Deep Learning Prediction of Moisture and Color Kinetics of Apple Slices by Long Short-Term Memory as Affected by Blanching and Hot-Air Drying Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Experimental Equipment and Design for Drying
2.3. Drying Kinetics
2.4. Determination of Color
2.5. Neural Networks
2.5.1. Construction of Dataset
2.5.2. Deep Learning Model
2.5.3. Training of the Model
2.6. Stability Analysis
3. Results and Analyses
3.1. Effect of Different Temperatures on Drying Characteristics and Color of Apple Slices
3.1.1. Effect of Temperature on Drying Characteristics of Apple Slices
3.1.2. Effect of Different Temperatures on Color Parameters of Apple Slices
3.2. Effect of Steam Blanching Time on Drying Characteristics and Color of Apple Slices
3.2.1. Effect of Blanching Time on Drying Characteristics of Apple Slices
3.2.2. Effect of Blanching Time on the Color of Apple Slices
4. Construction of the Apple Slice Prediction Model
4.1. Results of Moisture Content by Predicted Models
4.2. Results of ΔE by Predicted Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 2 May 2024).
- Tepe, T.K.; Tepe, B. The Comparison of Drying and Rehydration Characteristics of Intermittent-Microwave and Hot-Air Dried-Apple Slices. Heat Mass Transf. 2020, 56, 3047–3057. [Google Scholar] [CrossRef]
- Zarein, M.; Samadi, S.H.; Ghobadian, B. Investigation of Microwave Dryer Effect on Energy Efficiency during Drying of Apple Slices. J. Saudi Soc. Agric. Sci. 2015, 14, 41–47. [Google Scholar] [CrossRef]
- Michalska, A.; Lech, K.; Figiel, A.; Łysiak, G.P. The Influence of Selected Drying Methods on the Physical Properties of Dried Apples Cv. Jonagold Grown in Different Locations in Europe. Int. J. Food Eng. 2017, 13, 20160312. [Google Scholar] [CrossRef]
- Teymori-Omran, M.; Askari Asli-Ardeh, E.; Taghinezhad, E.; Motevali, A.; Szumny, A.; Nowacka, M. Enhancing Energy Efficiency and Retention of Bioactive Compounds in Apple Drying: Comparative Analysis of Combined Hot Air–Infrared Drying Strategies. Appl. Sci. 2023, 13, 7612. [Google Scholar] [CrossRef]
- Shewale, S.R.; Rajoriya, D.; Hebbar, H.U. Low Humidity Air Drying of Apple Slices: Effect of EMR Pretreatment on Mass Transfer Parameters, Energy Efficiency and Quality. Innov. Food Sci. Emerg. Technol. 2019, 55, 1–10. [Google Scholar] [CrossRef]
- Nagaya, K.; Li, Y.; Jin, Z.; Fukumuro, M.; Ando, Y.; Akaishi, A. Low-Temperature Desiccant-Based Food Drying System with Airflow and Temperature Control. J. Food Eng. 2006, 75, 71–77. [Google Scholar] [CrossRef]
- Matys, A.; Witrowa-Rajchert, D.; Parniakov, O.; Wiktor, A. Assessment of the Effect of Air Humidity and Temperature on Convective Drying of Apple with Pulsed Electric Field Pretreatment. LWT 2023, 188, 115455. [Google Scholar] [CrossRef]
- Aradwad, P.P.; Thirumani Venkatesh, A.K.; Mani, I. Infrared Drying of Apple (Malus Domestica) Slices: Effect on Drying and Color Kinetics, Texture, Rehydration, and Microstructure. J. Food Process. Eng. 2023, 46, e14218. [Google Scholar] [CrossRef]
- Dajbych, O.; Kabutey, A.; Mizera, Č.; Herák, D. Investigation of the Effects of Infrared and Hot Air Oven Drying Methods on Drying Behaviour and Colour Parameters of Red Delicious Apple Slices. Processes 2023, 11, 3027. [Google Scholar] [CrossRef]
