The Evaluation and Optimization of a Decentralized Incineration Facility for Animal By-Products: Performance, Cost Analysis and Resource Recovery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Incinerator Design
2.2. Incinerator Operation
2.3. ABP Ash Leaching and Characterization
3. Results and Discussion
3.1. Incinerator Operating Conditions
3.2. Ash Composition
3.3. Techno-Economic Assessment
3.4. Perspectives of a Circular Incineration Facility
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.H.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, health, and the environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef] [PubMed]
- McMichael, A.J.; Powles, J.W.; Butler, C.D.; Uauy, R. Food, livestock production, energy, climate change, and health. Lancet 2007, 370, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Eftaxias, A.; Diamantis, A.; Aivasidis, A. Anaerobic digestion of thermal pre-treated emulsified slaughterhouse wastes (TESW): Effect of trace element limitation on process efficiency and sludge metabolic properties. Waste Manag. 2018, 76, 357–363. [Google Scholar] [CrossRef]
- Zagklis, D.; Konstantinidou, E.; Zafiri, C.; Kornaros, M. Assessing the economic viability of an animal byproduct rendering plant: Case study of a slaughterhouse in Greece. Sustainability 2020, 12, 5870. [Google Scholar] [CrossRef]
- Vlachokostas, C.; Achillas, C.; Diamantis, V.; Michailidou, A.V.; Baginetas, K.; Aidonis, D. Supporting decision making to achieve circularity via a biodegradable waste-to-bioenergy and compost facility. J. Environ. Manag. 2021, 285, 112215. [Google Scholar] [CrossRef] [PubMed]
- Eftaxias, A.; Kolokotroni, I.; Michailidis, C.; Charitidis, P.; Diamantis, V. Techno-economic assessment of anaerobic digestion technology for small- and medium-sized animal husbandry enterprises. Appl. Sci. 2024, 14, 4957. [Google Scholar] [CrossRef]
- Gwyther, C.L.; Williams, A.P.; Golyshin, P.N.; Edward-Jones, G.; Jones, D.L. The environmental and biosecurity characteristics of livestock carcass disposal methods: A review. Waste Manag. 2011, 31, 767–778. [Google Scholar] [CrossRef]
- Chowdhury, S.; Kim, G.H.; Bolan, N.; Longhurst, P. A critical review on risk evaluation and hazardous management in carcass burial. Process. Saf. Environ. 2019, 123, 272–288. [Google Scholar] [CrossRef]
- Blake, J.P. Methods and technologies for handling mortality losses. World Poultry Sci. J. 2004, 60, 489–499. [Google Scholar] [CrossRef]
- Kowalski, Z.; Kulczycka, J.; Makara, A.; Harazin, P. Quantification of material recovery from meat waste incineration—An approach to an updated food waste hierarchy. J. Hazard. Mater. 2021, 416, 126021. [Google Scholar] [CrossRef]
- Bujak, J.W. New insights into waste management—Meat industry. Renew. Energ. 2015, 83, 1174–1186. [Google Scholar] [CrossRef]
- Cascarosa, E.; Gea, G.; Arauzo, J. Thermochemical processing of meat and bone meal: A review. Renew. Sustain. Energ. Rev. 2012, 16, 942–957. [Google Scholar] [CrossRef]
- Paulides, J.J.H.; Post, E.; Post, J.; Encica, L.; Lomonova, E.A. Green turbine: A high speed double turbine solution for sustainable energy harvesting from waste heat. In Proceedings of the 10th International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 31 March–2 April 2015; pp. 1–7. [Google Scholar] [CrossRef]
- Cummins, E.J.; McDonnell, K.P.; Ward, S.M. Dispersion modelling and measurement of emissions from the co-combustion of meat and bone meal with peat in a fluidized bed. Bioresour. Technol. 2006, 97, 903–913. [Google Scholar] [CrossRef]
- Sharrock, P.; Fiallo, M.; Nzihou, A.; Chkir, M. Hazardous animal waste carcasses transformation into slow release fertilizers. J. Hazard. Mater. 2009, 167, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Staron, P.; Kowalski, Z.; Staron, A.; Seidlerova, J.; Banach, M. Residues from the thermal conversion of waste from the meat industry as a source of valuable macro- and micronutrients. Waste Manag. 2016, 49, 337–345. [Google Scholar] [CrossRef]
- Valta, K.; Damala, P.; Orli, E.; Papadaskalopoulou, C.; Moustakas, K.; Malamis, D.; Loizidou, M. Valorisation opportunities related to wastewater and animal by-products exploitation by the Greek slaughterhouse industry: Current status and future potentials. Waste Biomass Valorization 2015, 6, 927–945. [Google Scholar] [CrossRef]
