Physicochemical, Functional, Antioxidant, Pasting and FT-IR Spectroscopic Properties of Fermented Acorns and Sorghum Using Traditional Algerian Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Reagents
2.3. Survey Area and Data Collection
2.4. Characterization of Fermented and Non-Fermented Acorns and Sorghum Flours
2.4.1. Physicochemical Analyzes
2.4.2. Functional Properties
Water Retention Capacity
Oil Retention Capacity
Swelling Capacity
Emulsifying Capacity
2.4.3. Pasting Properties
2.4.4. Antioxidant Properties
2.4.5. Fourier Transformed Infrared (FT-IR) Spectra Collection and Analysis
2.5. Data Analysis
3. Results and Discussion
3.1. Results of the Survey
3.1.1. Main Traditional Steps in the Preparation of Fermented Acorns and Sorghum
Dry Cleaning
Wet Cleaning
Fermentation
- Inside the Matmor
- Outside the Matmor
Description and Treatment of Products Obtained after Fermentation
3.2. Physico-Chemical Properties of Fermented and Non-Fermented Flours
3.2.1. pH-Values and Color of Flours
pH-Value
Color
3.2.2. Proximate Composition
Moisture Content
Protein Content
Fat Content
Total, Soluble and Insoluble Fiber Content
Ash Content
3.3. Functional Properties of Fermented and Non-Fermented Flours
3.4. Pasting Properties of Fermented and Non-Fermented Flours
3.5. Antioxidant Properties of Fermented and Non-Fermented Flours
3.6. Structural Properties of Flours and Analysis of the Secondary Structure of Proteins
Analysis of Starch Conformation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anyogu, A.; Olukorede, A.; Anumudu, C.; Onyeaka, H.; Areo, E.; Adewale, O.; Odimba, J.N.; Nwaiwu, O. Microorganisms and food safety risks associated with indigenous fermented foods from Africa. Food Control 2021, 129, 108227. [Google Scholar] [CrossRef]
- Emkani, M.; Oliete, B.; Saurel, R. Effect of lactic acid fermentation on legume protein properties, a review. Fermentation 2022, 8, 244. [Google Scholar] [CrossRef]
- Mudau, M.; Ramashia, S.E.; Mashau, M.E. Mineral content, functional, thermo-pasting, and microstructural properties of spontaneously fermented finger millet flours. Foods 2022, 11, 2474. [Google Scholar] [CrossRef] [PubMed]
- Gaur, G.; Damm, S.; Passon, M.; Lo, H.K.; Schieber, A.; Gänzle, M.G. Conversion of hydroxycinnamic acids by Furfurilactobacillus milii in sorghum fermentations: Impact on profile of phenolic compounds in sorghum and on ecological fitness of Ff. milii. Food Microbiol. 2023, 111, 104206. [Google Scholar] [CrossRef]
- Fall, M.; Diop, M.B.; Montet, D.; Maiga, A.S.; Guiro, A.T. Fermentation of fish in West Africa and societal challenges for qualitative improvement of the products (adjuevan, guedj and lanhouin): A review. Cah. Agric. 2019, 28, 7. [Google Scholar] [CrossRef]
- Aworh, O.C. African traditional foods and sustainable food security. Food Control 2023, 145, 109393. [Google Scholar] [CrossRef]
- Zannou, O.; Agossou, D.J.; Miassi, Y.; Agani, O.B.; Aisso, M.D.; Chabi, I.B.; Kpoclou, Y.E.; Azokpota, P.; Koca, I. Traditional fermented foods and beverages: Indigenous practices of food processing in Benin Republic. Int. J. Gastron. Food Sci. 2022, 27, 100450. [Google Scholar] [CrossRef]
- Badia-Olmos, C.; Laguna, L.; Haros, C.M.; Tárrega, A. Techno-Functional and Rheological Properties of Alternative Plant-Based Flours. Foods 2023, 12, 1411. [Google Scholar] [CrossRef]
- Badia-Olmos, C.; Sánchez-García, J.; Laguna, L.; Zúñiga, E.; Haros, C.M.; Andrés, A.M.; Tarrega, A. Flours from fermented lentil and quinoa grains as ingredients with new techno-functional properties. Food Res. Int. 2024, 177, 113915. [Google Scholar] [CrossRef]
