Application of Artificial Intelligence in the Management of Coagulation Treatment Engineering System
Abstract
:1. Introduction
2. Concepts and Principles
2.1. Machine Learning
2.2. Deep Learning
2.3. Transfer Learning
3. Research Statistics and Analysis
4. Application of Neural Networks in Coagulation
4.1. Coagulant Dosing Control System
4.1.1. Automatic Coagulant Dosing Control Modes
4.1.2. Coagulant Dosing Optimization
4.1.3. Multiple Model Comparison
4.1.4. Parameter Control
4.2. Prediction and Analysis of Contaminants
4.2.1. Monitoring of Inlet and Outlet Water
4.2.2. Image Processing of Inlet and Outlet Water
5. Challenges and Prospects
5.1. Optimization of Coagulation Neural Network Models
5.1.1. Improvement in Data Quality and Quantity
5.1.2. Feature Engineering
5.1.3. Model Selection
5.1.4. Cross-Validation
5.1.5. Continuous Monitoring and Optimization
5.2. Various Challenges in Neural Networks for Coagulation
5.2.1. Information Structure Issues
5.2.2. Feedback Control Signal Acquisition and Feedback Mechanism
5.2.3. Transfer Learning Challenges
5.2.4. Real Production Challenges
5.2.5. Analysis of Cost Control Issues
5.2.6. Application of Neural Network in Drinking Water Treatment
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ANN | Artificial Neural Network |
FNN | Feed Forward Neural Network |
RNN | Recurrent Neural Network |
CNN | Convolutional Neural Network |
MLP | Multi-layer Perceptron |
BP | Back Propagation |
ANFIS | Artificial Fuzzy Neural Network |
RBF | Radial Basis Function |
RBNN | Radial Basis Neural Network |
MMPC | Multi-model Predictive Control |
LSTM | Long Short-Term Memory |
PSO | Particle Swarm Optimization |
DCNN | Deep Convolution Neural Network |
RSM | Response Surface Methodology |
ENN | Edited Nearest Neighbors |
References
- Ray, S.S.; Verma, R.K.; Singh, A.; Ganesapillai, M.; Kwon, Y.-N. A holistic review on how artificial intelligence has redefined water treatment and seawater desalination processes. Desalination 2023, 546, 116221. [Google Scholar] [CrossRef]
- Qu, J.; Yin, C.; Yang, M.; Liu, H. Development and application of innovative technologies for drinking water quality assurance in China. Front. Environ. Sci. Eng. China 2007, 1, 257–269. [Google Scholar] [CrossRef]
- Teodosiu, C.; Gilca, A.-F.; Barjoveanu, G.; Fiore, S. Emerging pollutants removal through advanced drinking water treatment: A review on processes and environmental performances assessment. J. Clean. Prod. 2018, 197, 1210–1221. [Google Scholar] [CrossRef]
- Mian, H.R.; Chhipi-Shrestha, G.; Hewage, K.; Rodriguez, M.J.; Sadiq, R. Predicting unregulated disinfection by-products in small water distribution networks: An empirical modelling framework. Environ. Monit. Assess. 2020, 192, 497. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhu, G.; Li, X.; Wan, P.; Yuan, F.; Xu, S.; Hursthouse, A.S. Ecosystem-inspired model and artificial intelligence predicts pollutant consumption capacity by coagulation in drinking water treatment. Environ. Chem. Lett. 2023, 21, 2499–2508. [Google Scholar] [CrossRef]
- Ribau Teixeira, M.; Rosa, S.M.; Sousa, V. Natural organic matter and disinfection by-products formation potential in water treatment. Water Resour. Manag. 2011, 25, 3005–3015. [Google Scholar] [CrossRef]
- Lichtfouse, E.; Morin-Crini, N.; Bradu, C.; Boussouga, Y.-A.; Aliaskari, M.; Schäfer, A.I.; Das, S.; Wilson, L.D.; Ike, M.; Inoue, D. Methods for selenium removal from contaminated waters: A review. Environ. Chem. Lett. 2022, 20, 2019–2041. [Google Scholar] [CrossRef]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Qu, J.; Fan, M. The current state of water quality and technology development for water pollution control in China. Crit. Rev. Environ. Sci. Technol. 2010, 40, 519–560. [Google Scholar] [CrossRef]
- Bian, Y.; Xiong, N.; Zhu, G. Technology for the remediation of water pollution: A review on the fabrication of metal organic frameworks. Processes 2018, 6, 122. [Google Scholar] [CrossRef]
