Recovery of Fennel Non-Polar Bioactives via Supercritical Carbon Dioxide Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. SCO2
2.4. Determination of Volatiles
2.5. Determination of Fatty Acids
2.6. Determination of Sterols
2.7. Determination of Tocochromanols
2.8. Determination of Carotenoids
2.9. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. SCO2 of Fennel Seeds
3.2. Process Optimization
3.3. Characterization of Fennel SCO2 Extract Obtained at Optimal Conditions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anka, Z.M.; Gimba, S.; Nanda, A.; Salisu, L. Phytochemistry and pharmacological activities of Foeniculum vulgare. IOSR J. Pharm. 2020, 10, 1–10. [Google Scholar]
- Marčac, N.; Balbino, S.; Tonković, P.; Medved, A.M.; Cegledi, E.; Dragović, S.; Dragović-Uzelac, V.; Repajić, M. Hydrodistillation and Steam Distillation of Fennel Seeds Essential Oil: Parameter Optimization and Application of Cryomilling Pretreatment. Processes 2023, 11, 2354. [Google Scholar] [CrossRef]
- Malin, V.; Elez Garofulić, I.; Repajić, M.; Zorić, Z.; Pedisić, S.; Sterniša, M.; Smole Možina, S.; Dragović-Uzelac, V. Phenolic characterization and bioactivity of fennel seed (Foeniculum vulgare Mill.) extracts isolated by microwave-assisted and conventional extraction. Processes 2022, 10, 510. [Google Scholar] [CrossRef]
- Balbino, S.; Repajić, M.; Obranović, M.; Medved, A.M.; Tonković, P.; Dragović-Uzelac, V. Characterization of lipid fraction of Apiaceae family seed spices: Impact of species and extraction method. J. Appl. Res. Med. Aromat. Plants 2021, 25, 100326. [Google Scholar] [CrossRef]
- Moser, B.R.; Zheljazkov, V.D.; Bakota, E.L.; Evangelista, R.L.; Gawde, A.; Cantrell, C.L.; Winkler-Moser, J.K.; Hristov, A.N.; Astatkie, T.; Jeliazkova, E. Method for obtaining three products with different properties from fennel (Foeniculum vulgare) seed. Ind. Crops Prod. 2014, 60, 335–342. [Google Scholar] [CrossRef]
- Abdesslem, S.B.; Elbaz, M.; Boulares, M.; Ben Moussa, O.; Timoumi, M.; Hassouna, M. Value adding search among a selection of Tunisian fennel (Foeniculum vulgare Mill.) cultivars: Nutritional composition, chlorophyll and β-carotene contents of fennel seeds. J. Oasis Agric. Sustain. Dev. 2022, 4, 110–116. [Google Scholar] [CrossRef]
- Oktay, M.; Gülçin, İ.; Küfrevioğlu, Ö.İ. Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. LWT-Food Sci. Technol. 2003, 36, 263–271. [Google Scholar] [CrossRef]
- Choi, E.-M.; Hwang, J.-K. Antiinflammatory, analgesic and antioxidant activities of the fruit of Foeniculum vulgare. Fitoterapia 2004, 75, 557–565. [Google Scholar] [CrossRef]
- Ghasemian, A.; Al-Marzoqi, A.-H.; Mostafavi, S.K.S.; Alghanimi, Y.K.; Teimouri, M. Chemical composition and antimicrobial and cytotoxic activities of Foeniculum vulgare Mill essential oils. J. Gastrointest. Cancer 2020, 51, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Gulfraz, M.; Mehmood, S.; Minhas, N.; Jabeen, N.; Kausar, R.; Jabeen, K.; Arshad, G. Composition and antimicrobial properties of essential oil of Foeniculum vulgare. Afr. J. Biotechnol. 2008, 7, 4364–4368. [Google Scholar]
- Pradhan, M.; Sribhuwaneswari, S.; Karthikeyan, D.; Minz, S.; Sure, P.; Chandu, A.N.; Mishra, U.; Kamalakannan, K.; Saravanankumar, A.; Sivakumar, T. In-Vitro cytoprotection activity of Foeniculum vulgare and Helicteres isora in cultured human blood lymphocytes and antitumour activity against B16F10 melanoma cell line. Res. J. Pharm. Technol. 2008, 1, 450–452. [Google Scholar]
- Singh, B.; Kale, R.K. Chemomodulatory action of Foeniculum vulgare (Fennel) on skin and forestomach papillomagenesis, enzymes associated with xenobiotic metabolism and antioxidant status in murine model system. Food Chem. Toxicol. 2008, 46, 3842–3850. [Google Scholar] [CrossRef]
