Effects of Sugar Beet Pulp Pretreatment Methods on Hydrogen Production by Dark Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate
2.2. Pretreatment of SBP
2.2.1. Enzymatic Pretreatment
2.2.2. Acidic Pretreatment
2.2.3. Alkaline Pretreatment
2.2.4. Alkaline and Enzymatic Pretreatment
2.3. Experimental Setup for Anaerobic Digestion Experiments
2.4. Preparation of Microorganism and Inoculum
2.5. Analytical Methods
2.5.1. Elemental Analysis
2.5.2. Biogas Composition
2.5.3. Polysaccharide Content
2.5.4. Sugar Content
2.5.5. Scanning Electron Microscopy
2.5.6. Crystallinity Index
2.5.7. Individual Volatile Fatty Acids
2.6. Statistical Analysis
3. Results
3.1. Pretreatment of Sugar Beet Pulp
3.2. Batch Tests
3.2.1. Methane Production
3.2.2. Hydrogen Production
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | anaerobic digestion |
COD | chemical oxygen demand |
DF | dark fermentation |
FID | flame ionization detector |
GC | gas chromatography |
OLR | organic loading rate |
SBP | sugar beet pulp |
SGP | specific gas production |
SHP | specific hydrogen production |
SEM | scanning electron microscopy |
SMP | specific methane production |
RID | refractive index detector |
TAN | total ammonium nitrogen |
TS | total solids |
VFA | volatile fatty acids |
VS | volatile solids |
References
- Herbert, J.G.M.; Krishnan, A.U. Quantifying environmental performance of biomass energy. Renew. Sust. Energ. Rev. 2016, 59, 292–308. [Google Scholar] [CrossRef]
- Hoang, A.T.; Nizetic, S.; Ong, H.C.; Chong, C.T.; Atabani, A.E.; Pham, V.V. Acid-based lignocellulosic biomass biorefinery for bioenergy production: Advantages, application constraints, and perspectives. J. Environ. Manag. 2021, 296, 113194. [Google Scholar] [CrossRef] [PubMed]
- Stancin, H.; Mikulcic, H.; Wang, X.; Duic, N. A review on alternative fuels in future energy system. Renew. Sust. Energ. Rev. 2020, 128, 109927. [Google Scholar] [CrossRef]
- Ho, M.C.; Ong, V.Z.; Wu, T.Y. Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization—A review. Renew. Sust. Energ. Rev. 2019, 112, 75–86. [Google Scholar] [CrossRef]
- Kumara, V.; Yadava, S.K.; Kumarb, J.; Ahluwaliab, A. A critical review on current strategies and trends employed for removal of inhibitors and toxic materials generated during biomass pretreatment. Bioresour. Technol. 2020, 299, 122633. [Google Scholar] [CrossRef] [PubMed]
- Peleteiro, S.; Raspolli Galletti, A.M.; Antonetti, C.; Santos, V.; Parajó, J.C. Manufacture of Furfural from Xylan-containing Biomass by Acidic Processing of Hemicellulose-Derived Saccharides in Biphasic Media Using Microwave Heating. J. Wood Chem. Technol. 2018, 38, 198–213. [Google Scholar] [CrossRef]
- Loow, Y.L.; Wu, T.Y.; Jahim, J.; Mohammad, A.W.; Teoh, W.H. Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 2016, 23, 1491–1520. [Google Scholar] [CrossRef]