- Inyinbor Adejumoke, A.; Adebesin Babatunde, O.; Oluyori Abimbola, P.; Adelani Akande Tabitha, A.; Dada Adewumi, O.; Oreofe Toyin, A. Water pollution: Effects, prevention, and climatic impact. Water Chall. Urban. World 2018, 33, 33–47. [Google Scholar]
- Sathya, K.; Nagarajan, K.; Carlin Geor Malar, G.; Rajalakshmi, S.; Raja Lakshmi, P. A comprehensive review on comparison among effluent treatment methods and modern methods of treatment of industrial wastewater effluent from different sources. Appl. Water Sci. 2022, 12, 70. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Mei, Y.; Chen, J.; Wu, Z.; Lan, L.; Zhu, D. An analysis of the relation between water pollution and economic growth in China by considering the contemporaneous correlation of water pollutants. J. Clean. Prod. 2020, 276, 122783. [Google Scholar] [CrossRef]
- Gadipelly, C.; Pérez-González, A.; Yadav, G.D.; Ortiz, I.; Ibáñez, R.; Rathod, V.K.; Marathe, K.V. Pharmaceutical industry wastewater: Review of the technologies for water treatment and reuse. Ind. Eng. Chem. Res. 2014, 53, 11571–11592. [Google Scholar] [CrossRef]
- Mondejar, M.E.; Avtar, R.; Diaz, H.L.B.; Dubey, R.K.; Esteban, J.; Gómez-Morales, A.; Hallam, B.; Mbungu, N.T.; Okolo, C.C.; Prasad, K.A. Digitalization to achieve sustainable development goals: Steps towards a Smart Green Planet. Sci. Total Environ. 2021, 794, 148539. [Google Scholar] [CrossRef]
- Gupta, A.D.; Pandey, P.; Feijóo, A.; Yaseen, Z.M.; Bokde, N.D. Smart water technology for efficient water resource management: A review. Energies 2020, 13, 6268. [Google Scholar] [CrossRef]
- Gunasekaran, K.; Boopathi, S. Artificial Intelligence in Water Treatments and Water Resource Assessments. In Artificial Intelligence Applications in Water Treatment and Water Resource Management; IGI Global: Hershey, PA, USA, 2023; pp. 71–98. [Google Scholar]
- Zhang, Y.; Gao, X.; Smith, K.; Inial, G.; Liu, S.; Conil, L.B.; Pan, B. Integrating water quality and operation into prediction of water production in drinking water treatment plants by genetic algorithm enhanced artificial neural network. Water Res. 2019, 164, 114888. [Google Scholar] [CrossRef]
- Azimi, S.; Moghaddam, M.A.; Monfared, S.H. Prediction of annual drinking water quality reduction based on Groundwater Resource Index using the artificial neural network and fuzzy clustering. J. Contam. Hydrol. 2019, 220, 6–17. [Google Scholar] [CrossRef]
- Godo-Pla, L.; Emiliano, P.; Valero, F.; Poch, M.; Sin, G.; Monclús, H. Predicting the oxidant demand in full-scale drinking water treatment using an artificial neural network: Uncertainty and sensitivity analysis. Process Saf. Environ. Prot. 2019, 125, 317–327. [Google Scholar] [CrossRef]
- Peleato, N.M.; Legge, R.L.; Andrews, R.C. Neural networks for dimensionality reduction of fluorescence spectra and prediction of drinking water disinfection by-products. Water Res. 2018, 136, 84–94. [Google Scholar] [CrossRef]
- Halali, M.A.; Azari, V.; Arabloo, M.; Mohammadi, A.H.; Bahadori, A. Application of a radial basis function neural network to estimate pressure gradient in water–oil pipelines. J. Taiwan Inst. Chem. Eng. 2016, 58, 189–202. [Google Scholar] [CrossRef]
- Gadekar, M.R.; Ahammed, M.M. Modelling dye removal by adsorption onto water treatment residuals using combined response surface methodology-artificial neural network approach. J. Environ. Manag. 2019, 231, 241–248. [Google Scholar] [CrossRef]
- Yusuf, M.; Song, K.; Li, L. Fixed bed column and artificial neural network model to predict heavy metals adsorption dynamic on surfactant decorated graphene. Colloids Surf. A Physicochem. Eng. Asp. 2020, 585, 124076. [Google Scholar] [CrossRef]
- Khawaga, R.I.; Jabbar, N.A.; Al-Asheh, S.; Abouleish, M. Model identification and control of chlorine residual for disinfection of wastewater. J. Water Process Eng. 2019, 32, 100936. [Google Scholar] [CrossRef]