- El-Soud, N.A.; El-Laithy, N.; El-Saeed, G.; Wahby, M.S.; Khalil, M.; Morsy, F.; Shaffie, N. Antidiabetic activities of Foeniculum vulgare Mill. essential oil in streptozotocin-induced diabetic rats. Maced. J. Med. Sci. 2011, 4, 139–146. [Google Scholar] [CrossRef]
- Özbek, H.; Uğraş, S.; Dülger, H.; Bayram, I.; Tuncer, I.; Öztürk, G.; Öztürk, A. Hepatoprotective effect of Foeniculum vulgare essential oil. Fitoterapia 2003, 74, 317–319. [Google Scholar] [CrossRef] [PubMed]
- Mallni, T.; Vanithakumari, G.; Devi, N.; Fiango, V. Effect of Foeniculuai vulgare Mill seed extract on the genital organs of male and female rats. Indian J. Physiol. Pharmacol. 1985, 29, 22–26. [Google Scholar]
- Badgujar, S.B.; Patel, V.V.; Bandivdekar, A.H. Foeniculum vulgare Mill: A review of its botany, phytochemistry, pharmacology, contemporary application, and toxicology. Biomed Res. Int. 2014, 2014, 842674. [Google Scholar] [CrossRef]
- Rather, M.A.; Dar, B.A.; Sofi, S.N.; Bhat, B.A.; Qurishi, M.A. Foeniculum vulgare: A comprehensive review of its traditional use, phytochemistry, pharmacology, and safety. Arab. J. Chem. 2016, 9, S1574–S1583. [Google Scholar] [CrossRef]
- Durante, M.; Lenucci, M.S.; Mita, G. Supercritical carbon dioxide extraction of carotenoids from pumpkin (Cucurbita spp.): A review. Int. J. Mol. Sci. 2014, 15, 6725–6740. [Google Scholar] [CrossRef]
- Uwineza, P.A.; Waśkiewicz, A. Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Bubalo, M.C.; Vidović, S.; Redovniković, I.R.; Jokić, S. New perspective in extraction of plant biologically active compounds by green solvents. Food Bioprod. Process. 2018, 109, 52–73. [Google Scholar] [CrossRef]
- Fornari, T.; Vicente, G.; Vázquez, E.; García-Risco, M.R.; Reglero, G. Isolation of essential oil from different plants and herbs by supercritical fluid extraction. J. Chromatogr. A 2012, 1250, 34–48. [Google Scholar] [CrossRef]
- Reverchon, E.; De Marco, I. Supercritical fluid extraction and fractionation of natural matter. J. Supercrit. Fluids 2006, 38, 146–166. [Google Scholar] [CrossRef]
- Mokhtari, L.; Ghoreishi, S.M. Supercritical carbon dioxide extraction of trans-anethole from Foeniculum vulgare (fennel) seeds: Optimization of operating conditions through response surface methodology and genetic algorithm. J. CO2 Util. 2019, 30, 1–10. [Google Scholar] [CrossRef]
- Maitusong, J.; Aimila, A.; Zhang, J.; Mahinur, B.; Maiwulanjiang, M.; Aisa, H.A. Process optimization for the supercritical carbon dioxide extraction of Foeniculum vulgare Mill. seeds aromatic extract with respect to yield and trans-anethole contents using Box-Behnken design. Flavour Fragr. J. 2021, 36, 280–291. [Google Scholar] [CrossRef]
- AOAC International. AOAC Official Method 920.151; Solids (Total) in Fruits and Fruit Products; AOAC International: Rockville, MD, USA, 2000. [Google Scholar]
- Moslavac, T.; Jokić, S.; Šubarić, D.; Aladić, K.; Vukoja, J.; Prce, N. Pressing and supercritical CO2 extraction of Camelina sativa oil. Ind. Crops Prod. 2014, 54, 122–129. [Google Scholar] [CrossRef]
- Bianchi, F.; Careri, M.; Mangia, A.; Musci, M. Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness. J. Sep. Sci. 2007, 30, 563–572. [Google Scholar] [CrossRef]
- ISO 12966-2:2017; Animal and Vegetable Fats and Oils: Gas Chromatography of Fatty acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 12966-4:2015; Animal and Vegetable Fats and Oils: Gas Chromatography of Fatty Acid Methyl Esters—Part 4: Determination by Capillary Gas Chromatography. International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO 12228-1:2014; Animal and Vegetable Fats and Oils: Determination of Individual and Total Sterols Contents—Part 1: Gas Chromatographic Method. International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 9936:2006; Animal and Vegetable Fats and Oils: Determination of Tocopherol and Tocotrienol Contents by High-Performance Liquid Chromatography. International Organization for Standardization: Geneva, Switzerland, 2006.
