Overpressure of Deep Jurassic System in the Central Junggar Basin and Its Influence on Petroleum Accumulation
Abstract
:1. Introduction
2. Geological Setting
3. Methods
4. Results
4.1. Measured Formation Pressure
4.2. Bowers Method to Predict Formation Pressure in Logs
4.3. Pressure Prediction in Stratigraphic Profiles Based on Seismic Velocity
4.3.1. Acquisition of Seismic Interval Velocities
4.3.2. Prediction of Formation Pressure Based on Seismic Wave Velocity
4.4. PVT Simulation of Paleo-Pressure
5. Discussion
5.1. Relationship between Overpressure and Thermal Evolution of Organic Matter
5.2. Effect of Overpressure on the Reservoir
5.2.1. Characteristics and Causes of Overpressure in Reservoir
5.2.2. Influence of Reservoir Overpressure on Compaction and Primary Porosity
5.2.3. Effect of Overpressure Fluid on Secondary Pores and Fracture
5.3. Relationship between Overpressure and Petroleum Migration
6. Conclusions
- (1)
- The Jurassic system in the central Junggar Basin is generally developed with abnormal overpressure, and the pressure coefficient can be as high as 2.0 or higher. The Bowers method shows that the vertical pressure system can be divided into three parts: the normal pressure system in the Cretaceous to Cenozoic strata, the super strong overpressure system in the Lower Jurassic, and the overpressure system in the upper Jurassic. The super strong overpressure in the Lower Jurassic is mainly caused by hydrocarbon generation, and the overpressure system in the upper Jurassic is the result of upward migration and transfer of overpressure fluid from the lower strong overpressure system. The paleo-pressure simulation shows that the overpressure formed in the early Jurassic has a history of release, and the present overpressure was formed in the late Cenozoic period.
- (2)
- The abnormal overpressure environment of the Jurassic results in the negative anomaly of the maturity parameter Ro of organic matter in the source rocks, which indicates that the thermal evolution has been inhibited to a certain extent. However, due to the late formation time of overpressure in the study area, it did not slow down the compaction effect on the reservoir and therefore not protect the primary pores. But, the overpressure hydrocarbon fluid promoted the formation of the dissolution pores in the reservoirs.
- (3)
- The overpressure in the study area plays an important role in the petroleum migration, and there is a general gradient of decreasing overpressure from southwest to northeast. In addition, the top boundary of the overpressure system rises in the northeast direction, so the hydrocarbon fluid migrates from southwest to northeast in general. The fault is the main channel of petroleum upward migration, and overpressure and fault jointly control the accumulation of Jurassic oil and gas in the study area.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, X.R.; Dong, W.L.; Yang, J.H.; Yang, W. Overpressuring mechanisms in the Yinggehai Basin, south China sea. AAPG Bull. 2003, 87, 629–645. [Google Scholar] [CrossRef]
- Jia, C.Z.; Pang, X.Q. Research processes and main development directions of deep hydrocarbon geological theories. Acta Pet. Sin. 2015, 36, 1457–1469. [Google Scholar]
- Li, Y.; Xue, Z.J.; Cheng, Z.; Jiang, H.J.; Wang, R.Y. Progress and development directions of deep oil and gas exploration and development in China. China Pet. Explor. 2020, 25, 1672–7703. [Google Scholar]