- del Amo-Mateos, E.; Lopez-Linares, J.C.; García-Cubero, M.T.; Lucas, S.; Coca, M. Green biorefinery for sugar beet pulp valorisation: Microwave hydrothermal processing for pectooligosaccharides recovery and biobutanol production. Ind. Crops Prod. 2022, 184, 115060. [Google Scholar] [CrossRef]
- Ozkan, E.; Erguder, T.; Demirer, G.N. Effects of pretreatment methods on solubilization of beet-pulp and bio-hydrogen production yield. Int. J. Hydrogen Energy 2011, 36, 382–389. [Google Scholar] [CrossRef]
- Cui, M.; Shen, J. Effects of acid and alkaline pretreatments on the biohydrogen production from grass by anaerobic dark fermentation. Int. J. Hydrogen Energy 2012, 37, 1120–1124. [Google Scholar] [CrossRef]
- Berlowska, J.; Cieciura-Wloch, W.; Kalinowska, H.; Kregiel, D.; Borowski, S.; Pawlikowska, E.; Binczarski, M.; Witonska, I. Enzymatic Conversion of Sugar Beet Pulp: A Comparison of Simultaneous Saccharification and Fermentation and Separate Hydrolysis and Fermentation for Lactic Acid Production. Food Technol. Biotechnol. 2018, 56, 188. [Google Scholar] [CrossRef] [PubMed]
- Cieciura-Włoch, W.; Borowski, S.; Otlewska, A. Biohydrogen production from fruit and vegetable waste, sugar beet pulp and corn silage via dark fermentation. Renew. Energy 2020, 153, 1226–1237. [Google Scholar] [CrossRef]
- Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.S. APHA Standard Methods for the Examination of Water and Waste Water, 22nd ed.; American Public Health Association; American Water Works Association; Water Environment Federation: Washington, DC, USA, 2012. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP); NREL/TP-510-42618; National Renewable Energy Laboratory: Golden, CO, USA, 2012. [Google Scholar]
- Domański, J.; Marchut-Mikołajczyk, O.; Cieciura-Włoch, W.; Patelski, P.; Dziekońska-Kubczak, U.; Januszewicz, B.; Zhang, B.; Dziugan, P. Production of Methane, Hydrogen and Ethanol from Secale cereale L. Straw Pretreated with Sulfuric Acid. Molecules 2020, 25, 1013. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Cheng, J.R.; Wang, Y.T.; Zhu, M.J. Enhanced lignin removal and enzymolysis efficiency of grass waste by hydrogen peroxide synergized dilute alkali pretreatment. Bioresour. Technol. 2020, 301, 122756. [Google Scholar] [CrossRef] [PubMed]
- Gruska, R.M.; Baryga, A.; Kunicka-Styczynska, A.; Brzezinski, S.; Rosicka-Kaczmarek, J.; Miskiewicz, K.; Suminska, T. Fresh and Stored Sugar Beet Roots as a Source of Various Types of Mono- and Oligosaccharides. Molecules 2022, 27, 5125. [Google Scholar] [CrossRef] [PubMed]
- Cieciura-Włoch, W.; Binczarski, M.; Tomaszewska, J.; Borowski, S.; Domanski, J.; Dziugan, P.; Witonska, I. The Use of Acidic Hydrolysates after Furfural Production from SugarWaste Biomass as a Fermentation Medium in the Biotechnological Production of Hydrogen. Energies 2019, 12, 3222. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, X.; Ali, M.F.; Abdeltawab, A.A.; Yakoutc, S.M.; Yua, G. Pretreatment of wheat straw using basic ethanolamine-based deep eutectic solvents for improving enzymatic hydrolysis. Bioresour. Technol. 2018, 263, 325–333. [Google Scholar] [CrossRef]