- Narges, S.; Ghorban, A.; Hassan, K.; Mohammad, K. Prediction of the optimal dosage of coagulants in water treatment plants through developing models based on artificial neural network fuzzy inference system (ANFIS). J. Environ. Health Sci. Eng. 2021, 19, 1543–1553. [Google Scholar] [CrossRef] [PubMed]
- El Naqa, I.; Murphy, M.J. What Is Machine Learning? Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- El Bouchefry, K.; de Souza, R.S. Learning in big data: Introduction to machine learning. In Knowledge Discovery in Big Data from Astronomy and Earth Observation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 225–249. [Google Scholar]
- Linnainmaa, S. The Representation of the Cumulative Rounding Error of an Algorithm as a Taylor Expansion of the Local Rounding Errors. Master’s Thesis, University of Helsinki, Helsinki, Finland, 1970. (In Finnish). [Google Scholar]
- Cortes, C.; Vapnik, V. Support vector machine. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Shinde, P.P.; Shah, S. A review of machine learning and deep learning applications. In Proceedings of the 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Goodfellow, I. Deep Learning; Goodfellow, I., Bengio, Y., Courville, A., Eds.; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Yang, Q. Transfer Learning; China Machine Press: Beijing, China, 2020. [Google Scholar]
- Aridoss, M.; Dhasarathan, C.; Dumka, A.; Loganathan, J. DUICM deep underwater image classification mobdel using convolutional neural networks. Int. J. Grid High Perform. Comput. (IJGHPC) 2020, 12, 88–100. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; Wang, H.; Liu, X. Underwater image classification using deep convolutional neural networks and data augmentation. In Proceedings of the 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xiamen, China, 22–25 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5. [Google Scholar]
- Ojha, V.K.; Abraham, A.; Snášel, V. Metaheuristic design of feedforward neural networks: A review of two decades of research. Eng. Appl. Artif. Intell. 2017, 60, 97–116. [Google Scholar] [CrossRef]
- Grossberg, S. Recurrent neural networks. Scholarpedia 2013, 8, 1888. [Google Scholar] [CrossRef]
- Wu, J. Introduction to convolutional neural networks. Natl. Key Lab Nov. Softw. Technol. Nanjing Univ. China 2017, 5, 495. [Google Scholar]
- Zell, A. Simulation Neuronaler Netze; Addison-Wesley Bonn: Reading, MA, USA, 1994. [Google Scholar]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed]
- Dupond, S. A thorough review on the current advance of neural network structures. Annu. Rev. Control 2019, 14, 200–230. [Google Scholar]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, E00938. [Google Scholar] [CrossRef]
- Tealab, A. Time series forecasting using artificial neural networks methodologies: A systematic review. Future Comput. Inform. J. 2018, 3, 334–340. [Google Scholar] [CrossRef]
- Venkatesan, R.; Li, B. Convolutional Neural Networks in Visual Computing: A Concise Guide; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Balas, V.E.; Kumar, R.; Srivastava, R. Recent Trends and Advances in Artificial Intelligence and Internet of Things; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Pröve, P.L. An introduction to different types of convolutions in deep learning. Towards Data Sci. 2017, 22. [Google Scholar]
- Tian, Y.; Sehovac, L.; Grolinger, K. Similarity-based chained transfer learning for energy forecasting with big data. IEEE Access 2019, 7, 139895–139908. [Google Scholar] [CrossRef]
- Fernandes, K.; Cardoso, J.S. Hypothesis transfer learning based on structural model similarity. Neural Comput. Appl. 2019, 31, 3417–3430. [Google Scholar] [CrossRef]
- Zhang, W.; Fang, Y.; Ma, Z. The effect of task similarity on deep transfer learning. In Proceedings of the Neural Information Processing: 24th International Conference, ICONIP 2017, Guangzhou, China, 14–18 November 2017; Proceedings, Part II 24. Springer: Cham, Switzerland, 2017; pp. 256–265. [Google Scholar]