- Swarbrick, R.E.; Osborne, M.J.; Grunberger, D.; Yardley, G.S.; Macleod, G.; Aplin, A.C.; Larter, S.R.; Knight, I.; Auld, H.A. Integrated study of the judy field (Block 30/7a)—An overpressured central north sea oil/gas field. Mar. Pet. Geol. 2000, 17, 993–1010. [Google Scholar] [CrossRef]
- Webster, M.; O’Connor, S.; Pindar, B.; Swarbrick, R.E. Overpressures in the taranaki basin: Distribution, causes, and implications for exploration. AAPG Bull. 2011, 95, 339–370. [Google Scholar] [CrossRef]
- Grauls, D.J.; Baleix, J.M. Role of overpressures and in situ stresses in faultcontrolled hydrocarbon migration: A case study. Mar. Pet. Geol. 1994, 11, 734–742. [Google Scholar] [CrossRef]
- Tingay, M.R.P.; Hillis, R.R.; Swarbrick, R.E.; Morley, C.K.; Damit, A.R. Vertically transferred overpressures in Brunei: Evidence for a new mechanism for the formation of high-magnitude overpressure. Geology 2007, 35, 1023–1026. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, Y.; Song, G.; Gu, G.; Hao, L.; Feng, Y. Overpressure characteristics and effects on hydrocarbon distribution in the Bonan Sag, Bohai Bay Basin, China. J. Pet. Sci. Eng. 2017, 149, 811–821. [Google Scholar] [CrossRef]
- Schofield, N.; Holford, S.; Edwards, A.; Mark, N.; Pugliese, S. Overpressure transmission through interconnected igneous intrusions. AAPG Bull. 2020, 104, 285–303. [Google Scholar] [CrossRef]
- Lu, X.S.; Zhao, M.J.; Zhang, F.Q.; Gui, L.L.; Liu, G.; Zhuo, Q.G.; Chen, Z.X. Characteristics, origin and controlling effects on hydrocarbon accumulation of overpressure in foreland thrust belt of southern margin of Junggar Basin, NW China. Pet. Explor. Dev. 2022, 49, 991–1003. [Google Scholar] [CrossRef]
- Guo, X.W.; Liu, K.Y.; Jia, C.Z.; Song, Y.; Zhao, M.J.; Zhuo, Q.G.; Lu, X.S. Constraining tectonic compression processes by reservoir pressure evolution: Overpressure generation and evolution in the Kelasu Thrust Belt of Kuqa Foreland Basin, NW China. Mar. Pet. Geol. 2016, 72, 30–44. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, J.; He, S.; Zhao, J.; He, Z.; Wo, Y.; Feng, Y.; Li, W. Overpressure generation and evolution in Lower Paleozoic gas shales of the Jiaoshiba region, China: Implications for shale gas accumulation. Mar. Pet. Geol. 2019, 102, 844–859. [Google Scholar] [CrossRef]
- Duan, Z.X.; Liu, Y.F.; Lou, Z.H.; Liu, Z.Q.; Xu, S.L.; Wu, Y.C. Tight gas accumulation caused by overpressure: Insights from three-dimensional seismic data in the western Sichuan Basin, southwest China. Geoenergy Sci. Eng. 2023, 223, 211589. [Google Scholar] [CrossRef]
- Yang, Z.; He, S.; Li, Q.; Lin, S.; Pan, S. Geochemistry characteristics and significance of two petroleum systems near top overpressured surface in central Junggar Basin, NW China. Mar. Pet. Geol. 2016, 75, 341–355. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, N.; Yao, Q.; Chang, J.; Xie, Z. Distribution, origin and evolution of the Upper Triassic overpressures in the central portion of the Sichuan Basin, SW China. J. Pet. Sci. Eng. 2016, 146, 1116–1129. [Google Scholar] [CrossRef]
- Mourgues, R.; Gressier, J.B.; Bodet, L.; Bureau, D.; Gay, A. “Basin scale” versus “localized” pore pressure/stress coupling-Implications for trap integrity evaluation. Mar. Pet. Geol. 2011, 28, 1111–1121. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, D.; Gao, X.; Li, M.; Shi, X.; Wang, F.; Chang, S.; Yao, D.; Li, S.; Chen, S. Overpressure origins and evolution in deep-buried strata: A case study of the Jurassic Formation, central Junggar Basin, western China. Pet. Sci. 2023, 20, 1429–1445. [Google Scholar] [CrossRef]