- Li, G.; Sun, Y.; Wenjing Guo, W.; Lin Yuan, L. Comparison of various pretreatment strategies and their effect on chemistry and structure of sugar beet pulp. J. Clean. Prod. 2018, 181, 217–223. [Google Scholar] [CrossRef]
- Gomes, M.G.; Gurgel, L.V.A.; Baffi, M.A.; Pasquini, D. Pretreatment of sugarcane bagasse using citric acid and its use in enzymatic hydrolysis. Renew. Energy 2020, 157, 332–341. [Google Scholar] [CrossRef]
- Ziemiński, K.; Kowalska-Wentel, M. Effect of enzymatic pretreatment on anaerobic co-digestion of sugar beet pulp silage and vinasse. Bioresour. Technol. 2015, 180, 274–280. [Google Scholar] [CrossRef]
- Cieciura-Włoch, W.; Borowski, S. Biohydrogen production from wastes of plant and animal origin via dark fermentation. J. Environ. Eng. Landsc. 2019, 27, 101–113. [Google Scholar] [CrossRef]
- Bala, R.; Gupta, G.K.; Dasgupta, B.V.; Mondal, M.K. Pretreatment optimisation and kinetics of batch anaerobic digestion of liquidized OFMSW treated with NaOH: Models verification with experimental data. J. Environ. Manag. 2019, 237, 313–321. [Google Scholar] [CrossRef]
- Mills, T.Y.; Sandoval, N.R.; Gill, R.T. Cellulosic hydrolyzate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol. Biofuels 2009, 2, 26. [Google Scholar] [CrossRef] [PubMed]
- Monlau, F.; Sambusiti, C.; Barakat, A.; Quemeneur, M.; Trably, E.; Steyer, J.P. Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol. Adv. 2014, 32, 934–951. [Google Scholar] [CrossRef]
- Pipitonea, G.; Zoppia, G.; Frattinib, A.; Bocchinic, S.; Pironea, R.; Bensaida, S. Aqueous phase reforming of sugar-based biorefinery streams: From the simplicity of model compounds to the complexity of real feeds. Catal. Today 2020, 345, 267–279. [Google Scholar] [CrossRef]
- Akobi, C.; Hafez, H.; Nakhla, G. The impact of furfural concentrations and substrate-to-biomass ratios on biological hydrogen production from synthetic lignocellulosic hydrolyzate using mesophilic anaerobic digester sludge. Bioresour. Technol. 2016, 221, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Zoppi, G.; Pipitone, G.; Pirone, R.; Bensaid, S. Aqueous phase reforming process for the valorization of wastewater streams: Application to different industrial scenarios. Catal. Today 2022, 387, 224–236. [Google Scholar] [CrossRef]
- Bhatt, A.H.; Tao, L. Economic Perspectives of Biogas Production via Anaerobic Digestion. Bioengineering 2020, 7, 74. [Google Scholar] [CrossRef]
- Zieminski, K.; Kowalska-Wentel, M. Effect of Different Sugar Beet Pulp Pretreatments on Biogas Production Effciency. Appl. Biochem. Biotechnol. 2017, 181, 1211–1227. [Google Scholar] [CrossRef]
- Cieciura-Włoch, W.; Borowski, S.; Domański, J. Dark fermentative hydrogen production from hydrolyzed sugar beet pulp improved by nitrogen and phosphorus supplementation. Bioresour. Technol. 2021, 340, 125622. [Google Scholar] [CrossRef]