- Jiang, J.-Q. The role of coagulation in water treatment. Curr. Opin. Chem. Eng. 2015, 8, 36–44. [Google Scholar] [CrossRef]
- Li, L.; Rong, S.; Wang, R.; Yu, S. Recent advances in artificial intelligence and machine learning for nonlinear relationship analysis and process control in drinking water treatment: A review. Chem. Eng. J. 2021, 405, 126673. [Google Scholar] [CrossRef]
- Safeer, S.; Pandey, R.P.; Rehman, B.; Safdar, T.; Ahmad, I.; Hasan, S.W.; Ullah, A. A review of artificial intelligence in water purification and wastewater treatment: Recent advancements. J. Water Process Eng. 2022, 49, 102974. [Google Scholar] [CrossRef]
- Lin, J.-L.; Ika, A.R. Enhanced coagulation of low turbid water for drinking water treatment: Dosing approach on floc formation and residuals minimization. Environ. Eng. Sci. 2019, 36, 732–738. [Google Scholar] [CrossRef]
- dos Santos, F.C.R.; Librantz, A.F.H.; Dias, C.G.; Rodrigues, S.G. Intelligent system for improving dosage control. Acta Scientiarum. Technol. 2017, 39, 33–38. [Google Scholar] [CrossRef]
- Imen, S.; Chang, N.-B.; Yang, Y.J.; Golchubian, A. Developing a model-based drinking water decision support system featuring remote sensing and fast learning techniques. IEEE Syst. J. 2016, 12, 1358–1368. [Google Scholar] [CrossRef]
- Zaque, R.A.M.; da Silva, W.T.P.; Santos, A.d.A. Expert system for applying coagulant in water treatment: Case study in Nobres (Brazil). Water Pract. Technol. 2018, 13, 832–840. [Google Scholar] [CrossRef]
- Bello, O.; Hamam, Y.; Djouani, K. Dynamic modelling and system identification of coagulant dosage system for water treatment plants. In Proceedings of the 3rd International Conference on Systems and Control, Algiers, Algeria, 29–31 October 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 146–152. [Google Scholar]
- Su, X.; Xu, S.; Xu, S. Compound control system for coagulant dosing process based on a fuzzy cerebellar model articulation controller. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 3931–3936. [Google Scholar]
- Chang, Y. Research on Coagulant Dosing Control of Water Supply Factory. Master’s Thesis, Tianjin University, Tianjin, China, 2007. [Google Scholar]
- Sun, S.; Weber-Shirk, M.; Lion, L.W. Characterization of flocs and floc size distributions using image analysis. Environ. Eng. Sci. 2016, 33, 25–34. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, G.-G.; Pei, G.-L.; Zhang, G.-Y. Predicting the floc characteristics and settling velocity of flocs under variable dosage of polyacrylamide. Eng. J. 2017, 21, 113–122. [Google Scholar] [CrossRef]
- Sivchenko, N. Image Analysis in Coagulation Process Control. Ph.D. Thesis, Norwegian University of Life Sciences, Ås, Norway, 2018. [Google Scholar]
- Black, A.; Buswell, A.M.; Eidsness, F.A.; Black, A. Review of the jar test. J. (Am. Water Work. Assoc.) 1957, 49, 1414–1424. [Google Scholar] [CrossRef]
- Haghiri, S.; Daghighi, A.; Moharramzadeh, S. Optimum coagulant forecasting by modeling jar test experiments using ANNs. Drink. Water Eng. Sci. 2018, 11, 1–8. [Google Scholar] [CrossRef]
- Asmel, N.; Al-Nima, R.; Mohammed, F.; Al Saadi, A.; Ganiyu, A. Forecasting effluent turbidity and pH in jar test using radial basis neural network. In Proceedings of the Towards a Sustainable Water Future: Proceedings of Oman’s International Conference on Water Engineering and Management of Water Resources, Muscat, Oman, 9–11 November 2021; ICE Publishing: London, UK, 2021; pp. 361–370. [Google Scholar]
- Bello, O.; Hamam, Y.; Djouani, K. Coagulation process control in water treatment plants using multiple model predictive control. Alex. Eng. J. 2014, 53, 939–948. [Google Scholar] [CrossRef]