- Li, X.; Wei, S.; Gao, Z.; Zhao, R.; Wang, Z.; Fan, Y.; Cui, L.; Wang, Y. The influence of cooperative fermentation on the structure, crystallinity, and rheological properties of buckwheat starch. Curr. Res. Food Sci. 2024, 8, 100670. [Google Scholar] [CrossRef]
- Makawi, A.B.; Mustafa, A.I.; Adiamo, O.Q.; Mohamed Ahmed, I.A. Physicochemical, nutritional, functional, rheological, and microbiological properties of sorghum flour fermented with baobab fruit pulp flour as starter. Food Sci. Nutr. 2019, 7, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.S.; Taylor, J.R.; Emmambux, M.N. Effects of sourdough-type fermentation and sorghum type on the techno-functional properties of the batter used for kisra, a fermented flatbread. J. Cereal Sci. 2024, 118, 103937. [Google Scholar] [CrossRef]
- Amina, M.; Djamel, F.; Djamel, H. Influence of fermentation and germination treatments on physicochemical and functional properties of acorn flour. Bulg. J. Agric. Sci. 2018, 24, 719–726. [Google Scholar]
- Hashemi, S.M.B.; Gholamhosseinpour, A.; Khaneghah, A.M. Fermentation of acorn dough by lactobacilli strains: Phytic acid degradation and antioxidant activity. LWT 2019, 100, 144–149. [Google Scholar] [CrossRef]
- Osman, A.; Hartung, C.B.; Lingens, J.B.; Rohn, K.; Schreiner, T.; Ahmed, M.F.E.; Hankel, J.; Abd El-Wahab, A.; Visscher, C. Fermentation Characteristics of Rye and Sorghum Depending on Water: Feed Ratio. Fermentation 2022, 8, 155. [Google Scholar] [CrossRef]
- Putri, S.; Utari, D.; Martati, E.; Putri, W. Study of sorghum (Sorghum bicolor (L.) Moench) grains fermentation with Lactobacillus plantarum ATCC 14977 on tannin content. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Malang, Indonesia, 6–7 July 2021. [Google Scholar] [CrossRef]
- Sara, M.; Mouna, T.; Djamel, S.; Omar, K. Traditional Algerian fermented food: First data on nutritional characteristics of wheat (Triticum durum) fermented in underground silos Matmor (Mascara, Algeria) compared to unfermented wheat. Adv. Biol. Earth Sci. 2020, 5, 176–192. [Google Scholar]
- Becila, F.Z.; Bouasla, A.; Turchiuli, C.; Boussekine, R.; Bekhouche, F.; Wójtowicz, A. Biochemical and Microbiological Changes Associated with Fermentation of Durum Wheat for Lemzeïet Processing, a Traditional Algerian Fermented Food. Processes 2022, 10, 2347. [Google Scholar] [CrossRef]
- ISO1871; Food and Feed Products—General Guidelines for the Determination of Nitrogen by the Kjeldahl Method. ISO: Geneva, Switzerland, 2009.
- ISO659; Oilseeds—Determination of Hexane Extract (or Light Petroleum Extract), Called “Oil Content”. ISO: Geneva, Switzerland, 1998.
- AACC. Approved Methods of the AACC; American Association of Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar]
- Bourekoua, H.; Djeghim, F.; Benatallah, L.; Zidoune, M.N.; Wójtowicz, A.; Lysiak, G.; Rozylo, R. Durum wheat bread: Flow diagram and quality characteristics of traditional Algerian bread Khobz Eddar. Acta Agrophys. 2017, 24, 405–417. [Google Scholar]
- Alam, M.; Biswas, M.; Hasan, M.M.; Hossain, M.F.; Zahid, M.A.; Al-Reza, M.S.; Islam, T. Quality attributes of the developed banana flour: Effects of drying methods. Heliyon 2023, 9, e18312. [Google Scholar] [CrossRef]
- Kupryaniuk, K.; Oniszczuk, T.; Combrzynski, M.; Wójtowicz, A.; Mitrus, M. Effect of extrusion-cooking conditions on the physical properties of Jerusalem artichoke straw. Int. Agrophys. 2020, 34, 441–449. [Google Scholar] [CrossRef]
