Pore-Fracture System Distribution Heterogeneity by Using the T2 Spectral Curve under a Centrifugal State
Abstract
:1. Introduction
2. Experimental Test and Theoretical Analysis
2.1. Experimental Test
2.2. Fractal Theory
3. Result and Discussion
3.1. NMR T2 Spectrum Distribution and Type Division
3.2. Fractal Characteristics Based on the Saturated T2 Spectrum
3.3. Fractal Characteristics Based on Centrifugal T2 Spectrum
3.4. Correlation Analysis of Fractal Parameters under Different Water Content Conditions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Liu, D.; Cai, Y.; Yao, Y.; Zhang, B. Water-bearing characteristics of high-rank coal reservoirs and their effects on adsorption capacity. Geol. Front. 2018, 25, 237–244. [Google Scholar]
- Yao, Y.; Liu, D. Rock physics and fluid characterization of coal reservoir based on nuclear magnetic resonance relaxation spectroscopy. Coal Sci. Technol. 2016, 44, 14–22. [Google Scholar]
- Zhang, N.; Wang, R.; Zhang, J.; Wang, S.; Zhao, W. NMR-based permeability prediction of coal-bearing shale reservoirs and analysis of influencing factors. Coal Technol. 2023, 42, 148–154. [Google Scholar]
- Zheng, S.; Yao, Y.; Cai, Y.; Liu, Y. Movable fluid and pore size distribution characteristics of low rank coal reservoirs in the southern margin of Junggar Basin. Coalf. Geol. Explor. 2018, 46, 56–60, 65. [Google Scholar]
- Bai, S.; Cheng, D.; Wan, J.; Yang, L.; Peng, H.; Guo, X.; Zeng, J. Quantitative characterization of sandstone rock NMR T2 spectrum. Pet. J. 2016, 37, 382–391. [Google Scholar]
- Sing, A.; Jha, N.K.; Mandal, P.P.; Esteban, L.; Desai, B.G. Pore throat characterization of bioturbated heterogeneous sandstone, Bhuj Formation, Kachchh India: An integrated analysis using NMR and HPMI studies. J. Pet. Sci. Eng. 2022, 211, 110221. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, C.; Chu, X.; Vandeginste, V.; Ju, W. Multifractal Analysis in Characterizing Adsorption Pore Heterogeneity of Middle- and High-Rank Coal Reservoirs. ACS Omega 2020, 5, 19385–19401. [Google Scholar] [CrossRef]
- Hu, Y.; Guo, Y.; Zhang, J.; Shangguan, J.; Li, M.; Quan, F.; Li, G. A method to determine nuclear magnetic resonance T2 cutoff value of tight sandstone reservoir based on multifractal analysis. Energy Sci. Eng. 2020, 8, 1135–1148. [Google Scholar] [CrossRef]
- Su, P.; Xia, Z.; Wang, P.; Ding, W.; Hu, Y.; Zhang, W.; Peng, Y. Fractal and multifractal analysis of pore size distribution in low permeability reservoirs based on mercury intrusion porosimetry. Energies 2019, 12, 1337. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, X.; Pan, J.; Deng, Z. Effect of N2/CO2 injection and alternate injection on volume swelling/shrinkage strain of coal. Energy 2023, 275, 127377. [Google Scholar] [CrossRef]