- Chantaruk, S.; Koolpiruck, D.; Chongstitvatana, P. Forecasting the quantity and concentration of flocculant in clarification process for sugarcane industry. In Proceedings of the ECTI-CON 2021-2021 18th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology: Smart Electrical System and Technology, Proceedings, Chiang Mai, Thailand, 19–22 May 2021; pp. 763–767. [Google Scholar]
- Luo, H.; Li, X.; Yuan, F.; Yuan, C.; Huang, W.; Ji, Q.; Wang, X.; Liu, B.; Zhu, G. Application of a New Architecture Neural Network in Determination of Flocculant Dosing for Better Controlling Drinking Water Quality. Water 2022, 14, 2727. [Google Scholar] [CrossRef]
- Lin, S.; Kim, J.; Hua, C.; Park, M.-H.; Kang, S. Coagulant dosage determination using deep learning-based graph attention multivariate time series forecasting model. Water Res. 2023, 232, 119665. [Google Scholar] [CrossRef]
- Kim, C.M.; Parnichkun, M. Prediction of settled water turbidity and optimal coagulant dosage in drinking water treatment plant using a hybrid model of k-means clustering and adaptive neuro-fuzzy inference system. Appl. Water Sci. 2017, 7, 3885–3902. [Google Scholar] [CrossRef]
- Zhang, Y.; Ai, J. Zeta potential modeling of papermaking wastewater on neural network. In Proceedings of the 2012 Second International Conference on Instrumentation, Measurement, Computer, Communication and Control, Harbin, China, 8–10 December 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 63–66. [Google Scholar]
- Arab, M.; Akbarian, H.; Gheibi, M.; Akrami, M.; Fatollahi-Fard, A.M.; Hajiaghaei-Keshteli, M.; Tian, G. A soft-sensor for sustainable operation of coagulation and flocculation units. Eng. Appl. Artif. Intell. 2022, 115, 105315. [Google Scholar] [CrossRef]
- Qin, Y.; Jia, H.; Liu, W.; Lu, N.; Ngo, H.H.; Wang, J. Application of in-situ micro laser transmission on real-time monitoring of flocculation process. J. Water Process Eng. 2023, 51, 103364. [Google Scholar] [CrossRef]
- Onen, V.; Tezel, G.; Yel, E.; Beyazyüz, P.; Ozkan, I. Modeling of the removal of turbidity from marble suspensions via ANN (Artificial Neural Network). In Proceedings of the 1st European Conference of Mining Engineering, Antalya, Turkey, 8–10 October 2013. [Google Scholar]
- Zheng, H.; Zhu, G.; Jiang, S.; Tshukudu, T.; Xiang, X.; Zhang, P.; He, Q. Investigations of coagulation–flocculation process by performance optimization, model prediction and fractal structure of flocs. Desalination 2011, 269, 148–156. [Google Scholar] [CrossRef]
- Ismail, W.; Niknejad, N.; Bahari, M.; Hendradi, R.; Zaizi, N.J.M.; Zulkifli, M.Z. Water treatment and artificial intelligence techniques: A systematic literature review research. Environ. Sci. Pollut. Res 2021, 30, 1–19. [Google Scholar] [CrossRef]
- Abdulkareem, I.A.; Dawood, A.S.; Abbas, A.A. Integration of an artificial neural network and a simulated annealing algorithm for the optimization of the river water pollution index. Reg. Stud. Mar. Sci. 2022, 56, 102719. [Google Scholar] [CrossRef]
- Igwegbe, C.A.; Ighalo, J.O.; Iwuozor, K.O.; Onukwuli, O.D.; Okoye, P.U.; Al-Rawajfeh, A.E. Prediction and optimisation of coagulation-flocculation process for turbidity removal from aquaculture effluent using Garcinia kola extract: Response surface and artificial neural network methods. Clean. Chem. Eng. 2022, 4, 100076. [Google Scholar] [CrossRef]
- Zhu, G.; Yin, J.; Zhang, P.; Wang, X.; Fan, G.; Hua, B.; Ren, B.; Zheng, H.; Deng, B. DOM removal by flocculation process: Fluorescence excitation–emission matrix spectroscopy (EEMs) characterization. Desalination 2014, 346, 38–45. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, G.; Ren, B.; Peng, Z.; Hursthouse, A. A Cationic Polymer Enhanced PAC for the Removal of Dissolved Aquatic Organic Carbon and Organic Nitrogen from Surface Waters. Can. J. Chem. Eng. 2019, 97, 955–966. [Google Scholar] [CrossRef]
- Zhang, Q.; Stanley, S.J. Real-time water treatment process control with artificial neural networks. J. Environ. Eng. 1999, 125, 153–160. [Google Scholar] [CrossRef]