- Castro-Puyana, M.; Pérez-Sánchez, A.; Valdés, A.; Ibrahim, O.H.M.; Suarez-Álvarez, S.; Ferragut, J.A.; Micol, V.; Cifuentes, A.; Ibáñez, E.; García-Cañas, V. Pressurized liquid extraction of Neochloris oleoabundans for the recovery of bioactive carotenoids with anti-proliferative activity against human colon cancer cells. Food Res. Int. 2017, 99, 1048–1055. [Google Scholar] [CrossRef]
- Hatami, T.; Johner, J.C.F.; Meireles, M.A.A. Extraction and fractionation of fennel using supercritical fluid extraction assisted by cold pressing. Ind. Crops Prod. 2018, 123, 661–666. [Google Scholar] [CrossRef]
- Simándi, B.; Deák, A.; Rónyai, E.; Yanxiang, G.; Veress, T.; Lemberkovics, É.; Then, M.; Sass-Kiss, Á.; Vámos-Falusi, Z. Supercritical carbon dioxide extraction and fractionation of fennel oil. J. Agric. Food Chem. 1999, 47, 1635–1640. [Google Scholar] [CrossRef]
- Moura, L.S.; Carvalho Jr, R.N.; Stefanini, M.B.; Ming, L.C.; Meireles, M.A.A. Supercritical fluid extraction from fennel (Foeniculum vulgare): Global yield, composition and kinetic data. J. Supercrit. Fluids 2005, 35, 212–219. [Google Scholar] [CrossRef]
- Shams, K.A.; Abdel-Azim, N.S.; Tawfik, W.A.; Hassanein, H.D.; Saleh, M.A.; Hammouda, F.M. Green extraction techniques: Effect of extraction method on lipid contents of three medicinal plants of Apiaceae. J. Chem. Pharm. Res. 2015, 7, 1080–1088. [Google Scholar]
- Piras, A.; Falconieri, D.; Porcedda, S.; Marongiu, B.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L. Supercritical CO2 extraction of volatile oils from Sardinian Foeniculum vulgare ssp. vulgare (Apiaceae): Chemical composition and biological activity. Nat. Prod. Res. 2014, 28, 1819–1825. [Google Scholar] [CrossRef]
- Coelho, J.A.P.; Pereira, A.P.; Mendes, R.L.; Palavra, A.M.F. Supercritical carbon dioxide extraction of Foeniculum vulgare volatile oil. Flavour Fragr. J. 2003, 18, 316–319. [Google Scholar] [CrossRef]
- Rodríguez-Solana, R.; Salgado, J.M.; Domínguez, J.M.; Cortés-Diéguez, S. Estragole quantity optimization from fennel seeds by supercritical fluid extraction (carbon dioxide–methanol) using a Box–Behnken design. Characterization of fennel extracts. Ind. Crops Prod. 2014, 60, 186–192. [Google Scholar] [CrossRef]
- Rebey, I.B.; Bourgou, S.; Detry, P.; Wannes, W.A.; Kenny, T.; Ksouri, R.; Sellami, I.H.; Fauconnier, M.-L. Green Extraction of Fennel and Anise Edible Oils Using Bio-Based Solvent and Supercritical Fluid: Assessment of Chemical Composition, Antioxidant Property, and Oxidative Stability. Food Bioprocess Technol. 2019, 12, 1798–1807. [Google Scholar] [CrossRef]
- Mariod, A.A.; Matthäus, B.; Ismail, M. Comparison of supercritical fluid and hexane extraction methods in extracting kenaf (Hibiscus cannabinus) seed oil lipids. J. Am. Oil Chem. Soc. 2011, 88, 931–935. [Google Scholar] [CrossRef]
