Deep Learning Framework for Accurate Static and Dynamic Prediction of CO2 Enhanced Oil Recovery and Storage Capacity
Abstract
:1. Introduction
2. Methodology
2.1. Description of Numerical Models for Field-Scale Oil Reservoirs
2.2. Data Preparation
2.3. LightTrans Model Framework
- Gradient-based one-sided sampling (GOSS): Only samples with larger absolute values of gradients are sampled without traversing all samples. Therefore, the amount of calculation is reduced while maintaining the representativeness of the data.
- Histogram-based algorithm: By bucketing continuous feature values into discrete histograms, memory usage is significantly reduced, and time complexity is greatly reduced.
- Exclusive feature bundling (EFB): Bundling mutually exclusive features together reduces the number of processed features and improves the efficiency of the algorithm without reducing accuracy.
- Leaf-wise growth strategy with depth constraints: Compared with the traditional level-wise growth strategy, the leaf-wise strategy pays more attention to areas with higher error rates, effectively reduces the risk of overfitting, and maintains the accuracy of the model.
2.4. Evaluation Indicators
3. Results and Discussion
3.1. Preliminary Intelligent Evaluation and Model Hyperparameter Adjustment
3.2. Prediction Performance of TransLight Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Solomon, S.; Plattner, G.-K.; Knutti, R.; Friedlingstein, P. Irreversible Climate Change Due to Carbon Dioxide Emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Pan, S.-Y.; Li, H.; Cai, J.; Olabi, A.G.; Anthony, E.J.; Manovic, V. Recent Advances in Carbon Dioxide Utilization. Renew. Sustain. Energy Rev. 2020, 125, 109799. [Google Scholar] [CrossRef]
- Yan, Y.; Borhani, T.N.; Subraveti, S.G.; Pai, K.N.; Prasad, V.; Rajendran, A.; Nkulikiyinka, P.; Asibor, J.O.; Zhang, Z.; Shao, D.; et al. Harnessing the Power of Machine Learning for Carbon Capture, Utilisation, and Storage (CCUS)—A State-of-the-Art Review. Energy Environ. Sci. 2021, 14, 6122–6157. [Google Scholar] [CrossRef]
- Gao, X.; Yang, S.; Tian, L.; Shen, B.; Bi, L.; Zhang, Y.; Wang, M.; Rui, Z. System and Multi-Physics Coupling Model of Liquid-CO2 Injection on CO2 Storage with Enhanced Gas Recovery (CSEGR) Framework. Energy 2024, 294, 130951. [Google Scholar] [CrossRef]
- Dou, L.; Sun, L.; Lyu, W.; Wang, M.; Gao, F.; Gao, M.; Jiang, H. Trend of Global Carbon Dioxide Capture, Utilization and Storage Industry and Challenges and Countermeasures in China. Pet. Explor. Dev. 2023, 50, 1246–1260. [Google Scholar] [CrossRef]
- Sun, Q.; Ampomah, W.; Kutsienyo, E.J.; Appold, M.; Adu-Gyamfi, B.; Dai, Z.; Soltanian, M.R. Assessment of CO2 Trapping Mechanisms in Partially Depleted Oil-Bearing Sands. Fuel 2020, 278, 118356. [Google Scholar] [CrossRef]
- Ampomah, W.; Balch, R.S.; Cather, M.; Will, R.; Gonda, D.; Dai, Z.; Soltanian, M.R. Optimum Design of CO2 Storage and Oil Recovery under Geological Uncertainty. Appl. Energy 2017, 195, 80–92. [Google Scholar] [CrossRef]