- Rurush, E.; Alvarado, M.; Palacios, P.; Flores, Y.; Rojas, M.L.; Miano, A.C. Drying Kinetics of Blueberry Pulp and Mass Transfer Parameters: Effect of Hot Air and Refractance Window Drying at Different Temperatures. J. Food Eng. 2022, 320, 110929. [Google Scholar] [CrossRef]
- Zeng, S.; Du, Z.; Lv, W.; Li, D.; Su, D.; Lv, H. Experimental Study on the Hygrothermal Dynamics of Peanut (Arachis hypogaea Linn.) in the Process of Superposition and Variable Temperature Drying. Dry. Technol. 2022, 40, 1463–1477. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Xie, Y.; Yu, X.; Zhu, G.; Gao, Z.; Xiao, H.; Liu, Y. Effects of relative humidity on the exterior quality of shiitake mushrooms (Lentinus edodes) during hot air drying. Trans. Chin. Soc. Agric. Eng. 2020, 36, 281–291. (In Chinese) [Google Scholar]
- Martynenko, A.; Misra, N.N. Machine Learning in Drying. Dry. Technol. 2020, 38, 596–609. [Google Scholar] [CrossRef]
- Sanaeifar, A.; Mohtasebi, S.S.; Ghasemi-Varnamkhasti, M.; Ahmadi, H. Application of MOS Based Electronic Nose for the Prediction of Banana Quality Properties. Measurement 2016, 82, 105–114. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, M.; Yang, P. Combination of LF-NMR and BP-ANN to Monitor Water States of Typical Fruits and Vegetables during Microwave Vacuum Drying. LWT 2019, 116, 108548. [Google Scholar] [CrossRef]
- Sabat, M.; Kotwaliwale, N.; Shelake, P.S. Real-Time Determination of Moisture Content of Potato Slices during Drying Using Long Short-Term Memory from Image Morphometric Parameters. Food Bioprod. Process. 2023, 140, 132–143. [Google Scholar] [CrossRef]
- Chen, F.; Gao, X.; Xia, X.; Xu, J. Using LSTM and PSO Techniques for Predicting Moisture Content of Poplar Fibers by Impulse-Cyclone Drying. PLoS ONE 2022, 17, e0266186. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.-L.; Li, Q.; Hu, Q.-P. Physicochemical Properties, Microstructures, Nutritional Components, and Free Amino Acids of Pleurotus Eryngii as Affected by Different Drying Methods. Sci. Rep. 2020, 10, 121. [Google Scholar] [CrossRef] [PubMed]
- Mowafy, S.; Guo, J.; Lei, D.; Liu, Y. Application of Novel Blanching and Drying Technologies Improves the Potato Drying Kinetics and Maintains Its Physicochemical Attributes and Flour Functional Properties. Innov. Food Sci. Emerg. Technol. 2024, 94, 103648. [Google Scholar] [CrossRef]
- Xiao, B.; Xiao, B.; Liu, X. Drying characteristic, quality, and process optimization of apple slices during two-stage relative humidity-controlled drying. Food Ferment. Ind. 2023, 49, 237–246. [Google Scholar] [CrossRef]
- Noshad, M.; Ghasemi, P. Influence of Freezing Pretreatments on Kinetics of Convective Air-Drying and Quality of Grapes. Food Biosci. 2020, 38, 100763. [Google Scholar] [CrossRef]
- Süfer, Ö.; Palazoğlu, T.K. A Study on Hot-Air Drying of Pomegranate. J. Therm. Anal. Calorim. 2019, 137, 1981–1990. [Google Scholar] [CrossRef]
- Li, M.; Chen, Y.; Wang, X.; Cheng, S.; Liu, F.; Huang, L. Determination of Drying Kinetics and Quality Changes of Panax Quinquefolium L. Dried in Hot-Blast Air. LWT 2019, 116, 108563. [Google Scholar] [CrossRef]
- Xie, J.; Jing, T.; Chen, B.; Peng, J.; Zhang, X.; He, P.; Yin, H.; Sun, D.; Wang, W.; Xiao, A.; et al. Method for Segmentation of Litchi Branches Based on the Improved DeepLabv3+. Agronomy 2022, 12, 2812. [Google Scholar] [CrossRef]