- Huang, T.-y.; Xia, S.-Q.; Ning, L.; Yong, H. Comparison of Chemical-Biological Flocculation Process Model Based on Artificial Neural Network. In Proceedings of the 2008 2nd International Conference on Bioinformatics and Biomedical Engineering, Shanghai, China, 16–18 May 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 824–827. [Google Scholar]
- Pouresmaeil, H.; Faramarz, M.G.; ZamaniKherad, M.; Gheibi, M.; Fathollahi-Fard, A.M.; Behzadian, K.; Tian, G. A decision support system for coagulation and flocculation processes using the adaptive neuro-fuzzy inference system. Int. J. Environ. Sci. Technol. 2022, 19, 10363–10374. [Google Scholar] [CrossRef]
- Deng, T.; Chau, K.-W.; Duan, H.-F. Machine learning based marine water quality prediction for coastal hydro-environment management. J. Environ. Manag. 2021, 284, 112051. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Lin, J.; Fang, H.; Yuan, F.; Li, X.; Yuan, C.; Hursthouse, A.S. A flocculation tensor to monitor water quality using a deep learning model. Environ. Chem. Lett. 2022, 20, 3405–3414. [Google Scholar] [CrossRef]
- Yu, R.-F. On-line evaluating the SS removals for chemical coagulation using digital image analysis and artificial neural networks. Int. J. Environ. Sci. Technol. 2014, 11, 1817–1826. [Google Scholar] [CrossRef]
- Panckow, R.P.; Bliatsiou, C.; Nolte, L.; Böhm, L.; Maaß, S.; Kraume, M. Characterisation of particle stress in turbulent impeller flows utilising photo-optical measurements of a flocculation system–PART 1. Chem. Eng. Sci. 2023, 267, 118333. [Google Scholar] [CrossRef]
- Pan, F.; Zhu, S.; Shang, L.; Wang, P.; Liu, L.; Liu, J. Assessment of drinking water quality and health risk using water quality index and multiple computational models: A case study of Yangtze River in suburban areas of Wuhan, central China, from 2016 to 2021. Environ. Sci. Pollut. Res. 2024, 31, 22736–22758. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, H.; Putri, E.U.; Kawakami, T.; Suzuki, A.; Ariesyady, H.D.; Ishii, T. Dosage optimization of polyaluminum chloride by the application of convolutional neural network to the floc images captured in jar tests. Sep. Purif. Technol. 2020, 237, 116467. [Google Scholar] [CrossRef]
- Kusuma, H.S.; Amenaghawon, A.N.; Darmokoesoemo, H.; Neolaka, Y.A.; Widyaningrum, B.A.; Anyalewechi, C.L.; Orukpe, P.I. Evaluation of extract of Ipomoea batatas leaves as a green coagulant–flocculant for turbid water treatment: Parametric modelling and optimization using response surface methodology and artificial neural networks. Environ. Technol. Innov. 2021, 24, 102005. [Google Scholar] [CrossRef]
- Hu, Y.; Li, J. Prediction of flocculant dosage in water plant based on LSTM network. In Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering, Xiamen, China, 21–23 October 2022; pp. 356–360. [Google Scholar]
- Abdalrahman, G.; Lai, S.H.; Kumar, P.; Ahmed, A.N.; Sherif, M.; Sefelnasr, A.; Chau, K.W.; Elshafie, A. Modeling the infiltration rate of wastewater infiltration basins considering water quality parameters using different artificial neural network techniques. Eng. Appl. Comput. Fluid Mech. 2022, 16, 397–421. [Google Scholar] [CrossRef]
- Hadjisolomou, E.; Stefanidis, K.; Herodotou, H.; Michaelides, M.; Papatheodorou, G.; Papastergiadou, E. Modelling freshwater eutrophication with limited limnological data using artificial neural networks. Water 2021, 13, 1590. [Google Scholar] [CrossRef]
- Asadollahfardi, G.; Afsharnasab, M.; Rasoulifard, M.H.; Tayebi Jebeli, M. Predicting of acid red 14 removals from synthetic wastewater in the advanced oxidation process using artificial neural networks and fuzzy regression. Rend. Lincei. Sci. Fis. E Nat. 2022, 33, 115–126. [Google Scholar] [CrossRef]
- Pourrahmani, H.; Moghimi, M.; Siavashi, M.; Shirbani, M. Sensitivity analysis and performance evaluation of the PEMFC using wave-like porous ribs. Appl. Therm. Eng. 2019, 150, 433–444. [Google Scholar] [CrossRef]