- Song, W.; Yao, J.; Zhang, K.; Yang, Y.; Sun, H. Accurate Prediction of Permeability in Porous Media: Extension of Pore Fractal Dimension to Throat Fractal Dimension. Fractals 2022, 30, 1–8. [Google Scholar] [CrossRef]
- Yang, Y.; Wen, Z.; Tian, W.; Fan, Y.; Gao, H. A New Model for Predicting Permeability of Chang 7 Tight Sandstone Based on Fractal Characteristics from High-Pressure Mercury Injection. Energies 2024, 17, 821. [Google Scholar] [CrossRef]
- Ge, X.; Fan, Y.; Deng, S.; Han, Y.; Liu, J. An improvement of the fractal theory and its application in pore structure evaluation and permeability estimation. J. Geophys. Res. Solid Earth 2016, 121, 6333–6345. [Google Scholar] [CrossRef]
- Su, P.; Xia, Z.; Qu, L.; Yu, W.; Wang, P.; Li, D.; Kong, X. Fractal characteristics of low-permeability gas sandstones based on a new model for mercury intrusion porosimetry. J. Nat. Gas Sci. Eng. 2018, 60, 246–255. [Google Scholar] [CrossRef]
- Pan, H.; Wu, F.; Yin, S. Experimental Study on Fractal Characteristics of Continental Tight Sandstone Oil Reservoir. Fresenius Environ. Bull. 2021, 30, 7705–7712. [Google Scholar]
- Feng, S.; Li, M.; Zhang, J.; Xu, G.; Vandeginste, V.; Zhang, P.; Ju, W. Single and multi-fractal dimension variation of tight sandstone by using centrifuge T2 spectral curve. Greenh. Gases Sci. Technol. 2024, 14, 111–137. [Google Scholar] [CrossRef]
- Feng, C.; Shi, Y.; Hao, J.; Hao, J.; Wang, Z.; Mao, Z.; Li, G.; Jiang, Z. Nuclear magnetic resonance features of low-permeability reservoirs with complex wettability. Pet. Explor. Dev. 2017, 44, 274–279. [Google Scholar] [CrossRef]
- Feng, L.; Jiang, Y.; Guo, G.; Yang, C.; Zhu, X.; Zeng, Q.; Cai, G.; Wang, Z. Pore structure and fractal characteristics of tight sandstone in meandering stream facies: A case study of the J2s2 member in the central Sichuan Basin, China. Front. Earth Sci. 2023, 11, 1–20. [Google Scholar] [CrossRef]
- Lala, A.; El-Sayed, N. Effect of pore framework and radius of pore throats on permeability estimation. J. Afr. Earth Sci. 2015, 110, 64–74. [Google Scholar] [CrossRef]
- Shi, J.; Wan, X.; Xie, Q.; Zhou, S.; Zhou, Y.; Ren, D.; Zhang, R. Difference of Microfeatures among Diagenetic Facies in Tight Sandstone Reservoirs of the Triassic Yanchang Formation in the Midwestern Region, Ordos Basin. Math. Probl. Eng. 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Razavifar, M.; Mukhametdinova, A.; Nikooee, E.; Burukhin, A.; Rezaei, A.; Cheremisin, A. Rock Porous Structure Characterization: A Critical Assessment of Various State-of-the-Art Techniques. Transp. Porous Media 2021, 136, 431–456. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, S.; Yin, C.; Meng, H.; Song, X.; Zhang, J. Features and genesis of Paleogene high-quality reservoirs in lacustrine mixed siliciclastic–carbonate sediments, central Bohai Sea, China. Pet. Sci. 2017, 14, 50–60. [Google Scholar] [CrossRef]