- Yuan, S.; Ma, D.; Li, J.; Zhou, T.; Ji, Z.; Han, H. Progress and Prospects of Carbon Dioxide Capture, EOR-Utilization and Storage Industrialization. Pet. Explor. Dev. 2022, 49, 955–962. [Google Scholar] [CrossRef]
- Song, X.; Wang, F.; Ma, D.; Gao, M.; Zhang, Y. Progress and prospect of carbon dioxide capture, utilization and storage in CNPC oilfields. Pet. Explor. Dev. 2023, 50, 229–244. [Google Scholar] [CrossRef]
- Thanh, H.V.; Sugai, Y.; Sasaki, K. Application of Artificial Neural Network for Predicting the Performance of CO2 Enhanced Oil Recovery and Storage in Residual Oil Zones. Sci. Rep. 2020, 10, 18204. [Google Scholar] [CrossRef]
- You, J.; Ampomah, W.; Sun, Q.; Kutsienyo, E.J.; Balch, R.S.; Dai, Z.; Cather, M.; Zhang, X. Machine Learning Based Co-Optimization of Carbon Dioxide Sequestration and Oil Recovery in CO2-EOR Project. J. Clean. Prod. 2020, 260, 120866. [Google Scholar] [CrossRef]
- Ren, B.; Male, F.; Duncan, I.J. Economic Analysis of CCUS: Accelerated Development for CO2 EOR and Storage in Residual Oil Zones under the Context of 45Q Tax Credit. Appl. Energy 2022, 321, 119393. [Google Scholar] [CrossRef]
- Chen, H.; Liu, X.; Zhang, C.; Tan, X.; Yang, R.; Yang, S.; Yang, J. Effects of Miscible Degree and Pore Scale on Seepage Characteristics of Unconventional Reservoirs Fluids Due to Supercritical CO2 Injection. Energy 2022, 239, 122287. [Google Scholar] [CrossRef]
- Gao, X.; Yang, S.; Shen, B.; Tian, L.; Li, S.; Zhang, X.; Wang, J. Influence of Reservoir Spatial Heterogeneity on a Multicoupling Process of CO2 Geological Storage. Energy Fuels 2023, 37, 14991–15005. [Google Scholar] [CrossRef]
- Li, Z.; Su, Y.; Li, L.; Hao, Y.; Wang, W.; Meng, Y.; Zhao, A. Evaluation of CO2 Storage of Water Alternating Gas Flooding Using Experimental and Numerical Simulation Methods. Fuel 2022, 311, 122489. [Google Scholar] [CrossRef]
- Hu, J.; Yang, S.; Yang, K.; Deng, H.; Wang, M.; Li, J.; Gao, X. Enhanced Gas Recovery Coupled with CO2 Sequestration in Tight Sandstone Reservoirs with Different Pore-Throat Structures. Energy Fuels 2024, 38, 12005–12023. [Google Scholar] [CrossRef]
- Moosavi, S.R.; Wood, D.A.; Samadani, S.A. Modeling Performance of Foam-CO2 Reservoir Flooding with Hybrid Machine-Learning Models Combining a Radial Basis Function and Evolutionary Algorithms. Comput. Res. Prog. Appl. Sci. Eng. 2020, 6, 1–8. [Google Scholar]
- Chen, B.; Pawar, R.J. Characterization of CO2 Storage and Enhanced Oil Recovery in Residual Oil Zones. Energy 2019, 183, 291–304. [Google Scholar] [CrossRef]
- You, J.; Ampomah, W.; Sun, Q. Co-Optimizing Water-Alternating-Carbon Dioxide Injection Projects Using a Machine Learning Assisted Computational Framework. Appl. Energy 2020, 279, 115695. [Google Scholar] [CrossRef]
- Asante, J.; Ampomah, W.; Tu, J.; Cather, M. Data-Driven Modeling for Forecasting Oil Recovery: A Timeseries Neural Network Approach for Tertiary CO2 WAG EOR. Geoenergy Sci. Eng. 2024, 233, 212555. [Google Scholar] [CrossRef]
- Iskandar, U.P.; Kurihara, M. Time-Series Forecasting of a CO2-EOR and CO2 Storage Project Using a Data-Driven Approach. Energies 2022, 15, 4768. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Huang, Z.; Chen, Z. Comparison of Different Machine Learning Algorithms for Predicting the SAGD Production Performance. J. Pet. Sci. Eng. 2021, 202, 108559. [Google Scholar] [CrossRef]