- Rahmanifard, H.; Plaksina, T. Application of artificial intelligence techniques in the petroleum industry: A review. Artif. Intell. Rev. 2019, 52, 2295–2318. [Google Scholar] [CrossRef]
- Tang, D.; Gao, Z.; Zhang, X. Design of predictive active disturbance rejection controller for turbidity. Control Theory Appl. 2017, 34, 101–108. [Google Scholar]
- Saxena, K.; Brighu, U.; Choudhary, A. Parameters affecting enhanced coagulation: A review. Environ. Technol. Rev. 2018, 7, 156–176. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, S.; Chiang, P.-C.; Shah, K.J. Evaluation and optimization of enhanced coagulation process: Water and energy nexus. Water-Energy Nexus 2020, 2, 25–36. [Google Scholar] [CrossRef]
- Zhu, G.; Xiong, N.; Wang, C.; Li, Z.; Hursthouse, A.S. Application of a new HMW framework derived ANN model for optimization of aquatic dissolved organic matter removal by coagulation. Chemosphere 2021, 262, 127723. [Google Scholar] [CrossRef]
- Zhang, P.; Liao, L.; Zhu, G. Performance of PATC-PDMDAAC Composite Coagulants in Low-Temperature and Low-Turbidity Water Treatment. Materials 2019, 12, 2824. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, J. Urban Water System Operation and Management; China Architecture and Architecture Press: Beijing, China, 2005. [Google Scholar]
- Sibiya, S.M. Evaluation of the streaming current detector (SCD) for coagulation control. Procedia Eng. 2014, 70, 1211–1220. [Google Scholar] [CrossRef]
- Nam, S.-W.; Jo, B.-I.; Kim, W.-K.; Zoh, K.-D. Coagulation Control of High Turbid Water Samples Using a Streaming Current Control System. J. Environ. Health Sci. 2012, 38, 128–135. [Google Scholar] [CrossRef]
- Kao, C.-Y. A Deep Learning Architecture For Histology Image Classification. Ph.D. Thesis, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 2018. [Google Scholar]
- Han, D.; Liu, Q.; Fan, W. A new image classification method using CNN transfer learning and web data augmentation. Expert Syst. Appl. 2018, 95, 43–56. [Google Scholar] [CrossRef]
- Rajpura, P.; Aggarwal, A.; Goyal, M.; Gupta, S.; Talukdar, J.; Bojinov, H.; Hegde, R. Transfer learning by finetuning pretrained CNNs entirely with synthetic images. In Proceedings of the National Conference on Computer Vision, Pattern Recognition, Image Processing, and Graphics, Mandi, India, 16–19 December 2017; Springer: Singapore, 2017; pp. 517–528. [Google Scholar]
- Banna, M.H.; Imran, S.; Francisque, A.; Najjaran, H.; Sadiq, R.; Rodriguez, M.; Hoorfar, M. Online drinking water quality monitoring: Review on available and emerging technologies. Crit. Rev. Environ. Sci. Technol. 2014, 44, 1370–1421. [Google Scholar] [CrossRef]
- Zhang, K.; Achari, G.; Li, H.; Zargar, A.; Sadiq, R. Machine learning approaches to predict coagulant dosage in water treatment plants. Int. J. Syst. Assur. Eng. Manag. 2013, 4, 205–214. [Google Scholar] [CrossRef]
- Mustereț, C.P.; Morosanu, I.; Ciobanu, R.; Plavan, O.; Gherghel, A.; Al-Refai, M.; Roman, I.; Teodosiu, C. Assessment of coagulation–flocculation process efficiency for the natural organic matter removal in drinking water treatment. Water 2021, 13, 3073. [Google Scholar] [CrossRef]
- Ang, W.L.; Mohammad, A.W. State of the art and sustainability of natural coagulants in water and wastewater treatment. J. Clean. Prod. 2020, 262, 121267. [Google Scholar] [CrossRef]
- Wu, G.-D.; Lo, S.-L. Predicting real-time coagulant dosage in water treatment by artificial neural networks and adaptive network-based fuzzy inference system. Eng. Appl. Artif. Intell. 2008, 21, 1189–1195. [Google Scholar] [CrossRef]
- Curcio, S.; Calabrò, V.; Iorio, G. Reduction and control of flux decline in cross-flow membrane processes modeled by artificial neural networks. J. Membr. Sci. 2006, 286, 125–132. [Google Scholar] [CrossRef]