- Li, Q.; Ye, L.; Gai, Z.; Li, Y. Influence of Bound and Mobile Water on Gas Well Production in a Low-Permeability Sandstone Gas Reservoir. Chem. Technol. Fuels Oils 2017, 53, 263–273. [Google Scholar]
- Liu, C.; Ma, L.; Liu, X.; Li, Y.; Zhang, B.; Ren, D.; Liu, D.; Tang, X. Study and Choice of Water Saturation Test Method for Tight Sandstone Gas Reservoirs. Front. Phys. 2022, 10, 833940. [Google Scholar] [CrossRef]
- Song, Z.; Lv, M.; Zhao, L.; Liu, C.; He, Y.; Zhang, Y.; Lobusev, M. A novel bound water occurrence model for tight sandstone. Fuel 2024, 357 Pt C, 130030. [Google Scholar] [CrossRef]
- Wang, F.; Yang, K.; Zai, Y. Multifractal characteristics of shale and tight sandstone pore structures with nitrogen adsorption and nuclear magnetic resonance. Pet. Sci. 2020, 17, 1209–1220. [Google Scholar] [CrossRef]
- Miao, Z.; Wang, J.; Fu, X.; Lu, H.; Dong, Z.; Li, L.; Wang, H. Multifractal Characteristics and Genetic Mechanisms of Pore Throat Structures in Coal Measure Tight Sandstone. Nat. Resour. Res. 2022, 31, 2885–2900. [Google Scholar] [CrossRef]
Type | Sample | Depth (m) | Φnitrogen (%) | Permeability (mD) | Φwatet (%) | ΦNMR (%) | T2 cutoff Value (ms) | T2gm (ms) | Swi (%) |
---|---|---|---|---|---|---|---|---|---|
I | 1 | 3540.10 | 2.80 | 0.11 | 2.62 | 2.50 | 4.64 | 3.09 | 63.28 |
2 | 3526.75 | 7.50 | 0.32 | 8.10 | 7.88 | 2.68 | 4.85 | 29.15 | |
3 | 3908.59 | 9.63 | 0.46 | 9.85 | 9.25 | 2.28 | 2.25 | 49.02 | |
4 | 3802.08 | 5.34 | 0.03 | 5.93 | 5.66 | 4.08 | 2.12 | 61.84 | |
II | 5 | 3834.68 | 6.16 | 0.30 | 6.02 | 5.98 | 57.20 | 61.00 | 37.38 |
6 | 3383.3 | 6.57 | 0.31 | 7.15 | 7.02 | 64.85 | 53.12 | 42.94 | |
7 | 3027.68 | 6.50 | 0.32 | 6.75 | 6.54 | 40.01 | 47.40 | 38.02 | |
8 | 3177.64 | 5.72 | 0.32 | 6.05 | 5.82 | 60.90 | 62.47 | 39.06 | |
III | 9 | 3802.08 | 5.34 | 0.03 | 5.93 | 5.66 | 4.08 | 2.12 | 61.84 |
10 | 3801.22 | 4.89 | 0.03 | 4.96 | 4.90 | 3.38 | 1.48 | 65.34 | |
11 | 3801.8 | 3.65 | 0.13 | 3.73 | 3.57 | 3.38 | 2.42 | 56.09 | |
12 | 3810.9 | 3.21 | 0.03 | 3.42 | 3.38 | 2.45 | 1.52 | 61.05 |
Type | Sample | D1s | D2s | D3s | D10 | D−10 | D2 | D−10-D0 | D0-D10 | f10-f−10 | D−10-D10 |
---|---|---|---|---|---|---|---|---|---|---|---|
I | 1 | 1.44 | 2.93 | 2.29 | 0.55 | 3.24 | 0.71 | 2.24 | 0.45 | 0.07 | 2.69 |
2 | 1.28 | 2.87 | 2.12 | 0.43 | 5.46 | 0.48 | 4.46 | 0.57 | 0.23 | 5.03 | |
3 | 1.11 | 2.93 | 2.22 | 0.47 | 5.64 | 0.55 | 4.64 | 0.53 | 0.03 | 5.17 | |