- Peng, W.L.; Mohd-Nasir, H.; Setapar, S.H.M.; Ahmad, A.; Lokhat, D. Optimization of process variables using response surface methodology for tocopherol extraction from Roselle seed oil by supercritical carbon dioxide. Ind. Crops Prod. 2020, 143, 111886. [Google Scholar] [CrossRef]
- Machmudah, S.; Kawahito, Y.; Sasaki, M.; Goto, M. Process optimization and extraction rate analysis of carotenoids extraction from rosehip fruit using supercritical CO2. J. Supercrit. Fluids 2008, 44, 308–314. [Google Scholar] [CrossRef]
- Damjanović, B.; Lepojević, Ž.; Živković, V.; Tolić, A. Extraction of fennel (Foeniculum vulgare Mill.) seeds with supercritical CO2: Comparison with hydrodistillation. Food Chem. 2005, 92, 143–149. [Google Scholar] [CrossRef]
- Maheshwari, P.; Nikolov, Z.L.; White, T.M.; Hartel, R. Solubility of fatty acids in supercritical carbon dioxide. J. Am. Oil Chem. Soc. 1992, 69, 1069–1076. [Google Scholar] [CrossRef]
- Wrona, O.; Rafińska, K.; Możeński, C.; Buszewski, B. Supercritical Fluid Extraction of Bioactive Compounds from Plant Materials. J. AOAC Int. 2017, 100, 1624–1635. [Google Scholar] [CrossRef]
- Santos, K.A.; da Silva, E.A.; da Silva, C. Supercritical CO2 extraction of favela (Cnidoscolus quercifolius) seed oil: Yield, composition, antioxidant activity, and mathematical modeling. J. Supercrit. Fluids 2020, 165, 104981. [Google Scholar] [CrossRef]
- Przygoda, K.; Wejnerowska, G. Extraction of tocopherol-enriched oils from Quinoa seeds by supercritical fluid extraction. Ind. Crops Prod. 2015, 63, 41–47. [Google Scholar] [CrossRef]
- De Andrade Lima, M.; Charalampopoulos, D.; Chatzifragkou, A. Optimisation and modelling of supercritical CO2 extraction process of carotenoids from carrot peels. J. Supercrit. Fluids 2018, 133, 94–102. [Google Scholar] [CrossRef]
- Repajić, M.; Elez Garofulić, I.; Marčac Duraković, N.; Balun, M.; Cegledi, K.; Cegledi, E.; Dobroslavić, E.; Dragović-Uzelac, V. Physico-Chemical Characterization of Encapsulated Fennel Essential Oil under the Influence of Spray-Drying Conditions. Processes 2024, 12, 577. [Google Scholar] [CrossRef]
- Dobroslavić, E.; Cegledi, E.; Robić, K.; Elez Garofulić, I.; Dragović-Uzelac, V.; Repajić, M. Encapsulation of Fennel Essential Oil in Calcium Alginate Microbeads via Electrostatic Extrusion. Appl. Sci. 2024, 14, 3522. [Google Scholar] [CrossRef]
- Islam, M.A.; Jeong, B.-G.; Jung, J.; Shin, E.-C.; Choi, S.-G.; Chun, J. Phytosterol determination and method validation for selected nuts and seeds. Food Anal. Methods 2017, 10, 3225–3234. [Google Scholar] [CrossRef]