- Pei, Y.; Li, Z.; Song, C.; Li, J.; Xu, W.; Zhu, G. Analysis and Modelling of Temperature and Moisture Gradient for Ginger Slices in Hot Air Drying. J. Food Eng. 2022, 323, 111009. [Google Scholar] [CrossRef]
- Karimi, S.; Layeghinia, N.; Abbasi, H. Microwave Pretreatment Followed by Associated Microwave-Hot Air Drying of Gundelia tournefortii L.: Drying Kinetics, Energy Consumption and Quality Characteristics. Heat Mass Transf. 2021, 57, 133–146. [Google Scholar] [CrossRef]
- Bai, H.; Chu, Z.; Wang, D.; Bao, Y.; Qin, L.; Zheng, Y.; Li, F. Predictive Control of Microwave Hot-Air Coupled Drying Model Based on GWO-BP Neural Network. Dry. Technol. 2023, 41, 1148–1158. [Google Scholar] [CrossRef]
- Jiang, G.; Duan, Z.; Zhao, Q.; Li, D.; Luan, Y. Remaining Useful Life Prediction of Rolling Bearings Based on TCN-MSA. Meas. Sci. Technol. 2023, 35, 25125. [Google Scholar] [CrossRef]
- Berhich, A.; Belouadha, F.-Z.; Kabbaj, M.I. An Attention-Based LSTM Network for Large Earthquake Prediction. Soil Dyn. Earthq. Eng. 2023, 165, 107663. [Google Scholar] [CrossRef]
- Rayan, A.; Holyl Alruwaili, S.; Alaerjan, A.S.; Alanazi, S.; Taloba, A.I.; Shahin, O.R.; Salem, M. Utilizing CNN-LSTM Techniques for the Enhancement of Medical Systems. Alex. Eng. J. 2023, 72, 323–338. [Google Scholar] [CrossRef]
- Niu, Z.; Qi, H.; Sun, A.; Ren, Y.; He, M.; Gao, B. Efficient and Robust CNN-LSTM Prediction of Flame Temperature Aided Light Field Online Tomography. Sci. China Technol. Sci. 2024, 67, 271–284. [Google Scholar] [CrossRef]
- Moscetti, R.; Raponi, F.; Ferri, S.; Colantoni, A.; Monarca, D.; Massantini, R. Real-Time Monitoring of Organic Apple (Var. Gala) during Hot-Air Drying Using near-Infrared Spectroscopy. J. Food Eng. 2018, 222, 139–150. [Google Scholar] [CrossRef]
- Liu, H.; Jiao, J.; Tian, Y.; Liu, J.; Yuan, P.; Wu, X. Drying Kinetics of Pleurotus eryngii Slices during Hot Air Drying. Open Phys. 2022, 20, 265–273. [Google Scholar] [CrossRef]
- Liu, Z.-L.; Wei, Z.-Y.; Vidyarthi, S.K.; Pan, Z.; Zielinska, M.; Deng, L.-Z.; Wang, Q.-H.; Wei, Q.; Xiao, H.-W. Pulsed Vacuum Drying of Kiwifruit Slices and Drying Process Optimization Based on Artificial Neural Network. Dry. Technol. 2020, 39, 405–417. [Google Scholar] [CrossRef]
- Huang, X.; Li, Y.; Zhou, X.; Wang, J.; Zhang, Q.; Yang, X.; Zhu, L.; Geng, Z. Prediction of Apple Slices Drying Kinetic during Infrared-Assisted-Hot Air Drying by Deep Neural Networks. Foods 2022, 11, 3486. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, X.; Xiao, H.; Shan, C.; Li, Y.; Yang, T. Quality and Process Optimization of Infrared Combined Hot Air Drying of Yam Slices Based on BP Neural Network and Gray Wolf Algorithm. Foods 2024, 13, 434. [Google Scholar] [CrossRef]
- Xiao, H.-W.; Yao, X.-D.; Lin, H.; Yang, W.-X.; Meng, J.-S.; Gao, Z.-J. Effect of Ssb (Superheated Steam Blanching) Time and Drying Temperature on Hot Air Impingement Drying Kinetics and Quality Attributes of Yam Slices. J. Food Process. Eng. 2012, 35, 370–390. [Google Scholar] [CrossRef]
- Ramesh, M.N.; Wolf, W.; Tevini, D.; Jung, G. Influence of Processing Parameters on the Drying of Spice Paprika. J. Food Eng. 2001, 49, 63–72. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Wang, H.; Wang, S.; Lin, Z.; Zhao, L.; Xu, H. Ethanol and Blanching Pretreatments Change the Moisture Transfer and Physicochemical Properties of Apple Slices via Microstructure and Cell-Wall Polysaccharides Nanostructure Modification. Food Chem. 2022, 381, 132274. [Google Scholar] [CrossRef]