- Shi, J.Y.; Jin, Z.J.; Liu, Q.Y.; Zhang, R.; Huang, Z.K. Cyclostratigraphy and astronomical tuning of the middle eocene terrestrial successions in the Bohai Bay Basin, Eastern China. Glob. Planet. Change 2019, 174, 115–126. [Google Scholar] [CrossRef]
- Shi, J.Y.; Jin, Z.J.; Liu, Q.Y.; Zhang, R.; Huang, Z.K. Sunspot cycles recorded in Eocene lacustrine fine-grained sedimentary rocks in the Bohai Bay Basin, eastern China. Glob. Planet. Change 2021, 205, 103614. [Google Scholar] [CrossRef]
- Bondarenko, A.V.; Islamov, S.R.; Mardashov, D.V. Features of oil well killing in abnormal carbonate reservoirs operating conditions. In Proceedings of the 15th Conference and Exhibition Engineering and Mining Geophysics, Gelendzhik, Russia, 22–26 April 2019; European Association of Geoscientists and Engineers: Gelendzhik, Russia, 2019; pp. 629–633. [Google Scholar] [CrossRef]
- Islamov, S.; Islamov, R.; Shelukhov, G.; Sharifov, A.; Sultanbekov, R.; Ismakov, R.; Agliullin, A.; Ganiev, R. Fluid-Loss Control Technology: From Laboratory to Well Field. Processes 2024, 12, 114. [Google Scholar] [CrossRef]
- Zhang, L.; Li, C.; Luo, X.; Zhang, Z.; Zeng, Z.; Ren, X.; Lei, Y.; Zhang, M.; Xie, J.; Cheng, M.; et al. Vertically transferred overpressures along faults in Mesozoic reservoirs in the central Junggar Basin, northwestern China: Implications for hydrocarbon accumulation and preservation. Mar. Pet. Geol. 2023, 150, 106152. [Google Scholar] [CrossRef]
- Dasgupta, S.; Mohanty, C.R.; Mohanty, S.P. Magnitude, mechanisms, and prediction of abnormal pore pressure using well data in the Krishna-Godavari Basin, east coast of India. AAPG Bull. 2016, 100, 1833–1855. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Ma, F.; Liang, Y.B.; Zhao, Z.; Qin, Y.Q.; Liu, X.B.; Zhang, K.B.; Ke, W.L. Domain and theory–technology progress of global deep oil & gas exploration. Acta Pet. Sin. 2015, 36, 1156–1166. [Google Scholar]
- Liu, Z.; Jin, B.; He, W.Y.; Han, J.; Guan, Q. Generation and distribution of abnormal formation pressures in eastern part of the Junggar Basin. Chin. J. Geol. 2002, 37, 91–104. [Google Scholar]
- Sun, J.; You, X.; Xue, J.J.; Cao, Y.T.; Chang, Q.S.; Chen, C. Characteristics of abnormal pressure and its influence on deep and ultra–deep tight reservoirs in the Junggar Basin. Oil Gas Geol. 2023, 44, 350–363. [Google Scholar]
- Wu, X.Z.; Li, C. Abnormal pressure and hydrocarbon accumulation in Mosuowan area of hinterland of Junggar Basin. Xinjiang Pet. Geol. 1994, 15, 208–213. [Google Scholar]
- Zha, M.; Zhang, W.H.; Qu, J.X. The character and origin of overpressure and its explorational significance in Junggar Basin. Pet. Explor. Dev. 2000, 27, 31–35. [Google Scholar]
- Jiang, L.; Song, Y.; Zha, M.; Qu, J.X. Study on relationship between overpressure and hydrocarbon accumulation in Mosuowan area of Jungger Basin. J. Daqing Pet. Inst. 2008, 32, 24–28. [Google Scholar]
- Yang, Z.; He, S.; Li, Q.Y.; Zhang, Y.G. Overpressure in the well Pen–1 West subbasin in the interior of the Junggar basin. Geol. China 2008, 35, 239–245. [Google Scholar]
- Yang, Z.; Wang, J.H.; Lin, S.H.; Wu, S.T.; Liu, Y.; Li, Q.Y.; Zhang, P.Z. Hydrocarbon accumulation mechanism near top overpressured surface in central Junggar Basin. J. China Univ. Pet. 2011, 35, 19–25. [Google Scholar]