- Ayad, R.; Ayad, R.; Bourekoua, H.; Lefahal, M.; Makhloufi, E.H.; Akkal, S.; Medjroubi, K.; Nieto, G. Process optimization of phytoantioxidant and photoprotective compounds from carob pods (Ceratonia siliqua L.) using ultrasonic assisted extraction method. Molecules 2022, 27, 8802. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Ismail, H.F.; Hashim, Z.; Soon, W.T.; Ab Rahman, N.S.; Zainudin, A.N.; Majid, F.A.A. Comparative study of herbal plants on the phenolic and flavonoid content, antioxidant activities and toxicity on cells and zebrafish embryo. J. Tradit. Complement. Med. 2017, 7, 452–465. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Fetouhi, A.; Benatallah, L.; Nawrocka, A.; Szymańska-Chargot, M.; Bouasla, A.; Tomczyńska-Mleko, M.; Zidoune, M.N.; Sujak, A. Investigation of viscoelastic behaviour of rice-field bean gluten-free dough using the biophysical characterization of proteins and starch: A FT-IR study. J. Food Sci. Technol. 2019, 56, 1316–1327. [Google Scholar] [CrossRef] [PubMed]
- Blancou, J.; Calvet, H. Fermentation microbienne de produits végétaux destinés à l’alimentation du bétail au Sénégal. II-Application à l’amélioration de la digestibilité in vivo. Rev. Elev. Med. Vet. Pays Trop. 1979, 33, 77–80. [Google Scholar] [CrossRef]
- Kagambèga, B.; Cissé, H.; Tapsoba, F.; Sawadoga, A.; Zongo, C.; Traoré, Y.; Savadogo, A. Bouillies fermentées traditionnelles à base de céréales au Burkina Faso: Diversité, technologies de production et microorganismes à potentiel probiotique associés. Rev. Sci. Technol. 2019, 25, 12–24. [Google Scholar]
- Yao, A.; Egounlety, M.; Kouame, L.; Thonart, P. Les bactéries lactiques dans les aliments ou boissons amylacés et fermentés de l’Afrique de l’Ouest: Leur utilisation actuelle. Ann. Méd. Vét. 2009, 153, 54–65. [Google Scholar]
- Bekhouche, F.; Merabti, R.; Bailly, J. Lemzeiet traditional couscous manufacture from fermented wheat (Algeria): Investigation of the process and estimation of the technological and nutritional quality. Afr. J. Sci. Technol. 2013, 4, 167–175. [Google Scholar] [CrossRef]
- Lorn, D. Screening of Lactic acid Bacteria for Their Use as Aromatic Starters during Fermentation of Vegetables. Ph.D. Thesis, Université Bourgogne-Franche-Comté, Besançon, France, 2020. [Google Scholar]
- Yang, X.; Hu, W.; Xiu, Z.; Jiang, A.; Yang, X.; Ji, Y.; Guan, Y.; Feng, K. Microbial dynamics and volatilome profiles during the fermentation of Chinese northeast sauerkraut by Leuconostoc mesenteroides ORC 2 and Lactobacillus plantarum HBUAS 51041 under different salt concentrations. Food Res. Int. 2020, 130, 108926. [Google Scholar] [CrossRef] [PubMed]
- Melcion, J. La granulométrie de l’aliment: Principe, mesure et obtention. INRAE Prod. Anim. 2000, 13, 81–97. [Google Scholar] [CrossRef]
- Chamayou, A.; Fages, J. Broyage dans les industries agroalimentaires. In Technologie des Pulvérulents Dans les IAA; Ilari, J.-L., Melcion, J.-P., Eds.; Sciences & Techniques Agroalimentaires; Lavoisier: Cachan, France, 2003; Chapter 13; pp. 375–406. [Google Scholar]
- Correia, I.; Nunes, A.; Guedes, S.; Barros, A.S.; Delgadillo, I. Screening of lactic acid bacteria potentially useful for sorghum fermentation. J. Cereal Sci. 2010, 52, 9–15. [Google Scholar] [CrossRef]
- Onyango, C.; Ochanda, S.; Mwasaru, M.; Ochieng, J.; Mathooko, F.M.; Kinyuru, J. Effects of malting and fermentation on anti-nutrient reduction and protein digestibility of red sorghum, white sorghum and pearl millet. J. Food Res. 2013, 2, 41. [Google Scholar] [CrossRef]