- Lin, Z.; Geng, Z.; Liang, W.; Zhu, H.; Ye, J.; Wang, J.; Xu, H. Steam Blanching and Ethanol Pretreatment Enhance Drying Rates and Improve the Quality Attributes of Apple Slices via Microstructure Modification. J. Food Process. Preserv. 2022, 46, e17256. [Google Scholar] [CrossRef]
- Xie, Y.-K.; Li, X.-Y.; Zhang, Y.; Zheng, Z.-A.; Huang, L.-Q.; Liu, D.-H.; Xiao, H.-W.; Liu, Y.-H. Effects of High-Humidity Hot Air Impingement Steaming on Gastrodia elata: Steaming Degree, Weight Loss, Texture, Drying Kinetics, Microstructure and Active Components. Food Bioprod. Process. 2021, 127, 255–265. [Google Scholar] [CrossRef]
- Wang, H.; Meng, J.-S.; Raghavan, G.S.V.; Orsat, V.; Yu, X.-L.; Liu, Z.-L.; Zheng, Z.-A.; Wang, S.-Y.; Xiao, H.-W. Vacuum-Steam Pulsed Blanching (VSPB) Enhances Drying Quality, Shortens the Drying Time of Gingers by Inactivating Enzymes, Altering Texture, Microstructure and Ultrastructure. LWT 2022, 154, 112714. [Google Scholar] [CrossRef]
- Dag, D.; Farmanfarmaee, A.; Kong, F.; Jung, J.; McGorrin, R.J.; Zhao, Y. Feasibility of Simultaneous Drying and Blanching Inshell Hazelnuts (Corylus avellana L.) Using Hot Air–Assisted Radio Frequency (HARF) Heating. Food Bioprocess Technol. 2023, 16, 404–419. [Google Scholar] [CrossRef]
- Moscetti, R.; Raponi, F.; Monarca, D.; Bedini, G.; Ferri, S.; Massantini, R. Effects of Hot-Water and Steam Blanching of Sliced Potato on Polyphenol Oxidase Activity. Int. J. Food Sci. Technol. 2019, 54, 403–411. [Google Scholar] [CrossRef]
- Zhang, A.-A.; Ha, B.-E.; Chen, C.; Xu, M.-Q.; Wang, Q.-H.; Xie, L.; Zheng, Z.-A.; Zhang, J.-S.; Lv, W.-Q.; Xiao, H.-W. Vacuum-Steam Pulsed Blanching: An Emerging Method to Enhance Texture Softening, Drying Behavior and Physicochemical Properties of Cornus officinalis. J. Food Sci. 2024, 89, 202–216. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shi, Q.; Gao, T.; Zhang, Z.; Guo, C.; Fu, H.; Wang, Y. Developing Radio Frequency Blanching Process of Apple Slice. J. Food Eng. 2020, 273, 109832. [Google Scholar] [CrossRef]
- Li, Q.; Guan, X.; Liu, J. A CNN-LSTM Framework for Flight Delay Prediction. Expert Syst. Appl. 2023, 227, 120287. [Google Scholar] [CrossRef]
- Sun, P.; Wang, J.; Yan, Z. Ultra-Short-Term Wind Speed Prediction Based on TCN-MCM-EKF. Energy Rep. 2024, 11, 2127–2140. [Google Scholar] [CrossRef]
- Wang, H.; Che, G.; Wan, L.; Wang, X.; Tang, H. Combination of LF-NMR and BP-ANN to Monitor the Moisture Content of Rice during Hot-Air Drying. J. Food Process. Eng. 2022, 45, e14102. [Google Scholar] [CrossRef]
- Sabat, M.; Kotwaliwale, N.; Chakraborty, S.K.; Kumar, M. Long Short-Term Memory Based Real-Time Monitoring of Potato Slice Drying Using Image Chromatic Features. J. Food Process. Preserv. 2022, 46, e17232. [Google Scholar] [CrossRef]
- Zhou, H.; Huang, M.; Zhu, Q.; Zhang, M. Developing C-LSTM Model for Evaluating Moisture Content of Carrot Slices during Drying. Dry. Technol. 2022, 40, 2964–2974. [Google Scholar] [CrossRef]
- Jalal Uddin, M.; Li, Y.; Abdus Sattar, M.; Mistry, S. Climatic water balance forecasting with machine learning and deep learning models over Bangladesh. Int. J. Climatol. 2022, 42, 10083–10106. [Google Scholar] [CrossRef]
NO. | Blanching Time (s) | Temperature (°C) | Humidity |
---|---|---|---|
1 | 0 | 50 | 0 |
