Understanding the Catalytic Effect on the CO2 Regeneration Performance of Amine Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Theoretical Analysis
3.1.1. Chemical Reaction Mechanism
3.1.2. Calculation Method
CO2 Absorption Efficiency
Energy Consumption for Regeneration
3.2. Characterization of Catalysts
3.3. Catalytic Regeneration Test of the MEA Solution
3.4. Catalytic Test of Mixed Amine Solutions
3.5. The Continuous Absorption and Regeneration Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; Du, M.; Shao, P.; Wang, L.; Ye, J.; Chen, J.; Chen, J. Carbonic Anhydrase Enzyme-MOFs Composite with a Superior Catalytic Performance to Promote CO2 Absorption into Tertiary Amine Solution. Environ. Sci. Technol. 2018, 52, 12708–12716. [Google Scholar] [CrossRef] [PubMed]
- Roufogali, N.; Pyrgakis, K.A.; Kokossis, A.C. Assessment of low-carbon alternative fuels in maritime integrated with CCS on board. In Computer Aided Chemical Engineering; Manenti, F., Reklaitis, G.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; Volume 53, pp. 1183–1188. [Google Scholar]
- Folger, P.F. Carbon Capture and Sequestration (CCS) in the United States; Congressional Research Service: Washington, DC, USA, 2017. [Google Scholar]
- Tavakoli, S.; Gamlem, G.M.; Kim, D.; Roussanaly, S.; Anantharaman, R.; Yum, K.K.; Valland, A. Exploring the technical feasibility of carbon capture onboard ships. J. Clean. Prod. 2024, 452, 142032. [Google Scholar] [CrossRef]
- Arvidsson, M.; Heyne, S.; Morandin, M.; Harvey, S. Integration Opportunities for Substitute Natural Gas (SNG) Production in an Industrial Process Plant. Chem. Eng. 2012, 29, 331–336. [Google Scholar]
- Perskin, J.B.; Traum, M.J.; von Hippel, T.; Boetcher, S.K.S. On the feasibility of precompression for direct atmospheric cryogenic carbon capture. Carbon Capture Sci. Technol. 2022, 4, 100063. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, L.; Otto, A.; Robinius, M.; Stolten, D. A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants. Energy Procedia 2017, 114, 650–665. [Google Scholar] [CrossRef]
- Onarheim, K.; Santos, S.; Kangas, P.; Hankalin, V. Performance and costs of CCS in the pulp and paper industry part 1: Performance of amine-based post-combustion CO2 capture. Int. J. Greenh. Gas Control. 2017, 59, 58–73. [Google Scholar] [CrossRef]
- Leeson, D.; Mac Dowell, N.; Shah, N.; Petit, C.; Fennell, P.S. A Techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources. Int. J. Greenh. Gas Control. 2017, 61, 71–84. [Google Scholar] [CrossRef]
- Bassani, A.; Bozzano, G.; Pirola, C.; Ranzi, E.; Pierucci, S.; Manenti, F. Low Impact Methanol Production from Sulfur Rich Coal Gasification. Energy Procedia 2017, 105, 4519–4524. [Google Scholar] [CrossRef]
- Ferrario, D.; Pröll, T.; Stendardo, S.; Lanzini, A. Cost and environmentally efficient design of an absorption-based post-combustion carbon capture unit for industry applications. Chem. Eng. J. 2024, 494, 152900. [Google Scholar] [CrossRef]
- Ahmed, U.; Kim, C.; Zahid, U.; Lee, C.-J.; Han, C. Integration of IGCC and methane reforming process for power generation with CO2 capture. Chem. Eng. Process. Process Intensif. 2017, 111, 14–24. [Google Scholar] [CrossRef]
- Mercure, J.-F.; Mercure, J.-F.; Pollitt, H.; Viñuales, J.E.; Edwards, N.R.; Edwards, N.R.; Holden, P.B.; Chewpreecha, U.; Salas, P.; Sognnaes, I.; et al. Macroeconomic impact of stranded fossil fuel assets. Nat. Clim. Change 2018, 8, 588–593. [Google Scholar] [CrossRef]
- Narku-Tetteh, J.; Muchan, P.; Saiwan, C.; Supap, T.; Idem, R. Selection of components for formulation of amine blends for post combustion CO2 capture based on the side chain structure of primary, secondary and tertiary amines. Chem. Eng. Sci. 2017, 170, 542–560. [Google Scholar] [CrossRef]