- Ravisankar, S.; Dizlek, H.; Awika, J.M. Changes in extractable phenolic profile during natural fermentation of wheat, sorghum and teff. Food Res. Int. 2021, 145, 110426. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-García, J.; Muñoz-Pina, S.; García-Hernández, J.; Heredia, A.; Andrés, A. Fermented quinoa flour: Implications of fungal solid-state bioprocessing and drying on nutritional and antioxidant properties. LWT 2023, 182, 114885. [Google Scholar] [CrossRef]
- Akinola, S.A.; Badejo, A.A.; Osundahunsi, O.F.; Edema, M.O. Effect of preprocessing techniques on pearl millet flour and changes in technological properties. Int. J. Food Sci. Technol. 2017, 52, 992–999. [Google Scholar] [CrossRef]
- Olamiti, G.; Takalani, T.; Beswa, D.; Jideani, A. Effect of malting and fermentation on colour, thermal properties, functional groups and crystallinity level of flours from pearl millet (Pennisetum glaucum) and sorghum (Sorghum bicolor). Heliyon 2020, 6, e05467. [Google Scholar] [CrossRef]
- Zhour, B. Etude de la Fabrication de la Farine et Contrôle de sa Qualité. Ph.D. Thesis, University Kasdi Merbah Ouargla, Ouargla, Algeria, 2013. [Google Scholar]
- FAO. Céréales, légumes secs, légumineuses, produits dérivés et protéines végétales. In Codex Alimentarius; FAO: Rome, Italy, 1996; Volume 7, pp. 65–69. [Google Scholar]
- Abdelseed, B.; Abdalla, A.; Mohamed, A.I.; Babiker, E. Some nutritional attributes of selected newly developed lines of sorghum (Sorghum bicolor) after fermentation. J. Agric. Sci. Technol. 2011, 13, 399–409. [Google Scholar]
- Nabila, B.; Tayeb, I. Traditional fermented wheat: Nutritional quality and sensory evaluation of bread produced from composite fermented wheat flour. Carpath. J. Food Sci. Technol. 2020, 12, 37–46. [Google Scholar] [CrossRef]
- Fadlallah, O.E.; Abdullahi, H.; Babiker, E.E. Effect of fermentation on biochemical characteristics of sorghum flour supplemented with chickpea flour. J. Appl. Sci. Res. 2010, 6, 860–865. [Google Scholar]
- Jood, S.; Khetarpaul, N.; Goyal, R. Effect of germination and probiotic fermentation on pH, titratable acidity, dietary fibre, β-glucan and vitamin content of sorghum based food mixtures. J. Nutr. Food Sci. 2012, 2, 1–4. [Google Scholar] [CrossRef]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J.B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar] [CrossRef] [PubMed]
- Emmambux, N.M.; Taylor, J.R. Sorghum kafirin interaction with various phenolic compounds. J. Sci. Food Agric. 2003, 83, 402–407. [Google Scholar] [CrossRef]
- Oloyede, O.O.; James, S.; Ocheme, O.B.; Chinma, C.E.; Akpa, V.E. Effects of fermentation time on the functional and pasting properties of defatted M oringa oleifera seed flour. Food Sci. Nutr. 2016, 4, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Siwatch, M.; Yadav, R.B.; Yadav, B.S. Thermal, pasting, and rheological properties of processed buckwheat (Fagopyrum esculentum). Asian J. Pharm. Clin. Res. 2017, 10, 134–137. [Google Scholar] [CrossRef]
- Kumoro, A.C.; Hidayat, J.P. Functional and thermal properties of flour obtained from submerged fermentation of durian (Durio zibethinus Murr.) seed chips using Lactobacillus plantarum. Potravin. Slovak J. Food Sci. 2018, 12, 607–614. [Google Scholar] [CrossRef]
- Yuliana, N.; Nurdjanah, S.; Setyani, S.; Novianti, D. He benefits of fermentation in improving the pasting properties of composite sweet potato flour and its application in composite white salted noodles. Food Res. 2023, 7, 120–127. [Google Scholar] [CrossRef]