- El-Assri, E.M.; Hajib, A.; Choukri, H.; Gharby, S.; Lahkimi, A.; Eloutassi, N.; Bouia, A. Nutritional quality, lipid, and mineral profiling of seven Moroccan Apiaceae family seeds. S. Afr. J. Bot. 2023, 160, 23–35. [Google Scholar] [CrossRef]
- Matthäus, B.; Musazcan Özcan, M. Oil content, fatty acid composition and distributions of vitamin-E-active compounds of some fruit seed oils. Antioxidants 2015, 4, 124–133. [Google Scholar] [CrossRef]
- Pencheva, M.; Petkova, Z.; Dincheva, I.; Kostova, I.; Damyanova, S.; Stoyanova, A.; Gaceu, L. Phytochemical and biological profiles of fennel fruits (Foeniculum vulgare Mill. Var. dulce Mill.). Carpathian J. Food Sci. Technol. 2022, 14, 28–49. [Google Scholar] [CrossRef]
Assay No. | Pressure (bar) | Temperature (°C) | Yield (%) | Total Volatiles (g/100 g) | Total Unsaturated Fatty Acids (%) | Total Sterols and Pentacyclic Triterpenoids (mg/100 g) | Total Tocochromanols (mg/100 g) | Total Carotenoids (mg/100 g) |
---|---|---|---|---|---|---|---|---|
1 | 220 | 35.9 | 5.63 | 96.41 ± 2.73 | 95.04 ± 0.03 | 332.87 ± 4.79 | 28.41 ± 0.38 | 7.12 ± 0.11 |
2 | 120 | 60 | 3.48 | 96.61 ± 1.31 | 94.42 ± 0.28 | 80.53 ± 0.19 | 30.45 ± 0.11 | 0.31 ± 0.03 |
3 | 120 | 40 | 3.70 | 96.43 ± 3.02 | 94.46 ± 0.04 | 133.90 ± 0.05 | 35.41 ± 0.65 | 0.45 ± 0.04 |
4 | 220 | 50 | 5.48 | 87.57 ± 2.35 | 93.95 ± 0.54 | 197.19 ± 0.50 | 35.65 ± 0.79 | 0.33 ± 0.03 |
5 | 220 | 50 | 4.89 | 81.77 ± 2.25 | 94.65 ± 0.01 | 236.29 ± 4.05 | 33.08 ± 0.89 | 3.74 ± 0.07 |
6 | 220 | 50 | 5.61 | 86.01 ± 2.41 | 94.62 ± 0.01 | 211.63 ± 0.69 | 34.16 ± 0.30 | 3.62 ± 0.09 |
7 | 320 | 40 | 8.28 | 66.77 ± 1.45 | 95.42 ± 0.01 | 396.67 ± 0.22 | 33.80 ± 0.23 | 13.42 ± 0.08 |
8 | 320 | 60 | 7.88 | 63.07 ± 1.54 | 95.64 ± 0.32 | 337.80 ± 0.96 | 35.74 ± 0.57 | 11.11 ± 0.10 |
9 | 220 | 50 | 5.64 | 76.69 ± 1.25 | 94.76 ± 0.01 | 218.90 ± 0.11 | 36.51 ± 0.46 | 4.44 ± 0.10 |
10 | 220 | 64.1 | 5.97 | 75.03 ± 0.91 | 94.96 ± 0.04 | 220.12 ± 1.45 | 34.50 ± 0.85 | 4.80 ± 0.12 |
11 | 361.4 | 50 | 8.77 | 53.14 ± 0.81 | 95.24 ± 0.01 | 478.49 ± 3.20 | 34.08 ± 0.46 | 17.92 ± 0.07 |
12 | 220 | 50 | 5.62 | 81.00 ± 1.55 | 94.97 ± 0.01 | 252.05 ± 0.75 | 37.00 ± 0.62 | 7.13 ± 0.08 |
13 | 78.6 | 50 | 0.44 | 94.78 ± 2.35 | 91.86 ± 1.03 | 19.26 ± 0.30 | 25.36 ± 0.04 | nd |
Factor | Yield (%) | Total Volatiles (g/100 g) | Total Unsaturated Fatty Acids (%) | Total Sterols and Pentacyclic Triterpenoids (mg/100 g) | Total Tocochromanols (mg/100 g) | Total Carotenoids (mg/100 g) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F-Ratio | p-Value | F-Ratio | p-Value | F-Ratio | p-Value | F-Ratio | p-Value | F-Ratio | p-Value | F-Ratio | p-Value | |
Pressure (X1) | 531.976 | <0.001 * | 100.122 | 0.001 * | 41.232 | 0.003 * | 373.156 | <0.001 * | 12.035 | 0.026 * | 51.183 | 0.002 * |
X12 | 4.778 | 0.094 | 6.307 | 0.066 | 5.571 | 0.078 | 0.627 | 0.473 | 10.045 | 0.034 * | 6.083 | 0.069 |