- Wu, H.S.; Zheng, M.L.; He, W.J.; Yang, T.Y.; Chen, L.; Guo, J.C.; Yang, Y.B. Formation pressure anomalies and controlling factors in central Junggar Basin. Oil Gas Geol. 2017, 38, 1135–1146. [Google Scholar]
- Wang, Y.T.; Fan, G.H.; Jiang, S.B. The effect of high pressure and abnormally high pressure on the generation and accumulation of petroleum in mid-land Junggar basin. Pet. Explor. Dev. 1994, 21, 1–7. [Google Scholar]
- He, S.; He, Z.L.; Yang, Z.; Wu, H.Z.; Wang, F.R.; Shi, W.Z. Characteristics of Well-log responses and mechanisms of overpressures within the Jurassic formation in the central part of Junggar Basin. Earth Sci. -J. China Univ. Geosci. 2009, 34, 457–468. [Google Scholar]
- Liu, C.H.; Dong, C.Q.; Wang, X.Z.; Wang, J.; Ma, L.Q. Distribution of Overpressure Zones in Deep Sub–Sag Area in Hinterland of Junggar Basin. Xinjiang Pet. Geol. 2010, 31, 1–3. [Google Scholar]
- Tan, S.Q.; Zeng, Z.P.; Gong, Y.J.; Min, F.Q.; Chen, X. Control of abnormal overpressure on hydrocarbon–reservoir evolution and hydrocarbon filling process in central of Junggar Basin. Fault–Block Oil Gas Field 2014, 21, 287–291. [Google Scholar]
- Feng, C.; Yao, A.; Wang, J.; Bai, Y. Abnormal pressure distribution and formation mechanism in Mahu Sag, Junggar Basin. Xinjiang Pet. Geol. 2014, 35, 640–645. [Google Scholar]
- Zheng, M.L.; Qiu, X.Z.; He, W.J. Geodynamic evolution of petroliferous basins in Northwest China. J. Earth Sci. Environ. 2015, 37, 1–16. [Google Scholar]
- Zheng, M.L.; Fan, X.D.; He, W.J.; Yang, T.Y.; Tang, Y.; Ding, J.; Wu, H.S.; Chen, L.; Guo, J.C. Superposition of deep geological structural evolution and hydrocarbon accumulation in the Junggar basin. Earth Sci. Front. 2019, 26, 22–32. [Google Scholar]
- Sun, J.; Wu, A.C.; Wang, R.; Zeng, D.L.; Wang, F.; Xue, J.J. Characteristics and origin of deep tight sandstone gas reservoirs of the Jurassic Sangonghe Formation, Mosuowan area, central depression, Junggar basin. J. Palaeogeogr. 2017, 19, 907–918. [Google Scholar]
- Sun, J.; Guo, X.G.; You, X.C.; Bian, B.L.; Xue, J.J.; Chang, Q.S. Characteristies and effective reservoir genesis of deep to ultra deeptight clastic reservoir of Junggar basin, Nw China. Acta Geol. Sin. 2022, 96, 2532–2544. [Google Scholar]
- Maerten, L.; Maerten, F. Chronologic modeling of faulted and fractured reservoirs using geomechanically based restoration: Technique and industry applications. AAPG Bull. 2006, 90, 1201–1226. [Google Scholar] [CrossRef]
- Maerten, F.; Maerten, L. On a method for reducing interpretation uncertainty of poorly imaged seismic horizons and faults using geomechanically based restoration technique. Interpretation 2015, 3, 105–116. [Google Scholar] [CrossRef]
- Stach, E.; Mackowsky, M.T.; Taylor, G.H.; Chandra, D.; Teichmuller, M.; Teichmuller, R. Stach’s Text Book of Coal Petrology; Borntraeger: Stuttgart, Germany, 1982; p. 535. [Google Scholar]
- Chen, Z.H.; Xie, J.N.; Qiao, R.Z.; Qiu, L.W.; Yang, Y.Q.; Wen, Z.G.; Xu, Y.H.; Tang, Y.J. Geochemistry and accumulation of Jurassic oil in the central Junggar Basin, western China. J. Pet. Sci. Eng. 2022, 216, 110855. [Google Scholar] [CrossRef]
- Chen, Z.H.; Qiao, R.Z.; Li, C.Y.; Wang, D.Y.; Gao, Y. Hydrocarbon generation potential and model of the deep lacustrine source rocks in the Dongying Depression, Bohai Bay Basin. Mar. Pet. Geol. 2022, 140, 105656. [Google Scholar] [CrossRef]