- Díaz, A.; Dini, C.; Viña, S.Z.; García, M.A. Technological properties of sour cassava starches: Effect of fermentation and drying processes. LWT 2018, 93, 116–123. [Google Scholar] [CrossRef]
- Guo, L.; Tao, H.; Cui, B.; Janaswamy, S. The effects of sequential enzyme modifications on structural and physicochemical properties of sweet potato starch granules. Food Chem. 2019, 277, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Wiczkowski, W.; Szawara-Nowak, D.; Topolska, J. Changes in the content and composition of anthocyanins in red cabbage and its antioxidant capacity during fermentation, storage and stewing. Food Chem. 2015, 167, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-López, J.; Ruiz-Medina, A.; Ortega-Barrales, P.; Llorent-Martínez, E. Phytochemical profile and antioxidant activity of caper berries (Capparis spinosa L.): Evaluation of the influence of the fermentation process. Food Chem. 2018, 250, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Bei, Q.; Wu, Z.; Chen, G. Dynamic changes in the phenolic composition and antioxidant activity of oats during simultaneous hydrolysis and fermentation. Food Chem. 2020, 305, 125269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Cen, Q.; Hu, W.; Chen, H.; Hui, F.; Li, J.; Zeng, X.; Qin, L. Metabolite profiling, antioxidant and anti-glycemic activities of Tartary buckwheat processed by solid-state fermentation (SSF) with Ganoderma lucidum. Food Chem. X 2024, 22, 101376. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-S.; Eweys, A.S.; Zhang, J.-Y.; Zhu, Y.; Bai, J.; Darwesh, O.M.; Zhang, H.-B.; Xiao, X. Fermentation affects the antioxidant activity of plant-based food material through the release and production of bioactive components. Antioxidants 2021, 10, 2004. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Mu, T.; Ma, M.; Sun, H.; Zhao, G. Nutritional composition, antioxidant activity, volatile compounds, and stability properties of sweet potato residues fermented with selected lactic acid bacteria and bifidobacteria. Food Chem. 2022, 374, 131500. [Google Scholar] [CrossRef] [PubMed]
- Yue, Q.; Wang, Z.; Yu, F.; Tang, X.; Su, L.; Zhang, S.; Sun, X.; Li, K.; Zhao, C.; Zhao, L. Changes in metabolite profiles and antioxidant and hypoglycemic activities of Laminaria japonica after fermentation. LWT 2022, 158, 113122. [Google Scholar] [CrossRef]
- Tong, T.; Wang, Y.-n.; Zhang, C.-M.; Kang, S.-G. In vitro and in vivo antihypertensive and antioxidant activities of fermented roots of Allium hookeri. Chin. Herb. Med. 2021, 13, 541–548. [Google Scholar] [CrossRef]
- Akbari, M.; Razavi, S.H.; Khodaiyan, F.; Blesa, J.; Esteve, M.J. Fermented corn bran: A by-product with improved total phenolic content and antioxidant activity. LWT 2023, 184, 115090. [Google Scholar] [CrossRef]
- Oladimeji, B.M.; Adebo, O.A. Properties and metabolite profiling of Bambara groundnut flour as affected by different food processing conditions. Appl. Food Res. 2024, 4, 100389. [Google Scholar] [CrossRef]
- Tsui, C.-Y.; Yang, C.-Y. Evaluation of semi-solid-state fermentation of Elaeocarpus serratus L. leaves and black soymilk by Lactobacillus plantarum on bioactive compounds and antioxidant capacity. Foods 2021, 10, 704. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Et Biophys. Sin. 2007, 39, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Bock, J.E.; Damodaran, S. Bran-induced changes in water structure and gluten conformation in model gluten dough studied by Fourier transform infrared spectroscopy. Food Hydrocoll. 2013, 31, 146–155. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, W.; Wang, Y.; Wang, Q. Second-order derivation fourier transform infrared spectral analysis of regenerated wool keratin structural changes. AATCC J. Res. 2022, 9, 43–48. [Google Scholar] [CrossRef]