- Cieciura-Włoch, W.; Borowski, S.; Domański, J. Dark fermentative hydrogen production from hydrolyzed sugar beet pulp improved by iron addition. Bioresour. Technol. 2020, 314, 123713. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, S.; Solera, R.; Micolucci, F.; Cavinato, C.; Bolzonella, D. Changes in microbial community during hydrogen and methane production in two-stage thermophilic anaerobic co-digestion process from biowaste. Waste Manag. 2016, 49, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Venkata Mohan, S.; Chiranjeevi, P.; Chandrasekhar, K.; Babu, P.S.; Sarkar, O. Acidogenic Biohydrogen Production from Wastewater. In Biohydrogen; Elsevier B.V.: Amsterdam, The Netherlands, 2019; pp. 279–320. [Google Scholar]
- Wainaina, S.; Awasthi, M.K.; Taherzadeh, M.J. Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. Bioengineered 2019, 10, 437–458. [Google Scholar] [CrossRef] [PubMed]
- Dhar, B.R.; Elbeshbishy, E.; Hafez, H.; Lee, H.S. Hydrogen production from sugar beet juice using an integrated biohydrogen process of dark fermentation and microbial electrolysis cell. Bioresour. Technol. 2015, 198, 223. [Google Scholar] [CrossRef]
- Franke-Whittle, I.H.; Walter, A.; Ebner, C.; Insam, H. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Manag. 2014, 34, 2080–2089. [Google Scholar] [CrossRef]
Indicator | Unit | Inoculum | Raw SBP | Enzymatic Pretreatment | Alkaline Pretreatment | Alkaline and Enzymatic Pretreatment | Acidic Pretreatment |
---|---|---|---|---|---|---|---|
TS | g/kg | 32.61 ± 0.61 | 212.33 ± 0.25 | 47.56 ± 0.62 | 66.98 ± 1.05 | 51.79 ± 0.78 | 54.87 ± 0.58 |
VS | g/kg | 21.21 ± 0.52 | 197.45 ± 0.42 | 40.14 ± 0.48 | 53.92 ± 0.79 | 38.00 ± 0.82 | 39.62 ± 0.45 |
COD | gO2/kg | 3.25 ± 0.02 | 255.13 ± 0.05 | 121.19 ± 0.02 | 198.47 ± 0.08 | 164.24 ± 0.04 | 171.71 ± 0.10 |
Carbon | % TS | 59.60 ± 0.61 | 69.25 ± 0.15 | - | - | - | - |
Nitrogen | % TS | 3.30 ± 0.15 | 0.14 ± 0.06 | - | - | - | - |
Phosphorus | % TS | 1.97 ± 0.08 | 0.02 ± 0.01 | - | - | - | - |
Hydrogen | % TS | 5.95 ± 0.12 | 7.58 0.48 | - | - | - | - |
Sulfur | % TS | 0.93 ± 0.18 | 0.02 0.01 | - | - | - | - |
C/N | - | 18.72 ± 0.96 | 361.64 ± 1.65 | - | - | - | - |
TAN | gN/m3 | 2337.54 ± 1.08 | 5.48 ± 0.45 | 70.05 ± 1.15 | 35.45 ± 0.02 | 72.02 ± 0.42 | 49.58 ± 0.56 |
P-PO43− | gP/m3 | 307.57 ± 1.45 | 0.28 ± 0.08 | 9.11 ± 0.08 | 2.12 ± 0.05 | 9.65 ± 0.12 | 6.25 ± 0.14 |
pH | - | 7.46 ± 0.02 | 5.87 ± 0.09 | 3.74 ± 0.02 | 13.05 ± 0.08 | 4.24 ± 0.05 | 1.87 ± 0.12 |
Glucose | g/dm3 | - | 6.14 ± 0.65 | 21.71 ± 1.11 | 6.25 ± 0.01 | 26.27 ± 0.29 | 20.62 ± 0.31 |
Fructose | g/dm3 | - | 3.30 ± 0.80 | 6.97 ± 0.35 | 1.16 ± 0.01 | 6.16 ± 0.05 | 4.62 ± 0.15 |
Mannose | g/dm3 | - | 1.87 ± 0.75 | 5.61 ± 0.12 | 0.45 ± 0.01 | 4.41 ± 0.56 | 3.94 ± 0.08 |
Arabinose | g/dm3 | - | 0.62 ± 0.02 | 8.04 ± 0.22 | 0.85 ± 0.06 | 10.38 ± 079 | 5.64 ± 0.25 |
Galactose | g/dm3 | - | 0.54 ± 0.08 | 9.56 ± 0.55 | 0.91 ± 0.01 | 16.47 ± 1.09 | 7.56 ± 0.17 |
