY-A6, Beijing Hangyu Zhongrui Measurement and Control Technology Co., Ltd., Beijing, China) | Range: 0–1 (T) (pressure) Accuracy: ±0.05% FS Linearity: ±0.05% FS | Drilling pressure |
Confining pressure sensor (HY-B18, Beijing Hangyu Zhongrui Measurement and Control Technology Co., Ltd., Beijing, China) | Range: 0–47 (T) (pressure) Accuracy: ±0.05% FS Linearity: ±0.05% FS | Confining pressure |
Electric push rod (FDR065-S200, Suzhou FDR Automation Equipment Technology Co., Ltd., Suzhou, China) | Travel range: 0–200 (mm) Thrust range: 0–300 (kg) Lead: 10 (mm) Speed range: 0–100 (mm/s) | Drilling speed |
Type | Specific Gravity (g/cm3) | Compressive Strength (MPa) | Elastic Modulus (GPa) |
---|---|---|---|
Limestone | 2.66 | 50.22 | 5.56 |
Sandstone | 2.33 | 136.00 | 23.03 |
Granite | 2.57 | 241.41 | 45.00 |
Experiment Identification | Material | Drilling Speed (v; mm/min) | Rotational Speed (N; rpm) |
---|---|---|---|
G1 | Granite | 20 | 800 |
G2 | 20 | 800 | |
G3 | 30 | 800 | |
G4 | 40 | 800 | |
G5 | 25 | 800 | |
G6 | 15 | 800 | |
G7 | 25 | 800 | |
G8 | 15 | 600 | |
G9 | 20 | 400 | |
G10 | 20 | 600 | |
G11 | 30 | 600 | |
G12 | 5 | 800 | |
G13 | 15 | 800 | |
G14 | 25 | 800 | |
L1 | Limestone | 20 | 400 |
L2 | 20 | 600 | |
L3 | 30 | 600 | |
L4 | 20 | 800 | |
L5 | 30 | 800 | |
L6 | 40 | 800 | |
S1 | Sandstone | 20 | 800 |
S2 | 30 | 800 | |
S3 | 40 | 800 | |
S4 | 20 | 400 | |
S5 | 20 | 600 | |
S6 | 30 | 600 |
DOF † | VAD | SF | DEATH | BIRTH |
---|---|---|---|---|
3 (z-translational DOF) | 2 (displacement) | 1 | 0 | 0 |
DOF † | VAD | SF | DEATH | BIRTH |
---|---|---|---|---|
7 (z-rotational DOF) | 0 (velocity) | 1 | 0 | 0 |
RO (kg/m3) (Mass Density) | G (Pa) (Shear Modulus) | A (Normalized Cohesive Strength) | B (Normalized Pressure Hardening) | C (Strain Rate Coefficient) | N (Pressure Hardening Exponent) | fc (MPa) (Uniaxial Compressive Strength) |
2750 | 9.230 × 109 | 0.79 | 1.6 | 0.007 | 0.61 | 50.22 |
T (Pa) (Maximum tensile hydrostatic pressure) | EPS0 (Maximum tensile hydrostatic pressure) | εfmin (Amount of plastic strain before fracture) | Sfmax (Normalized maximum strength) | Pc (Pa) (Crushing pressure) | μc (Crushing volumetric strain) | PL (Pa) (Locking pressure) |
1.215 × 107 | 1 | 0.005 | 4 | 4.330 × 107 | 0.00278 | 1.000 × 109 |
μL (Locking volumetric strain) | D1 (Damage constant) | D2 (Damage constant) | K1 (Pa) (Pressure constant) | K2 (Pa) (Pressure constant) | K3 (Pa) (Pressure constant) | FS (Failure type) |
0.1 | 0.045 | 1 | 8.500 × 1010 | −1.710 × 1011 | 2.080 × 1011 | 0.004 |
RO (kg/m3) (Mass Density) | G (Pa) (Shear Modulus) | A (Normalized Cohesive Strength) | B (Normalized Pressure Hardening) | C (Strain Rate Coefficient) | N (Pressure Hardening Exponent) | fc (MPa) (Uniaxial Compressive Strength) |
2680 | 7.610 × 1010 | 0.75 | 2.36 | 0.049 | 0.78 | 241.41 |