4 | 1.44 | 2.94 | 2.33 | 0.57 | 5.44 | 0.67 | 4.44 | 0.43 | 0.44 | 4.88 | |
II | 5 | 2.32 | 2.71 | 2.32 | 0.53 | 4.48 | 0.59 | 3.48 | 0.47 | −0.27 | 3.95 |
6 | 2.25 | 2.69 | 2.37 | 0.65 | 4.87 | 0.78 | 3.87 | 0.35 | −0.16 | 4.22 | |
7 | 1.88 | 2.78 | 2.09 | 0.49 | 4.42 | 0.57 | 3.42 | 0.51 | −0.62 | 3.92 | |
8 | 2.23 | 2.68 | 2.29 | 0.56 | 4.57 | 0.64 | 3.57 | 0.44 | −0.32 | 4.00 | |
III | 9 | 1.47 | 2.94 | 2.33 | 0.57 | 5.44 | 0.67 | 4.44 | 0.43 | 0.44 | 4.88 |
10 | 1.40 | 2.95 | 2.37 | 0.73 | 5.29 | 0.75 | 4.29 | 0.27 | 0.65 | 4.57 | |
11 | 1.34 | 2.91 | 2.32 | 0.68 | 3.09 | 0.75 | 2.09 | 0.32 | 0.73 | 2.40 | |
12 | 1.28 | 2.93 | 2.37 | 0.74 | 2.77 | 0.77 | 1.77 | 0.26 | 0.42 | 2.03 |
Type | Sample | D1s | D2s | D3s | D10 | D−10 | D2 | D−10-D0 | D0-D10 | f10-f−10 | D−10-D10 |
---|---|---|---|---|---|---|---|---|---|---|---|
I | 1 | 1.40 | 2.98 | 2.30 | 0.54 | 4.73 | 0.61 | 3.73 | 0.46 | −0.07 | 4.19 |
2 | 1.28 | 2.92 | 2.21 | 0.31 | 3.44 | 0.44 | 2.44 | 0.69 | 0.33 | 3.13 | |
3 | 1.22 | 2.95 | 2.33 | 0.63 | 5.22 | 0.66 | 4.22 | 0.37 | 0.12 | 4.59 | |
4 | 1.04 | 2.97 | 2.19 | 0.61 | 5.11 | 0.64 | 4.11 | 0.39 | 0.12 | 4.51 | |
II | 5 | 2.07 | 2.88 | 2.32 | 0.62 | 4.38 | 0.74 | 3.38 | 0.38 | −0.68 | 3.76 |
6 | 1.86 | 2.87 | 2.15 | 0.68 | 3.55 | 0.82 | 2.55 | 0.32 | 0.11 | 2.88 | |
7 | 1.95 | 2.97 | 2.21 | 0.51 | 5.31 | 0.59 | 4.31 | 0.49 | 0.26 | 4.81 | |
8 | 2.20 | 2.85 | 2.37 | 0.63 | 4.45 | 0.75 | 3.45 | 0.37 | −0.43 | 3.83 | |
III | 9 | 1.08 | 2.97 | 2.19 | 0.61 | 5.11 | 0.64 | 4.11 | 0.39 | 0.12 | 4.51 |
10 | 1.31 | 2.99 | 2.37 | 0.72 | 4.78 | 0.79 | 3.78 | 0.28 | 0.04 | 4.06 | |
11 | 1.36 | 2.98 | 2.37 | 0.70 | 4.68 | 0.76 | 3.68 | 0.30 | 0.11 | 3.97 | |
12 | 1.12 | 2.98 | 2.34 | 0.68 | 4.53 | 0.76 | 3.53 | 0.32 | −0.01 | 3.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, T.; Zhang, D.; Shi, Y.; Quan, F.; Qin, Z. Pore-Fracture System Distribution Heterogeneity by Using the T2 Spectral Curve under a Centrifugal State. Processes 2024, 12, 1812. https://doi.org/10.3390/pr12091812
Tian T, Zhang D, Shi Y, Quan F, Qin Z. Pore-Fracture System Distribution Heterogeneity by Using the T2 Spectral Curve under a Centrifugal State. Processes. 2024; 12(9):1812. https://doi.org/10.3390/pr12091812
Chicago/Turabian StyleTian, Tian, Di Zhang, Yong Shi, Fangkai Quan, and Zhenyuan Qin. 2024. "Pore-Fracture System Distribution Heterogeneity by Using the T2 Spectral Curve under a Centrifugal State" Processes 12, no. 9: 1812. https://doi.org/10.3390/pr12091812
APA StyleTian, T., Zhang, D., Shi, Y., Quan, F., & Qin, Z. (2024). Pore-Fracture System Distribution Heterogeneity by Using the T2 Spectral Curve under a Centrifugal State. Processes, 12(9), 1812. https://doi.org/10.3390/pr12091812