Temperature (X2) | 0.025 | 0.883 | 7.637 | 0.051 | 0.004 | 0.953 | 20.132 | 0.011 * | 1.456 | 0.294 | 0.694 | 0.452 |
X22 | 7.720 | 0.050 * | 1.184 | 0.338 | 6.976 | 0.058 | 6.215 | 0.067 | 3.107 | 0.153 | 0.696 | 0.451 |
X1X2 | 0.080 | 0.791 | 0.202 | 0.676 | 0.115 | 0.751 | 0.017 | 0.904 | 4.466 | 0.102 | 0.198 | 0.680 |
Lack-of-fit | 6.346 | 0.053 | 1.672 | 0.309 | 4.218 | 0.099 | 2.684 | 0.182 | 5.960 | 0.059 | 0.170 | 0.911 |
Model | 6.472817 + 0.039807X1 − 0.000026X12 − 0.328601X2 + 0.003367X22 − 0.000045X1X2 | 151.4191 + 0.0766X1 − 0.0004X12 − 1.996X2 + 0.0179X22 − 0.001X1X2 | 101.3249 + 0.0205X1 − 0.3989X2 + 0.0039X22+ 0.0001X1X2 | 595.6804 + 1.2479X1+ 0.0006X12 − 23.4201X2 + 0.2032X22 − 0.0014X1X2 | 9.473422 + 0.020088X1 − 0.000196X12 + 0.785868X2 − 0.010956X22 + 0.001725X1X2 | 18.25149 − 0.01150X1+ 0.00023X12 − 0.72390X2 + 0.00771X22 − 0.00054X1X2 | ||||||
R2 | 0.960 | 0.928 | 0.770 | 0.971 | 0.577 | 0.928 | ||||||
R2adj | 0.931 | 0.877 | 0.606 | 0.950 | 0.275 | 0.877 |
Response | Optimal SCO2 Conditions | Desirability | Predicted Value | Experimental Value | ||
---|---|---|---|---|---|---|
Yield (%) | Pressure (bar) | 320 | 0.929 | 8.18 | 8.28 | |
Temperature (°C) | 40 | |||||
Total volatiles (g/100 g) | Pressure (bar) | 120 | 1.000 | 97.51 | 96.58 | |
Temperature (°C) | 42 | |||||
Total sterols and pentacyclic triterpenoids (mg/100 g) | Pressure (bar) | 320 | 0.898 | 431.57 | 396.67 | |
Temperature (°C) | 40 | |||||
Total carotenoids (mg/100 g) | Pressure (bar) | 320 | 0.732 | 13.12 | 13.42 | |
Temperature (°C) | 40 | |||||
Total lipophilic fraction | Pressure (bar) | 320 | 0.715 | Yield (%) | 8.18 | 8.28 |
Total volatiles (g/100 g) | 70.22 | 66.78 | ||||
Temperature (°C) | 40 | Total sterols and pentacyclic triterpenoids (mg/100 g) | 431.57 | 396.68 |
Volatiles | Fatty Acids | Sterols and Pentacyclic Triterpenoids | Tocochromanols | Carotenoids | |||||
---|---|---|---|---|---|---|---|---|---|
Compound | Content (g/100 g) | Compound | Content (%) | Compound | Content (mg/100 g) | Compound | Content (mg/100 g) | Compound | Content (mg/100 g) |
Monoterpene hydrocarbons | Saturated fatty acids | Sterols | Tocopherols | Lutein | 12.20 ± 0.01 | ||||
α-Pinene | 2.91 ± 0.03 | Myristic (C14:0) | 0.02 ± 0.00 | Campesterol | 25.45 ± 0.44 | α-tocopherol | 12.70 ± 0.17 | β-Carotene | 1.22 ± 0.07 |
Camphene | 0.53 ± 0.01 | Palmitic (C16:0) | 4.40 ± 0.02 | 24-Methylenecholesterol | 14.96 ± 0.54 | Total | 12.70 ± 0.17 | Total | 13.42 ± 0.08 |
Sabinene | 0.13 ± 0.00 | Stearic (C18:0) | 0.02 ± 0.00 | Campestanol | 10.41 ± 0.19 | Tocotrienols | |||
β-Pinene | 0.13 ± 0.00 | Arachidic (C20:0) | 0.13 ± 0.01 | Stigmasterol | 100.49 ± 0.06 | γ-tocotrienol | 11.59 ± 0.03 | ||