- Chen, J.; Luo, W.; Li, H. A review for research on thermodynamics and kinetics of carbon dioxide absorption with organic amines. Huagong Xuebao/CIESC J. 2014, 65, 12–21. [Google Scholar] [CrossRef]
- Ji, L.; Yu, H.; Yu, B.; Jiang, K.; Grigore, M.; Wang, X.; Zhao, S.; Li, K. Integrated absorption–mineralisation for energy-efficient CO2 sequestration: Reaction mechanism and feasibility of using fly ash as a feedstock. Chem. Eng. J. 2018, 352, 151–162. [Google Scholar] [CrossRef]
- Sultan, H.; Quach, T.-Q.; Muhammad, H.A.; Bhatti, U.H.; Lee, Y.D.; Hong, M.G.; Baek, I.H.; Chan, N.S. Advanced post combustion CO2 capture process—A systematic approach to minimize thermal energy requirement. Appl. Therm. Eng. 2021, 184, 116285. [Google Scholar] [CrossRef]
- Finotello, A.; Bara, J.E.; Camper, D.; Noble, R.D. Room-Temperature Ionic Liquids: Temperature Dependence of Gas Solubility Selectivity. Ind. Eng. Chem. Res. 2008, 47, 3453–3459. [Google Scholar] [CrossRef]
- Yu, C.-H.; Huang, C.-H.; Tan, C.-S. A Review of CO2 Capture by Absorption and Adsorption. Aerosol Air Qual. Res. 2012, 12, 745–769. [Google Scholar] [CrossRef]
- Sakwattanapong, R.; Aroonwilas, a.; Veawab, A. Behavior of Reboiler Heat Duty for CO2 Capture Plants Using Regenerable Single and Blended Alkanolamines. Ind. Eng. Chem. Res. 2005, 44, 4465–4473. [Google Scholar] [CrossRef]
- Shi, H.; Naami, A.; Idem, R.; Tontiwachwuthikul, P. Catalytic and non catalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents. Int. J. Greenh. Gas Control. 2014, 26, 39–50. [Google Scholar] [CrossRef]
- Sun, S.; Lv, Z.; Qiao, Y.; Qin, C.; Xu, S.; Wu, C. Integrated CO2 capture and utilization with CaO-alone for high purity syngas production. Carbon Capture Sci. Technol. 2021, 1, 100001. [Google Scholar] [CrossRef]
- Yang, Z.; Shen, Y.; Yang, H.; Yi, H.; Guo, H.; Zhang, X. A review of CO2 catalytic regeneration research based on MEA solution. Front. Energy Res. 2023, 11, 1257218. [Google Scholar] [CrossRef]
- Aghel, B.; Janati, S.; Wongwises, S.; Shadloo, M.S. Review on CO2 capture by blended amine solutions. Int. J. Greenh. Gas Control. 2022, 119, 103715. [Google Scholar] [CrossRef]
- Oh, S.-Y.; Binns, M.; Cho, H.; Kim, J.-K. Energy minimization of MEA-based CO2 capture process. Appl. Energy 2016, 169, 353–362. [Google Scholar] [CrossRef]
- Idem, R.; Wilson, M.; Tontiwachwuthikul, P.; Chakma, A.; Veawab, A.; Aroonwilas, A.; Gelowitz, D. Pilot Plant Studies of the CO2 Capture Performance of Aqueous MEA and Mixed MEA/MDEA Solvents at the University of Regina CO2 Capture Technology Development Plant and the Boundary Dam CO2 Capture Demonstration Plant. Ind. Eng. Chem. Res. 2006, 45, 2414–2420. [Google Scholar] [CrossRef]
- Idem, R.; Shi, H.; Gelowitz, D.; Tontiwachwuthikul, P. Catalytic Method and Apparatus for Separating a Gaseous Component from an Incoming Gas Stream. U.S. Patent US20130108532A1, 2 May 2013. [Google Scholar]
- Wang, H.; Tang, S.; Zhong, S.; Liang, B. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution. CIESC J. 2023, 74, 1539–1548. [Google Scholar]
- Zhang, X.; Huang, Y.; Yang, J.; Gao, H.; Huang, Y.; Luo, X.; Liang, Z.; Tontiwachwuthikul, P. Amine-based CO2 capture aided by acid-basic bifunctional catalyst: Advancement of amine regeneration using metal modified MCM-41. Chem. Eng. J. 2020, 383, 123077. [Google Scholar] [CrossRef]
- Akachuku, A.; Osei, P.A.; Decardi-Nelson, B.; Srisang, W.; Pouryousefi, F.; Ibrahim, H.; Idem, R. Experimental and kinetic study of the catalytic desorption of CO2 from CO2-loaded monoethanolamine (MEA) and blended monoethanolamine—Methyl-diethanolamine (MEA-MDEA) solutions. Energy 2019, 179, 475–489. [Google Scholar] [CrossRef]