- Bowers, D.G.; Gaffney, S.; White, M.; Bowyer, P. Turbidity in the southern Irish Sea. Cont. Shelf Res. 2002, 22, 2115–2126. [Google Scholar] [CrossRef]
- Yun, M.H. Formation pressure prediction using seismic data. Oil Geophys. Prospect. 1996, 31, 575–586. [Google Scholar]
- Mi, J.K.; Xiao, X.M.; Liu, D.H.; Shen, J.G. Using PVT features of reservoir fluid inclusion to model and calculate formation palaeopressure of gas pool: Case study from deep basin gas pool of the Upper Palaozoic, Ordos Basin. Sci. China Ser. D 2003, 33, 679–685. [Google Scholar]
- Fillippone, W.R. On the prediction of abnormally pressured sedimentary rocks from seismic data. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 1979; p. OTC-3662. [Google Scholar]
- McTavish, R.A. Pressure retardation of vitrinite diagenesis, offshore northwest Europe. Nature 1978, 271, 648–650. [Google Scholar] [CrossRef]
- Hao, F.; Jiang, J.Q.; Zou, H.Y.; Fang, Y.; Zeng, Z.P. Differential retardation of organic matter maturation by overpressure. Sci. China (Ser. D Earth Sci.) 2004, 47, 783–793. [Google Scholar] [CrossRef]
- Price, L.C.; Wenger, L.M. The influence of pressure on petroleum generation and maturation as suggested by aqueous pyrolysis. Org. Geochem. 1992, 19, 1412159. [Google Scholar] [CrossRef]
- Braun, R.L.; Burnham, A.K. Mathematical model of oil generation, degradation and expulsion. Energy Fuels 1990, 4, 132–146. [Google Scholar] [CrossRef]
- Monthioux, M.; Kuznetsov, V.L. Who should be given the credit for the discovery of carbon nanotubes? Carbon 2006, 44, 1621–1623. [Google Scholar] [CrossRef]
- Yang, Z.; Zou, C.N.; He, S.; He, Z.L.; Wu, H.Z.; Cao, F.; Li, Q.Y.; Meng, X.L.; Wang, F.R.; Xiao, Q.L. Formation mechanism of carbonate cemented zones adjacent to the top overpressured surface in the central Junggar Basin, NW China. Sci. China Earth Sci. 2010, 53, 529–540. [Google Scholar] [CrossRef]
- Jeans, C.V. Clay Diagenesis, Overpressure and Reservoir Quality: An Introduction. Clay Miner. 1994, 29, 415–423. [Google Scholar] [CrossRef]
- Hoesni, J.M. Origins of Overpressure in the Malay Basin and Its Influence on Petroleum Systems. Univ. Durh. 2004, 35, 12397–12401. [Google Scholar]
- Osborne, M.J.; Swarbrick, R.E. Mechanisms for Generating Overpressure in Sedimentary Basins: A Reevaluation. AAPG Bull. 1997, 81, 1023–1041. [Google Scholar]
- Swarbrick, R.E.; Osborne, M.J.; Yardley, G.S. Comparison of Overpressure Magnitude Resulting from the Main Generating Mechanisms. AAPG Mem. 2002, 76, 1–12. [Google Scholar]
- Lahann, R.W.; Swarbrick, R.E. Overpressure Generation by Load Transfer Following Shale Framework Weakening Due to Smectite Diagenesis. Geofluids 2011, 11, 362–375. [Google Scholar] [CrossRef]
- Wilkinson, M.; Darby, D.; Haszeldine, R.S.; Couples, G.D. Secondary porosity generation during deep burial associated with overpressure leak–off: Fulmar Formation, United Kingdom Central Graben. AAPG Bull. 1997, 81, 803–813. [Google Scholar]
- Bloch, S.; Lander, R.H.; Bonnell, L. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability. AAPG Bull. 2002, 86, 301–328. [Google Scholar]
- Xian, B.Z.; Wu, C.X.; She, Y.Q. Fluid abnormal overpressure and its influence on deep clastic reservoir of the Paleogene in Chezhen sag of Dongying, Shandong Province. J. Palaeogeogr. 2011, 13, 309–316, (in Chinese with English abstract). [Google Scholar]