Myrcene | 1.69 ± 0.02 | Total | 4.58 ± 0.01 | Δ7-Campesterol | 5.32 ± 0.03 | δ-tocotrienol | 9.50 ± 0.03 | ||
α-Phellandrene | 0.37 ± 0.00 | Monounsaturated fatty acids | β-Sitosterol | 100.65 ± 0.01 | Total | 21.10 ± 0.05 | |||
α-Terpinene | 0.02 ± 0.00 | Myristoleic (C14:1) | 0.04 ± 0.00 | Δ5,23-Stigmasterol | 12.99 ± 0.12 | ||||
p-Cymene | 0.11 ± 0.00 | Palmitoleic (C16:1) | 0.19 ± 0.02 | Spinasterol | 16.29 ± 0.10 | ||||
D-Limonene | 1.17 ± 0.03 | Oleic + Petroselinic (C18:1) | 81.16 ± 0.01 | Δ5-Avenasterol | 5.26 ± 0.04 | ||||
γ-Terpinene | 0.53 ± 0.00 | Gadoleic (C20:1) | 0.19 ± 0.00 | Δ7-Stigmastenol | 34.86 ± 0.06 | ||||
cis-Sabinene hydrate | 0.07 ± 0.00 | Erucic (C22:1) | 0.05 ± 0.01 | Stigmastadienol | 29.32 ± 0.19 | ||||
Total | 7.66 ± 0.09 | Total | 81.63 ± 0.02 | Δ7-Avenasterol | 17.19 ± 0.09 | ||||
Oxygenated monoterpenes | Polyunsaturated fatty acids | Total | 373.20 ± 0.22 | ||||||
Eucalyptol | 0.08 ± 0.00 | Linoleic (C18:2) | 13.74 ± 0.02 | Pentacyclic triterpenoids | |||||
L-Fenchone | 11.45 ± 0.25 | α-Linolenic (C18:3n3) | 0.05 ± 0.01 | α-Amyrin | 3.74 ± 0.02 | ||||
Camphor | 0.26 ± 0.00 | Total | 13.79 ± 0.04 | β-Amyrin | 19.74 ± 0.02 | ||||
Carvone | 0.11 ± 0.00 | Monounsaturated + polyunsaturated fatty acids | Total | 23.48 ± 0.00 | |||||
Total | 11.90 ± 0.25 | Total | 95.42 ± 0.01 | ||||||
Phenylpropanoids | |||||||||
Estragole | 1.50 ± 0.03 | ||||||||
trans-Anethole | 45.32 ± 1.09 | ||||||||
Total | 46.82 ± 1.12 | ||||||||
Others | |||||||||
p-Anisaldehyde | 0.40 ± 0.01 | ||||||||
Total | 0.40 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marčac Duraković, N.; Cegledi, E.; Elez Garofulić, I.; Balbino, S.; Pedisić, S.; Jokić, S.; Dragović-Uzelac, V.; Repajić, M. Recovery of Fennel Non-Polar Bioactives via Supercritical Carbon Dioxide Extraction. Processes 2024, 12, 1764. https://doi.org/10.3390/pr12081764
Marčac Duraković N, Cegledi E, Elez Garofulić I, Balbino S, Pedisić S, Jokić S, Dragović-Uzelac V, Repajić M. Recovery of Fennel Non-Polar Bioactives via Supercritical Carbon Dioxide Extraction. Processes. 2024; 12(8):1764. https://doi.org/10.3390/pr12081764
Chicago/Turabian StyleMarčac Duraković, Nina, Ena Cegledi, Ivona Elez Garofulić, Sandra Balbino, Sandra Pedisić, Stela Jokić, Verica Dragović-Uzelac, and Maja Repajić. 2024. "Recovery of Fennel Non-Polar Bioactives via Supercritical Carbon Dioxide Extraction" Processes 12, no. 8: 1764. https://doi.org/10.3390/pr12081764
APA StyleMarčac Duraković, N., Cegledi, E., Elez Garofulić, I., Balbino, S., Pedisić, S., Jokić, S., Dragović-Uzelac, V., & Repajić, M. (2024). Recovery of Fennel Non-Polar Bioactives via Supercritical Carbon Dioxide Extraction. Processes, 12(8), 1764. https://doi.org/10.3390/pr12081764