Raffinose | g/dm3 | - | 0.86 ± 0.03 | 5.89 ± 0.68 | 0.39 ± 0.04 | 0.20 ± 0.02 | 4.86 ± 0.44 |
Rhamnose | g/dm3 | - | 1.07 ± 0.04 | 1.75 ± 0.18 | 2.71 ± 0.21 | 0.55 ± 0.05 | 0.87 ± 0.06 |
Xylose | g/dm3 | - | 0.25 ± 0.07 | 0.48 ± 0.12 | 1.04 ± 0.53 | 6.77 ± 0.54 | 0.31 ± 0.02 |
Galacturonic acid | g/dm3 | - | 0.22 ± 0.01 | 3.98 ± 0.36 | 0.00 ± 0.00 | 8.47 ± 0.48 | 1.02 ± 0.08 |
Total sugar content | g/dm3 | - | 14.87 ± 0.56 | 78.86 ± 1.59 | 13.76 ± 0.24 | 79.68 ± 1.36 | 49.44 ± 1.12 |
Cellulose | % | - | 19.57 ± 0.25 | 22.15 ± 0.84 | 19.42 ± 1.12 | 21.98 ± 1.08 | 20.11 ± 1.44 |
Hemicellulose | % | - | 27.96 ± 0.14 | 13.87 ± 1.56 | 14.06 ± 1.22 | 11.12 ± 1.05 | 16.56 ± 1.62 |
Lignin | % | - | 2.22 ± 0.02 | 1.18 ± 0.04 | 2.08 ± 0.12 | 1.17 ± 0.08 | 1.45 ± 0.06 |
Parameter | Unit | Raw SBP | Enzymatic Pretreatment | Alkaline Pretreatment | Alkaline and Enzymatic Pretreatment | Acidic Pretreatment |
---|---|---|---|---|---|---|
Mass of substrate | g | 18 | 133 | 98 | 140 | 134 |
Mass of inoculum | g | 500 | 500 | 500 | 500 | 500 |
Duration time | days | 9 | 14 | 9 | 9 | 9 |
pHinitial | - | 7.12 | 7.08 | 6.98 | 6.99 | 7.10 |
pHend | - | 6.89 | 6.51 | 6.45 | 6.50 | 6.35 |
Specific gas production (SGP) | dm3/kg VS | 239.05 ± 1.25 | 1302.21 ± 5.02 | 1240.03 ± 2.10 | 1166.90 ± 1.08 | 1293.04 ± 1.10 |
Specific methane production (SMP) | dm3CH4/kg VS | 120.87 ± 0.15 | 411.23 ± 0.36 | 494.81 ± 0.88 | 406.35 ± 0.82 | 444.91 ± 0.75 |
CH4 content | % | 5.68 ± 0.10 | 55.96 ± 0.22 | 54.88 ± 0.18 | 57.46 ± 0.29 | 29.58 ± 0.16 |
Specific hydrogen production (SHP) | dm3H2/kg VS | 15.54 ± 0.52 | 102.15 ± 0.42 | 92.65 ± 0.35 | 82.43 ± 0.61 | 95.15 ± 0.74 |
H2 content | % | 1.68 ± 0.08 | 14.51 ± 0.11 | 11.32 ± 0.10 | 6.86 ± 0.05 | 1.44 ± 0.02 |
CO2 content | % | 32.15 ± 0.14 | 11.18 ± 0.12 | 12.26 ± 0.12 | 11.02 ± 0.09 | 15.65 ± 0.08 |
Acetic acid | g/dm3 | 0.258 ± 0.00 | 0.524 ± 0.00 | 0.464 ± 0.00 | 0.525 ± 0.00 | 0.575 ± 0.00 |
Propionic acid | g/dm3 | 0.114 ± 0.00 | 0.445 ± 0.00 | 0.399 ± 0.00 | 0.377 ± 0.00 | 0.413 ± 0.00 |
i-Butyric acid | g/dm3 | 0.021 ± 0.00 | 0.187 ± 0.00 | 0.165 ± 0.00 | 0.097 ± 0.00 | 0.131 ± 0.00 |
n-Butyric acid | g/dm3 | 0.018 ± 0.00 | 0.045 ± 0.00 | 0.066 ± 0.00 | 0.019 ± 0.00 | 0.031 ± 0.00 |
i-Valeric acid | g/dm3 | 0.000 ± 0.00 | 0.000 ± 0.00 | 0.000 ± 0.00 | 0.000 ± 0.00 | 0.012 ± 0.00 |
n-Valeric acid | g/dm3 | 0.000 ± 0.00 | 0.000 ± 0.00 | 0.000 ± 0.00 | 0.000 ± 0.00 | 0.000 ± 0.00 |
i-Caproic acid | g/dm3 | 0.000 ± 0.00 | 0.000 ± 0.00 | 0.000 ± 0.00 | 0.000 ± 0.00 | 0.000 ± 0.00 |
n-Caproic acid | g/dm3 | 0.000 ± 0.00 | 0.000 ± 0.00 | 0.000 ± 0.00 | 0.000 ± 0.00 | 0.000 ± 0.00 |
i-Heptanoic acid | g/dm3 | 0.001 ± 0.00 | 0.010 ± 0.00 | 0.006 ± 0.00 | 0.004 ± 0.00 | 0.007 ± 0.00 |
Total VFA | g/dm3 | 0.408 ± 0.00 | 1.211 ± 0.00 | 1.100 ± 0.00 | 1.022 ± 0.00 | 1.169 ± 0.00 |
Parameter | Unit | Raw SBP | Enzymatic Pretreatment | Alkaline Pretreatment | Alkaline and Enzymatic Pretreatment | Acidic Pretreatment |