- He, Z.L.; Li, S.J.; Liu, Q.Y.; Yang, T.B.; Zhang, Y. Deep geological processes and deep resources in basins: Scientific issues and research directions. Pet. Geol. Exp. 2020, 42, 767–779, (in Chinese with English abstract). [Google Scholar]
- Osborne, M.J.; Swarbrick, R.E. Diagenesis in North Sea HPHT clastic reservoirs–consequences for porosity and overpressure prediction. Mar. Pet. Geol. 1999, 16, 337–353. [Google Scholar] [CrossRef]
- Taylor, T.R.; Giles, M.R.; Hathon, L.A.; Diggs, T.N.; Braunsdorf, N.R.; Birbiglia, G.V.; Kittridge, M.G.; Macaulay, C.I.; Espejo, I.S. Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality. AAPG Bull. 2010, 94, 1093–1132. [Google Scholar] [CrossRef]
- Hunt, J.M. Generation and Migration of Petroleum from Abnormally Pressured Fluid Compartments. AAPG Bull. 1990, 74, 1–12. [Google Scholar]
- Zha, M.; Qu, J.X.; Zhang, W.H. The relationship between overpressure and reservoir forming mechanism. Pet. Explor. Dev. 2002, 29, 19–23. [Google Scholar]
- England, W.A.; Mackenzie, A.S.; Mann, D.M.; Quigley, T.M. The movement and entrapment of petroleum fluids in the subsurface. J. Geol. Soc. 1987, 144, 327–347. [Google Scholar] [CrossRef]
- Wang, T.G.; He, F.; Li, M.; Hou, Y.; Guo, S. Alkyldibenzothiophenes: Molecular tracers for filling pathway in oil reservoirs. Chin. Sci. Bull. 2004, 49, 2399–2404. [Google Scholar] [CrossRef]
- Wang, T.G.; He, F.; Wang, C.; Zhang, W.; Wang, J. Oil filling history of the Ordovician oil reservoir in the major part of the Tahe Oilfield, Tarim Basin, NW China. Org. Geochem. 2008, 39, 1637–1646. [Google Scholar] [CrossRef]
- Fang, R.H.; Wang, T.G.; Li, M.J.; Xiao, Z.Y.; Zhang, B.S.; Huang, S.Y.; Shi, S.B.; Wang, D.W.; Deng, W.L. Dibenzothiophenes and benzo[b]naphthothiophenes: Molecular markers for tracing oil filling pathways in the carbonate reservoir of the Tarim Basin, NW China. Org. Geochem. 2016, 91, 68–80. [Google Scholar] [CrossRef]
- Chen, Z.H.; Yang, Y.M.; Wang, T.G.; Cheng, B.; Li, M.J.; Luo, B.; Chen, Y.; Ni, Z.Y.; Yang, C.Y.; Chen, T.; et al. Dibenzothiophenes in solid bitumens: Use of molecular markers to trace paleo-oil filling orientations in the Lower Cambrian reservoir of the Moxi–Gaoshiti Bulge, Sichuan Basin, southern China. Org. Geochem. 2016, 108, 94–112. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Wang, Q.; Ren, X.; Zhang, Y.; Zhang, G.; Chen, L.; Chai, Z.; Chen, Z. Overpressure of Deep Jurassic System in the Central Junggar Basin and Its Influence on Petroleum Accumulation. Processes 2024, 12, 1572. https://doi.org/10.3390/pr12081572
Liu H, Wang Q, Ren X, Zhang Y, Zhang G, Chen L, Chai Z, Chen Z. Overpressure of Deep Jurassic System in the Central Junggar Basin and Its Influence on Petroleum Accumulation. Processes. 2024; 12(8):1572. https://doi.org/10.3390/pr12081572
Chicago/Turabian StyleLiu, Huimin, Qianjun Wang, Xincheng Ren, Yuejing Zhang, Guanlong Zhang, Lin Chen, Zhi Chai, and Zhonghong Chen. 2024. "Overpressure of Deep Jurassic System in the Central Junggar Basin and Its Influence on Petroleum Accumulation" Processes 12, no. 8: 1572. https://doi.org/10.3390/pr12081572
APA StyleLiu, H., Wang, Q., Ren, X., Zhang, Y., Zhang, G., Chen, L., Chai, Z., & Chen, Z. (2024). Overpressure of Deep Jurassic System in the Central Junggar Basin and Its Influence on Petroleum Accumulation. Processes, 12(8), 1572. https://doi.org/10.3390/pr12081572