- Narku-Tetteh, J.; Afari, D.; Coker, J.; Idem, R. Evaluation of the roles of absorber and desorber catalyst in the heat duty and heat of CO2 desorption from BEA-AMP and MEA-MDEA solvent blends in a bench scale CO2 capture pilot plant. Energy Fuels 2018, 32, 9711–9726. [Google Scholar] [CrossRef]
- Natewong, P.; Prasongthum, N.; Reubroycharoen, P.; Idem, R. Evaluating the CO2 Capture Performance Using a BEA-AMP Biblend Amine Solvent with Novel High-Performing Absorber and Desorber Catalysts in a Bench-Scale CO2 Capture Pilot Plant. Energy Fuels 2019, 33, 3390–3402. [Google Scholar] [CrossRef]
- Caplow, M. Kinetics of carbamate formation and breakdown. J. Am. Chem. Soc. 1968, 90, 6795–6803. [Google Scholar] [CrossRef]
- Li, T.; Yu, Q.; Barzagli, F.; Li, C.E.; Che, M.; Zhang, Z.; Zhang, R. Energy efficient catalytic CO2 desorption: Mechanism, technological progress and perspective. Carbon Capture Sci. Technol. 2023, 6, 100099. [Google Scholar] [CrossRef]
- Chowdhury, F.A.; Yamada, H.; Higashii, T.; Goto, K.; Onoda, M. CO2 Capture by Tertiary Amine Absorbents: A Performance Comparison Study. Ind. Eng. Chem. Res. 2013, 52, 8323–8331. [Google Scholar] [CrossRef]
- Shi, H.; Liang, Z.; Sema, T.; Naami, A.; Usubharatana, P.; Idem, R.; Saiwan, C.; Tontiwachwuthikul, P. Part 5a: Solvent chemistry: NMR analysis and studies for amine–CO2–H2O systems with vapor–liquid equilibrium modeling for CO2 capture processes. Carbon Manag. 2012, 3, 185–200. [Google Scholar] [CrossRef]
Item | Molecular Formula | Specifications | Formula Weight | Manufacturer |
---|---|---|---|---|
MEA | H2N(CH2)2OH | 99% | 61.09 | Maclin, Shanghai, China |
MDEA | CH3N(CH2CH2OH)2 | 99% | 119.16 | Maclin, Shanghai, China |
Zirconium sulfate | Zr(SO4)2 | AR | 283.35 | Maclin, Shanghai, China |
HZSM-5-25 | AR | - | Nankai, Tianjin, China | |
γ-Al2O3 | Al2O3 | AR | 101.96 | Nankai, Tianjin, China |
Silica | SiO2 | AR | 60.08 | Nankai, Tianjin, China |
Carbon dioxide | CO2 | 99% | 44 | Peric, Handan, China |
Catalyst | Total Acid Quantity (mmol/g) | BET Specific Area (m2/g) | Average Pore Diameter (nm) | Pore Volume (cm3/g) |
---|---|---|---|---|
Zr-HZSM-5-25 | 2.44 | 380 | 0.89 | 0.34 |
HZSM-5-25 | 2.34 | 365 | 0.8 | 0.24 |
γ-Al2O3 | 0.385 | 234.6 | 4.51 | 0.37 |
SiO2 | 0 | 450 | 6.05 | 0.43 |
Blank | Zr-HZSM-5-25 | HZSM-5-25 | γ -Al2O3 | SiO2 | |
---|---|---|---|---|---|
The average regeneration rate (mmol/min) | 12.98 | 13.66 | 13.35 | 13.38 | 13.31 |
The promotion effect (%) | —— | 5.28 | 2.89 | 3.11 | 2.6 |
MEA | MEA + MDEA | MEA + MDEA + Zr-HZSM-5-25 | |
---|---|---|---|
The average regeneration rate (mmol/min) | 12.98 | 13.54 | 14.33 |
The promotion effect (%) | —— | 4.32 | 10.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Shen, Y.; Shen, T.; He, Z.; Zhou, R.; Li, Z.; Xiao, Y.; Hong, E.; Yang, H. Understanding the Catalytic Effect on the CO2 Regeneration Performance of Amine Aqueous Solutions. Processes 2024, 12, 1801. https://doi.org/10.3390/pr12091801
Li K, Shen Y, Shen T, He Z, Zhou R, Li Z, Xiao Y, Hong E, Yang H. Understanding the Catalytic Effect on the CO2 Regeneration Performance of Amine Aqueous Solutions. Processes. 2024; 12(9):1801. https://doi.org/10.3390/pr12091801
Chicago/Turabian StyleLi, Ke, Yuhang Shen, Teng Shen, Zhijun He, Rui Zhou, Zhouxiang Li, Youhong Xiao, Euiseok Hong, and Haoran Yang. 2024. "Understanding the Catalytic Effect on the CO2 Regeneration Performance of Amine Aqueous Solutions" Processes 12, no. 9: 1801. https://doi.org/10.3390/pr12091801
APA StyleLi, K., Shen, Y., Shen, T., He, Z., Zhou, R., Li, Z., Xiao, Y., Hong, E., & Yang, H. (2024). Understanding the Catalytic Effect on the CO2 Regeneration Performance of Amine Aqueous Solutions. Processes, 12(9), 1801. https://doi.org/10.3390/pr12091801