---|---|---|---|---|---|---|
Mass of substrate | g | 18 | 133 | 98 | 140 | 134 |
Mass of inoculum | g | 500 | 500 | 500 | 500 | 500 |
Duration time | days | 9 | 14 | 9 | 9 | 9 |
pHinitial | - | 5.48 | 5.52 | 5.45 | 5.55 | 5.52 |
pHend | - | 5.41 | 5.28 | 5.36 | 5.32 | 5.26 |
Specific gas production (SGP) | dm3/kg VS | 26.89 ± 0.05 | 375.12 ± 0.25 | 161.65 ± 0.11 | 370.45 ± 0.28 | 498.45 ± 0.50 |
Specific methane production (SMP) | dm3CH4/kg VS | 1.00 ± 0.02 | 4.28 ± 0.05 | 14.10 ± 0.18 | 4.69 ± 0.22 | 17.99 ± 0.45 |
CH4 content | % | 0.10 ± 0.01 | 0.29 ± 0.01 | 3.91 ± 0.24 | 0.36 ± 0.01 | 0.72 ± 0.02 |
Specific hydrogen production (SHP) | dm3H2/kg VS | 17.14 ± 0.08 | 220.59 ± 1.28 | 50.46 ± 0.68 | 136.52 ± 0.86 | 229.24 ± 0.88 |
H2 content | % | 2.40 ± 0.02 | 42.01 ± 0.87 | 13.89 ± 0.05 | 9.67 ± 0.25 | 9.20 ± 0.45 |
CO2 content | % | 22.05 ± 0.12 | 15.21 ± 0.09 | 20.78 ± 0.14 | 18.05 ± 0.12 | 13.54 ± 0.21 |
Acetic acid | g/dm3 | 0.221 ± 0.00 | 0.825 ± 0.00 | 0.457 ± 0.00 | 0.871 ± 0.00 | 0.751 ± 0.00 |
Propionic acid | g/dm3 | 0.202 ± 0.00 | 0.172 ± 0.00 | 0.115 ± 0.00 | 0.198 ± 0.00 | 0.272 ± 0.00 |
i-Butyric acid | g/dm3 | 0.031 ± 0.00 | 0.141 ± 0.00 | 0.086 ± 0.00 | 0.145 ± 0.00 | 0.141 ± 0.00 |
n-Butyric acid | g/dm3 | 0.015 ± 0.00 | 0.023 ± 0.00 | 0.019 ± 0.00 | 0.020 ± 0.00 | 0.083 ± 0.00 |
i-Valeric acid | g/dm3 | 0.000 ± 0.00 | 0.000 ± 0.00 | 0.000 ± 0.00 | 0.004 ± 0.00 | 0.068 ± 0.00 |
n-Valeric acid | g/dm3 | 0.000 ± 0.00 | 0.000 ± 0.00 | 0.000 ± 0.00 | 0.000 ± 0.00 | 0.000 ± 0.00 |
i-Caproic acid | g/dm3 | 0.000 ± 0.00 | 0.000 ± 0.00 | 0.000 ± 0.00 | 0.011 ± 0.00 | 0.043 ± 0.00 |
n-Caproic acid | g/dm3 | 0.004 ± 0.00 | 0.001 ± 0.00 | 0.002 ± 0.00 | 0.002 ± 0.00 | 0.005 ± 0.00 |
i-Heptanoic acid | g/dm3 | 0.001 ± 0.00 | 0.007 ± 0.00 | 0.002 ± 0.00 | 0.001 ± 0.00 | 0.000 ± 0.00 |
Total VFA | g/dm3 | 0.472 ± 0.00 | 1.149 ± 0.00 | 0.681 ± 0.00 | 1.252 ± 0.00 | 1.363 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cieciura-Włoch, W.; Borowski, S.; Januszewicz, B.; Domański, J. Effects of Sugar Beet Pulp Pretreatment Methods on Hydrogen Production by Dark Fermentation. Processes 2024, 12, 1606. https://doi.org/10.3390/pr12081606
Cieciura-Włoch W, Borowski S, Januszewicz B, Domański J. Effects of Sugar Beet Pulp Pretreatment Methods on Hydrogen Production by Dark Fermentation. Processes. 2024; 12(8):1606. https://doi.org/10.3390/pr12081606
Chicago/Turabian StyleCieciura-Włoch, Weronika, Sebastian Borowski, Bartłomiej Januszewicz, and Jarosław Domański. 2024. "Effects of Sugar Beet Pulp Pretreatment Methods on Hydrogen Production by Dark Fermentation" Processes 12, no. 8: 1606. https://doi.org/10.3390/pr12081606
APA StyleCieciura-Włoch, W., Borowski, S., Januszewicz, B., & Domański, J. (2024). Effects of Sugar Beet Pulp Pretreatment Methods on Hydrogen Production by Dark Fermentation. Processes, 12(8), 1606. https://doi.org/10.3390/pr12081606