- Shen, B.; Yang, S.; Hu, J.; Gao, Y.; Xu, H.; Gao, X.; Chen, H. Application of Heterogeneous Ensemble Learning for CO2—Brine Interfacial Tension Prediction: Implications for CO2 Storage. Energy Fuels 2024, 38, 4401–4416. [Google Scholar] [CrossRef]
- Lim, B.; Arik, S.O.; Loeff, N.; Pfister, T. Temporal Fusion Transformers for Interpretable Multi-Horizon Time Series Forecasting. Int. J. Forecast. 2021, 37, 1748–1764. [Google Scholar] [CrossRef]
- Wu, B.; Wang, L.; Zeng, Y.-R. Interpretable Wind Speed Prediction with Multivariate Time Series and Temporal Fusion Transformers. Energy 2022, 252, 123990. [Google Scholar] [CrossRef]
- Zhang, H.; Zou, Y.; Yang, X.; Yang, H. A Temporal Fusion Transformer for Short-Term Freeway Traffic Speed Multistep Prediction. Neurocomputing 2022, 500, 329–340. [Google Scholar] [CrossRef]
- Hu, X. Stock Price Prediction Based on Temporal Fusion Transformer. In Proceedings of the 2021 3rd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Taiyuan, China, 3–5 December 2021; pp. 60–66. [Google Scholar]
- Sheng, K.; Jiang, G.; Du, M.; He, Y.; Dong, T.; Yang, L. Interpretable Knowledge-Guided Framework for Modeling Reservoir Water-Sensitivity Damage Based on Light Gradient Boosting Machine Using Bayesian Optimization and Hybrid Feature Mining. Eng. Appl. Artif. Intell. 2024, 133, 108511. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2023, arXiv:1706.03762. [Google Scholar]
- Shen, B.; Yang, S.; Gao, X.; Li, S.; Ren, S.; Chen, H. A Novel CO2-EOR Potential Evaluation Method Based on BO-LightGBM Algorithms Using Hybrid Feature Mining. Geoenergy Sci. Eng. 2023, 222, 211427. [Google Scholar] [CrossRef]
- Ettehadtavakkol, A.; Lake, L.W.; Bryant, S.L. CO2-EOR and Storage Design Optimization. Int. J. Greenh. Gas Control 2014, 25, 79–92. [Google Scholar] [CrossRef]
- Li, H.; Gong, C.; Liu, S.; Xu, J.; Imani, G. Machine Learning-Assisted Prediction of Oil Production and CO2 Storage Effect in CO2-Water-Alternating-Gas Injection (CO2-WAG). Appl. Sci. 2022, 12, 10958. [Google Scholar] [CrossRef]
- Feng, H.; Haidong, H.; Yanqing, W.; Jianfeng, R.; Liang, Z.; Bo, R.; Butt, H.; Shaoran, R.; Guoli, C. Assessment of Miscibility Effect for CO2 Flooding EOR in a Low Permeability Reservoir. J. Pet. Sci. Eng. 2016, 145, 328–335. [Google Scholar] [CrossRef]
- Jia, B.; Tsau, J.-S.; Barati, R. A Review of the Current Progress of CO2 Injection EOR and Carbon Storage in Shale Oil Reservoirs. Fuel 2019, 236, 404–427. [Google Scholar] [CrossRef]
- Izadmehr, M.; Daryasafar, A.; Bakhshi, P.; Tavakoli, R.; Ghayyem, M.A. Determining Influence of Different Factors on Production Optimization by Developing Production Scenarios. J. Pet. Explor. Prod. Technol. 2018, 8, 505–520. [Google Scholar] [CrossRef]
- Wen, G.; Li, Z.; Long, Q.; Azizzadenesheli, K.; Anandkumar, A.; Benson, S.M. Real-Time High-Resolution CO2 Geological Storage Prediction Using Nested Fourier Neural Operators. Energy Environ. Sci. 2023, 16, 1732–1741. [Google Scholar] [CrossRef]