- van Velzen, E.J.; van Duynhoven, J.P.; Pudney, P.; Weegels, P.L.; van der Maas, J.H. Factors associated with dough stickiness as sensed by attenuated total reflectance infrared spectroscopy. Cereal Chem. 2003, 80, 378–382. [Google Scholar] [CrossRef]
- Yasar, S.; Tosun, R.; Sonmez, Z. Fungal fermentation inducing improved nutritional qualities associated with altered secondary protein structure of soybean meal determined by FTIR spectroscopy. Measurement 2020, 161, 107895. [Google Scholar] [CrossRef]
- Alrosan, M.; Tan, T.-C.; Mat Easa, A.; Gammoh, S.; Alu’datt, M.H. Effects of fermentation on the quality, structure, and nonnutritive contents of lentil (Lens culinaris) proteins. J. Food Qual. 2021, 2021, 1–7. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Jiang, L.; Qi, B.; Zhou, L. Relationship between secondary structure and surface hydrophobicity of soybean protein isolate subjected to heat treatment. J. Chem. 2014, 2014, 1–10. [Google Scholar] [CrossRef]
- Carbonaro, M.; Maselli, P.; Nucara, A. Relationship between digestibility and secondary structure of raw and thermally treated legume proteins: A Fourier transform infrared (FT-IR) spectroscopic study. Amino Acids 2012, 43, 911–921. [Google Scholar] [CrossRef]
- Salazar-Villanea, S.; Hendriks, W.; Bruininx, E.; Gruppen, H.; Van Der Poel, A. Protein structural changes during processing of vegetable feed ingredients used in swine diets: Implications for nutritional value. Nutr. Res. Rev. 2016, 29, 126–141. [Google Scholar] [CrossRef] [PubMed]
- Raza, H.; Ameer, K.; Ma, H.; Liang, Q.; Ren, X. Structural and physicochemical characterization of modified starch from arrowhead tuber (Sagittaria sagittifolia L.) using tri-frequency power ultrasound. Ultrason. Sonochem. 2021, 80, 105826. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Xiao, L.; Zhou, Y.; Zhao, G. Spontaneous fermentation tunes the physicochemical properties of sweet potato starch by modifying the structure of starch molecules. Carbohydr. Polym. 2019, 213, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Hui, X.G.; Qiang, Y.; Hua, L.X. Improvement in corn flour applicability using lactic acid fermentation: A mechanistic study. Starch Stärke 2017, 69, 1600219. [Google Scholar] [CrossRef]
- Hernández-Uribe, J.P.; Ramos-López, G.; Yee-Madeira, H.; Bello-Pérez, L.A. Physicochemical, rheological and structural characteristics of starch in maize tortillas. Plant Foods Hum. Nutr. 2010, 65, 152–157. [Google Scholar] [CrossRef]
Acorns | Sorghum | Total | |
---|---|---|---|
Number of respondents | 60 | 20 | 80 |
Type of process | |||
Outside the Matmor | 58 | 13 | 71 |
Inside the Matmor | 2 | 7 | 9 |
Gender | |||
Women | 59 | 0 | 59 |
Men | 1 | 20 | 21 |
Age | |||
28–39 | 16 | 05 | 21 |
40–59 | 34 | 08 | 42 |
60–86 | 10 | 07 | 17 |
Study level | |||
Illiterate | 13 | 09 | 22 |
Primary, secondary | 39 | 11 | 50 |
University | 08 | 00 | 8 |
Flours | NAF | FAF | NSF | FSF |
---|---|---|---|---|
pH | 5.60 ± 0.01 b | 4.37 ± 0.01 d | 6.48 ± 0.02 a | 4.99 ± 0.01 c |
Color | ||||
L* | 83.92 ± 0.22 a | 62.25 ± 0.29 d | 64.44 ± 0.37 c | 71.54 ± 0.37 b |