- Liu, Q.-F.; Kim, S.-H. Evaluation of membrane fouling models based on bench-scale experiments: A comparison between constant flowrate blocking laws and artificial neural network (ANNs) model. J. Membr. Sci. 2008, 310, 393–401. [Google Scholar] [CrossRef]
- Ghandehari, S.; Montazer-Rahmati, M.M.; Asghari, M. A comparison between semi-theoretical and empirical modeling of cross-flow microfiltration using ANN. Desalination 2011, 277, 348–355. [Google Scholar] [CrossRef]
- Pan, Z.; Yu, W.; Yi, X.; Khan, A.; Yuan, F.; Zheng, Y. Recent progress on generative adversarial networks (GANs): A survey. IEEE Access 2019, 7, 36322–36333. [Google Scholar] [CrossRef]
- Reiter, E. Natural language generation challenges for explainable AI. arXiv 2019, arXiv:191108794. [Google Scholar]
- Munappy, A.; Bosch, J.; Olsson, H.H.; Arpteg, A.; Brinne, B. Data management challenges for deep learning. In Proceedings of the 2019 45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Thessaloniki, Greece, 28–30 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 140–147. [Google Scholar]
- Aliashrafi, A.; Zhang, Y.; Groenewegen, H.; Peleato, N.M. A review of data-driven modelling in drinking water treatment. Rev. Environ. Sci. Bio/Technol. 2021, 20, 985–1005. [Google Scholar] [CrossRef]
- O’reilly, G.; Bezuidenhout, C.; Bezuidenhout, J. Artificial neural networks: Applications in the drinking water sector. Water Sci. Technol. Water Supply 2018, 18, 1869–1887. [Google Scholar] [CrossRef]
Category | Network Structure | Representative Models | Pros and Cons | Application Areas | References |
---|---|---|---|---|---|
Feedforward Neural Network (FNN) | Each layer is only connected to the immediately subsequent layer. | Multi-layer Perceptron (MLP), Improved Multi-layer Perceptron (BP, RBF, DBN), Fully Connected Neural Networks | It is parallelizable, making it suitable for processing various data types efficiently. However, a potential drawback is its proneness to overfitting. | Classification, Regression, Clustering, Image, Speech, Natural Language Processing | [38,41,42] |
Recurrent Neural Network (RNN) | It enables information to propagate cyclically through the network, making it suitable for processing sequential data. | Elman Network, Jordan Network, Long Short-Term Memory Network (LSTM), Gated Recurrent Unit (GRU) | It is particularly suitable for sequential data, capable of modeling long sequences effectively. It can be vulnerable to the issue of gradient vanishing, which may hinder the training process. | Speech, Text, Natural Language Processing | [43,44,45] |
Convolutional Neural Network (CNN) | It reduces the number of parameters by leveraging local connections and weight sharing, rendering it ideally suited for spatial feature processing. | LeNet, AlexNet, VGG, GoogLeNet, ResNet | It excels in image recognition tasks, and the use of parameter sharing significantly reduces the total number of parameters required. However, it is not naturally suited for processing sequential data. | Image, Video, Natural Language Processing | [46,47,48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Long, Y.; Zhu, G.; Hursthouse, A.S. Application of Artificial Intelligence in the Management of Coagulation Treatment Engineering System. Processes 2024, 12, 1824. https://doi.org/10.3390/pr12091824
Liu J, Long Y, Zhu G, Hursthouse AS. Application of Artificial Intelligence in the Management of Coagulation Treatment Engineering System. Processes. 2024; 12(9):1824. https://doi.org/10.3390/pr12091824
Chicago/Turabian StyleLiu, Jingfeng, Yizhou Long, Guocheng Zhu, and Andrew S. Hursthouse. 2024. "Application of Artificial Intelligence in the Management of Coagulation Treatment Engineering System" Processes 12, no. 9: 1824. https://doi.org/10.3390/pr12091824
APA StyleLiu, J., Long, Y., Zhu, G., & Hursthouse, A. S. (2024). Application of Artificial Intelligence in the Management of Coagulation Treatment Engineering System. Processes, 12(9), 1824. https://doi.org/10.3390/pr12091824