2 | 0 | 55 | 0 |
3 | 0 | 60 | 0 |
4 | 0 | 65 | 0 |
5 | 0 | 70 | 0 |
6 | 30 | 60 | 0 |
7 | 60 | 60 | 0 |
8 | 90 | 60 | 0 |
9 | 120 | 60 | 0 |
10 | 0 | 60 | 30 ± 4% for 30 min—15 ± 4% |
11 | 120 | 60 | 30 ± 4% for 30 min—15 ± 4% |
Configuration | Parameter |
---|---|
CPU | Intel Core i7-13700K |
GPU | Nvidia GeForce RTX 4060Ti 16 GB |
Operating system | Windows 11 |
Accelerated environment | CUDA 12.2 |
Temperature (°C) | L* | a* | b* | ΔE | BI |
---|---|---|---|---|---|
50 | 81.45 ± 1.29 a | −1.70 ± 0.58 a | 14.91 ± 0.02 b | 6.98 ± 0.19 c | 18.16 ± 0.90 d |
55 | 79.01 ± 2.08 a | −2.18 ± 0.29 a | 21.04 ± 0.29 b | 10.40 ± 1.07 a | 28.06 ± 0.67 a |
60 | 82.37 ± 1.32 a | −2.46 ± 1.07 a | 15.07 ± 0.29 b | 5.16 ± 0.02 d | 17.46 ± 1.73 d |
65 | 80.76 ± 1.73 a | −2.02 ± 1.41 a | 19.28 ± 1.68 a | 8.11 ± 0.42 bc | 24.71 ± 0.72 b |
70 | 80.10 ± 0.70 a | −1.30 ± 1.42 a | 16.19 ± 0.70 a | 8.93 ± 0.18 b | 20.81 ± 0.50 c |
Time | L* | a* | b* | ΔE | BI |
---|---|---|---|---|---|
30 s | 81.565 ± 3.71 a | −3.445 ± 2.38 a | 14.63 ± 1.43 a | 2.4637 ± 0.63 b | 16.08 |
60 s | 81.08 ± 0.99 a | −2.755 ± 0.06 a | 14.905 ± 1.25 a | 4.4437 ± 0.15 ab | 17.24 |
90 s | 81.38 ± 0.17 a | −4.62 ± 0.48 a | 17.27 ± 0.69 a | 4.0828 ± 0.00 a | 18.90 |
120 s | 80.985 ± 0.71 a | −2.7 ± 1.65 a | 16.425 ± 1.24 a | 3.3513 ± 0.88 a | 19.58 |
Models | 60 °C | 90 s | THC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | RMSE | R2 | R | MAE | RMSE | R2 | R | MAE | RMSE | R2 | R | |
XGB | 0.1240 | 0.1543 | 0.9900 | 0.9900 | 0.1258 | 0.1759 | 0.9893 | 0.9946 | 0.0875 | 0.1050 | 0.9960 | 0.9980 |
TCN | 0.0262 | 0.0404 | 0.9990 | 0.9995 | 0.0277 | 0.0381 | 0.9992 | 0.9996 | 0.0409 | 0.0539 | 0.9984 | 0.9996 |
LSTM | 0.0069 | 0.0091 | 0.9999 | 0.9999 | 0.0217 | 0.0991 | 0.9963 | 0.9981 | 0.0080 | 0.0101 | 0.9999 | 0.9999 |
Models | 65 °C | 120 s | THC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | RMSE | R2 | R | MAE | RMSE | R2 | R | MAE | RMSE | R2 | R | |
XGB | 0.4035 | 0.6209 | 0.7144 | 0.8267 | 0.3228 | 0.4272 | 0.9038 | 0.9502 | 0.2867 | 0.4178 | 0.9299 | 0.9624 |
TCN | 0.0160 | 0.0220 | 0.9992 | 0.9996 | 0.0803 | 0.1153 | 0.9987 | 0.9993 | 0.1083 | 0.2155 | 0.8876 | 0.9839 |
LSTM | 0.0102 | 0.0134 | 0.9998 | 0.9999 | 0.0163 | 0.0218 | 0.9995 | 0.9997 | 0.0106 | 0.0138 | 0.9997 | 0.9998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Z.; Liu, Y.; Xiao, H. Deep Learning Prediction of Moisture and Color Kinetics of Apple Slices by Long Short-Term Memory as Affected by Blanching and Hot-Air Drying Conditions. Processes 2024, 12, 1724. https://doi.org/10.3390/pr12081724
Jia Z, Liu Y, Xiao H. Deep Learning Prediction of Moisture and Color Kinetics of Apple Slices by Long Short-Term Memory as Affected by Blanching and Hot-Air Drying Conditions. Processes. 2024; 12(8):1724. https://doi.org/10.3390/pr12081724
Chicago/Turabian StyleJia, Zehui, Yanhong Liu, and Hongwei Xiao. 2024. "Deep Learning Prediction of Moisture and Color Kinetics of Apple Slices by Long Short-Term Memory as Affected by Blanching and Hot-Air Drying Conditions" Processes 12, no. 8: 1724. https://doi.org/10.3390/pr12081724
APA StyleJia, Z., Liu, Y., & Xiao, H. (2024). Deep Learning Prediction of Moisture and Color Kinetics of Apple Slices by Long Short-Term Memory as Affected by Blanching and Hot-Air Drying Conditions. Processes, 12(8), 1724. https://doi.org/10.3390/pr12081724