a* | 4.07 ± 0.12 c | 6.53 ± 0.30 a | 5.55 ± 0.41 b | 5.41 ± 0.17 b |
b* | 13.93 ± 0.08 a | 12.87 ± 0.78 a | 7.16 ± 0.33 c | 11.37 ± 0.41 b |
ΔE | - | 21.55 | - | 8.25 |
Flours | NAF | FAF | NSF | FSF |
---|---|---|---|---|
Moisture (%) | 9.277 ± 0.0001 c | 10.474 ± 0.001 a | 9.481 ± 0.001 b | 9.172 ± 0.003 d |
Protein (%) | 7.22 ± 0.04 c | 5.40 ± 0.02 d | 10.37 ± 0.04 a | 9.91 ± 0.12 b |
Fat (%) | 8.28 ± 0.002 b | 13.59 ± 0.001 a | 4.02 ± 0.02 c | 3.65 ± 0.01 d |
TF (%) | 18.07 ± 0.001 d | 26.69 ± 0.01 c | 36.35 ± 0.03 a | 30.06 ± 0.02 b |
SF (%) | 2.98 ± 0.01 a | 2.27 ± 0.01 b | 1.96 ± 0.001 d | 2.04 ± 0.02 c |
IF (%) | 15.09 ± 0.02 d | 24.42 ± 0.02 b | 28.01 ± 0.01 a | 24.26 ± 0.04 c |
Ash (%) | 2.25 ± 0.001 c | 1.29 ± 0.001 d | 2.44 ± 0.001 b | 2.50 ± 0.001 a |
Flours | NAF | FAF | NSF | FSF |
---|---|---|---|---|
WRC (g/g) | 1.88 ± 0.01 a | 1.79 ± 0.001 b | 1.65 ± 0.001 c | 1.30 ± 0.01 d |
ORC (g/g) | 0.58 ± 0.02 c | 0.40 ± 0.001 d | 1.51 ± 0.14 a | 1.16 ± 0.02 b |
SC (%) | 47.73 ± 0.02 a | 40.88 ± 0.02 b | 24.18 ± 0.02 c | 19.33 ± 0.02 d |
EC (%) | 10.72 ± 0.01 c | 10.32 ± 0.001 d | 16.66 ± 0.01 a | 16.59 ± 0.01 b |
Flours | NAF | FAF | NSF | FSF |
---|---|---|---|---|
OGT (°C) | 37.5 ± 0.8 c | 65.6 ± 1.1 b | 32.1 ± 1.5 d | 84.7 ± 0.2 a |
PVT (°C) | 92.9 ± 1.2 b | 92.9 ± 0.5 b | 35.0 ± 0.7 c | 93.5 ± 0.7 a |
OGV (mPas) | 17.0 ± 2.1 c | 21.0 ± 5.6 b | 40.0 ± 2.8 a | 17.0 ± 1.4 c |
PV (mPas) | 179.0 ± 4.2 b | 187.0 ± 12.7 a | 120.0 ± 7.7 d | 166.0 ± 7.0 c |
FV (mPas) | 206.0 ± 7.0 d | 266.0 ± 8.4 a | 186.0 ± 2.8 c | 255.0 ± 11.3 b |
Flours | NAF | FAF | NSF | FSF |
---|---|---|---|---|
TPC (mg GAE/g dw) | 10.16 ± 0.17 a | 9.17 ± 0.03 b | 4.89 ± 0.01 d | 7.80 ± 0.05 c |
TFC (mg QE/g dw) | 0.30 ± 0.001 c | 0.26 ± 0.04 d | 0.34 ± 0.01 b | 0.44 ± 0.01 a |
TAC (mg AAE/g dw) | 5.74 ± 0.04 a | 5.03 ± 0.05 b | 1.38 ± 0.01 d | 2.92 ± 0.02 c |
ABTS IC50 (mg dw/mL) | 0.0035 ± 0.0002 c | 0.0007 ± 0.0002 c | 0.4500 ± 0.0173 a | 0.0296 ± 0.0005 b |
DPPH IC50 (mg dw/mL) | 0.19 ± 0.001 c | 0.34 ± 0.001 c | 4.09 ± 0.01 b | 9.57 ± 0.24 a |
RED A0.5 (mg dw/mL) | 0.19 ± 0.02 d | 2.72 ± 0.17 c | 21.31 ± 0.46 a | 5.18 ± 0.06 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belmouloud, R.; Bourekoua, H.; Wójtowicz, A.; Mahroug, H.; Ayad, R.; Krajewska, M.; Różyło, R. Physicochemical, Functional, Antioxidant, Pasting and FT-IR Spectroscopic Properties of Fermented Acorns and Sorghum Using Traditional Algerian Processes. Processes 2024, 12, 1647. https://doi.org/10.3390/pr12081647
Belmouloud R, Bourekoua H, Wójtowicz A, Mahroug H, Ayad R, Krajewska M, Różyło R. Physicochemical, Functional, Antioxidant, Pasting and FT-IR Spectroscopic Properties of Fermented Acorns and Sorghum Using Traditional Algerian Processes. Processes. 2024; 12(8):1647. https://doi.org/10.3390/pr12081647
Chicago/Turabian StyleBelmouloud, Rayene, Hayat Bourekoua, Agnieszka Wójtowicz, Hamida Mahroug, Radia Ayad, Marta Krajewska, and Renata Różyło. 2024. "Physicochemical, Functional, Antioxidant, Pasting and FT-IR Spectroscopic Properties of Fermented Acorns and Sorghum Using Traditional Algerian Processes" Processes 12, no. 8: 1647. https://doi.org/10.3390/pr12081647
APA StyleBelmouloud, R., Bourekoua, H., Wójtowicz, A., Mahroug, H., Ayad, R., Krajewska, M., & Różyło, R. (2024). Physicochemical, Functional, Antioxidant, Pasting and FT-IR Spectroscopic Properties of Fermented Acorns and Sorghum Using Traditional Algerian Processes. Processes, 12(8), 1647. https://doi.org/10.3390/pr12081647