- Wen, G.; Hay, C.; Benson, S.M. CCSNet: A Deep Learning Modeling Suite for CO2 Storage. Adv. Water Resour. 2021, 155, 104009. [Google Scholar] [CrossRef]
Characteristics | Value |
---|---|
Reservoir temperature/°C | 82.6 |
Geological reserves/million tons | 1.69 |
Original formation pressure/MPa | 28.8 |
Average permeability/mD | 6.9 |
Average porosity/% | 12.5 |
Average water saturation | 0.58 |
Number of grids | 9000 |
Component | Mole Percentage |
---|---|
CO2 | 0.02 |
N2 | 1.32 |
C1 | 41.57 |
C2 | 7.46 |
C3 | 6.76 |
iC4 | 3.72 |
nC4 | 3.13 |
iC5 | 2.55 |
nC5 | 1.45 |
C6 | 2.65 |
C7+ | 29.3 |
Sum | 100 |
Parameters | Unit | Min | Max |
---|---|---|---|
Gas injection time | day | 100 | 360 |
Water injection time | day | 100 | 360 |
Gas injection rate | m3/day | 80,000 | 180,000 |
Water injection rate | m3/day | 160 | 360 |
Bottom hole pressure of production wells | MPa | 22 | 33 |
Maximum total surface liquid production of production wells | m3/day | 10 | 25 |
Static Targets | Train | Test | ||
---|---|---|---|---|
R2 | MAPE | R2 | MAPE | |
Cumulative oil production | 0.9960 | 0.0020 | 0.9426 | 0.0085 |
CO2 storage amount | 0.9982 | 0.0053 | 0.9616 | 0.0262 |
Net Present Value | 0.9957 | 0.0019 | 0.9404 | 0.0081 |
Dynamic Targets | R2 | MAPE |
---|---|---|
Oil production rate | 0.9998 | 0.0016 |
CO2 production rate | 0.9997 | 0.0047 |
Time-varying CO2 storage amount | 0.9998 | 0.0012 |
Average | 0.9998 | 0.0025 |
GASI (m3/day) | WATI (m3/day) | GAS TIME (day) | WATER TIME (day) | PRO BHP (MPa) | PRO STL (m3/day) | |
---|---|---|---|---|---|---|
Case 1 | 115,108.04 | 311.63 | 128.18 | 254.38 | 24.14 | 15.63 |
Case 2 | 119,860.58 | 285.90 | 216.38 | 299.69 | 23.04 | 15.67 |
Case 3 | 133,017.68 | 236.13 | 297.72 | 162.79 | 27.75 | 17.93 |
Case 4 | 150,117.93 | 312.88 | 291.12 | 224.79 | 25.20 | 20.78 |
Model | R2 | MAPE |
---|---|---|
ARIMA | * | 0.3329 |
LSTM | 0.9606 | 0.0465 |
GRU | 0.9795 | 0.0258 |
TransLight | 0.9998 | 0.0025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Z.; Shen, B.; Yang, J.; Yang, K.; Zhang, Y.; Yang, S. Deep Learning Framework for Accurate Static and Dynamic Prediction of CO2 Enhanced Oil Recovery and Storage Capacity. Processes 2024, 12, 1693. https://doi.org/10.3390/pr12081693
Xiao Z, Shen B, Yang J, Yang K, Zhang Y, Yang S. Deep Learning Framework for Accurate Static and Dynamic Prediction of CO2 Enhanced Oil Recovery and Storage Capacity. Processes. 2024; 12(8):1693. https://doi.org/10.3390/pr12081693
Chicago/Turabian StyleXiao, Zhipeng, Bin Shen, Jiguang Yang, Kun Yang, Yanbin Zhang, and Shenglai Yang. 2024. "Deep Learning Framework for Accurate Static and Dynamic Prediction of CO2 Enhanced Oil Recovery and Storage Capacity" Processes 12, no. 8: 1693. https://doi.org/10.3390/pr12081693
APA StyleXiao, Z., Shen, B., Yang, J., Yang, K., Zhang, Y., & Yang, S. (2024). Deep Learning Framework for Accurate Static and Dynamic Prediction of CO2 Enhanced Oil Recovery and Storage Capacity. Processes, 12(8), 1693. https://doi.org/10.3390/pr12081693