T (Pa) (Maximum tensile hydrostatic pressure) | EPS0 (Maximum tensile hydrostatic pressure) | εfmin (Amount of plastic strain before fracture) | Sfmax (Normalized maximum strength) | Pc (Pa) (Crushing pressure) | μc (Crushing volumetric strain) | PL (Pa) (Locking pressure) |
1.610 × 107 | 2.800 × 10−5 | 0.015 | 5.4 | 6.300 × 106 | 9.000 × 10−4 | 1.040 × 109 |
μL (Locking volumetric strain) | D1 (Damage constant) | D2 (Damage constant) | K1 (Pa) (Pressure constant) | K2 (Pa) (Pressure constant) | K3 (Pa) (Pressure constant) | FS (Failure type) |
0.1 | 0.046 | 1.02 | 8.600 × 1010 | −1.730 × 1011 | 2.100 × 1011 | 1000 |
RO (kg/m3) (Mass Density) | G (Pa) (Shear Modulus) | A (Normalized Cohesive Strength) | B (Normalized Pressure Hardening) | C (Strain Rate Coefficient) | N (Pressure Hardening Exponent) | fc (MPa) (Uniaxial Compressive Strength) |
2416 | 5.670 × 109 | 0.32 | 1.76 | 0.0127 | 0.79 | 136.00 |
T (Pa) (Maximum tensile hydrostatic pressure) | EPS0 (Maximum tensile hydrostatic pressure) | εfmin (Amount of plastic strain before fracture) | Sfmax (Normalized maximum strength) | Pc (Pa) (Crushing pressure) | μc (Crushing volumetric strain) | PL (Pa) (Locking pressure) |
4.600 × 106 | 1 | 0.01 | 7 | 1.833 × 107 | 0.034 | 8.000 × 108 |
μL (Locking volumetric strain) | D1 (Damage constant) | D2 (Damage constant) | K1 (Pa) (Pressure constant) | K2 (Pa) (Pressure constant) | K3 (Pa) (Pressure constant) | FS (Failure type) |
0.08 | 0.045 | 1 | 8.100 × 1010 | −9.100 × 1010 | 8.900 × 1010 | 1.34 |
Rock Type | Training Set Loss | Validation Set Loss | Testing Set Loss |
---|---|---|---|
Granite | 0.0393 | 0.0402 | 0.0396 |
Sandstone | 0.0400 | 0.4170 | 0.0413 |
Limestone | 0.0393 | 0.0404 | 0.0475 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Wu, Z.; Jiang, L.; Tang, H.; Fu, X.; Shen, J. Dynamic Numerical Simulation and Transfer Learning-Based Rapid Rock Identification during Measurement While Drilling (MWD). Processes 2024, 12, 1260. https://doi.org/10.3390/pr12061260
Fang Y, Wu Z, Jiang L, Tang H, Fu X, Shen J. Dynamic Numerical Simulation and Transfer Learning-Based Rapid Rock Identification during Measurement While Drilling (MWD). Processes. 2024; 12(6):1260. https://doi.org/10.3390/pr12061260
Chicago/Turabian StyleFang, Yuwei, Zhenjun Wu, Lianghua Jiang, Hua Tang, Xiaodong Fu, and Junxin Shen. 2024. "Dynamic Numerical Simulation and Transfer Learning-Based Rapid Rock Identification during Measurement While Drilling (MWD)" Processes 12, no. 6: 1260. https://doi.org/10.3390/pr12061260
APA StyleFang, Y., Wu, Z., Jiang, L., Tang, H., Fu, X., & Shen, J. (2024). Dynamic Numerical Simulation and Transfer Learning-Based Rapid Rock Identification during Measurement While Drilling (MWD). Processes, 12(6), 1260. https://doi.org/10.3390/pr12061260