- Leng, L.; Bogush, A.A.; Roy, A.; Stegemann, J.A. Characterisation of ashes from waste biomass power plants and phosphorus recovery. Sci. Total Environ. 2019, 690, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Darwish, M.; Aris, A.; Puteh, M.H.; Jusoh, M.N.H.; Kadir, A.A. Waste bones ash as an alternative source of P for struvite precipitation. J. Environ. Manag. 2017, 203, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Diamantis, V.; Eftaxias, A.; Stamatelatou, K.; Noutsopoulos, C.; Vlachokostas, C.; Aivasidis, A. Bioenergy in the era of circular economy: Anaerobic digestion technological solutions to produce biogas from lipid-rich wastes. Renew. Energ. 2021, 168, 438–447. [Google Scholar] [CrossRef]
- Leng, L.; Zhang, J.; Xu, S.; Xiong, Q.; Xu, X.; Li, J.; Huang, H. Meat & bone meal (MBM) incineration ash for phosphate removal from wastewater and afterward phosphorus recovery. J. Clean. Prod. 2019, 238, 117960. [Google Scholar] [CrossRef]
- Cohen, Y. Phosphorus dissolution from ash of incinerated sewage sludge and animal carcasses using sulphuric acid. Environ. Technol. 2009, 30, 1215–1226. [Google Scholar] [CrossRef]
- Probst, C.; Gethmann, L.M.; Heuser, R.; Niemann, H.; Conraths, F.J. Direct costs of bovine spongiform encephalopathy control measures in Germany. Zoonoses Public Health 2013, 60, 577–595. [Google Scholar] [CrossRef] [PubMed]
- Lambe, N.R.; Ross, D.W.; Navajas, E.A.; Hyslop, J.J.; Prieto, N.; Craigie, C.; Bunger, L.; Simm, G.; Roehe, R. The prediction of carcass composition and tissue distribution in beef cattle using ultrasound scanning at the start and/or end of the finishing period. Livest. Sci. 2010, 131, 193–202. [Google Scholar] [CrossRef]
- Sen, A.R.; Santra, A.; Karim, S.A. Carcass yield, composition and meat quality attributes of sheep and goat under semiarid conditions. Meat Sci. 2004, 66, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Clesceri, L.S.; Greenberg, A.E.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association (APHA): Washington, DC, USA, 1998. [Google Scholar]
- Deydier, E.; Guilet, R.; Sarda, S.; Sharrock, P. Physical and chemical characterization of crude meat and bone meal combustion residues: “waste or raw material?”. J. Hazard. Mater. 2005, B121, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Diamantis, V.; Erguder, T.H.; Aivasidis, A.; Verstaete, W.; Voudrias, E.A. Wastewater disposal to landfill-sites: A synergistic solution for centralized management of olive mill wastewater and enhanced production of landfill gas. J. Environ. Manag. 2013, 128, 427–434. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Jozewicz, W. Flue gas desulfurization: The state of the art. J. Air Waste Manag. 2001, 51, 1676–1688. [Google Scholar] [CrossRef]
- Psarras, S.; Pegkos, D.; Dimoka, P.; Eftaxias, A.; Charitidis, P.; Diamantis, V.; Kostopoulos, V. Performance, material degradation and durability of a biogas chemical scrubber operated under alkaline conditions. J. Eng. Sci. Technol. Rev. 2022, 15, 117–122. [Google Scholar] [CrossRef]
- Yincheng, G.; Zhenqi, N.; Wenyi, L. Comparison of removal efficiencies of carbon dioxide between aqueous ammonia and NaOH solution in a fine spray column. Energy Procedia 2011, 4, 512–518. [Google Scholar] [CrossRef]
- Bujak, J.; Sitarz, P. Incineration of animal by-products—The impact of selected parameters on the flux of flue gas enthalpy. Waste Manag. 2016, 50, 309–323. [Google Scholar] [CrossRef]
02 WASTES FROM AGRICULTURE, HORTICULTURE, AQUACULTURE, FORESTRY, HUNTING AND FISHING, FOOD PREPARATION AND PROCESSING 02 01 Wastes from agriculture, horticulture, aquaculture, forestry, hunting and fishing 02 01 01 Sludges from washing and cleaning (MNH) 02 01 02 Animal tissue waste (MNH) 02 01 06 Animal faeces, urine and manure (including spoiled straw), effluent, collected separately and treated off-site (MNH) 02 02 Wastes from the preparation and processing of meat, fish and other foods of animal origin 02 02 01 Sludges from washing and cleaning (MNH) 02 02 02 Animal tissue waste (MNH) 02 02 03 Material unsuitable for consumption or processing (MNH) 02 02 04 Sludges from on-site effluent treatment (MNH) 02 02 99 Waste not otherwise specified (MNH) |
18 WASTES FROM HUMAN OR ANIMAL HEALTH CARE AND/OR RELATED RESEARCH 18 02 Wastes from research, diagnosis, treatment or prevention of disease involving animals 18 02 02 * Waste whose collection and disposal is subject to special requirements in view of the prevention of infection (MH) 18 02 03 Waste whose collection and disposal is not subject to special requirements in view of the prevention of infection (MNH) |
19 WASTES FROM WASTE TREATMENT FACILITIES, OFF-SITE WASTE WATER TREATMENT PLANTS AND THE WATER INDUSTRY 19 01 Wastes from incineration or pyrolysis of waste 19 01 11 * Bottom ash and slag containing dangerous substances (MH) 19 01 12 Bottom ash and slag other than those mentioned in 19 01 11 (MNH) 19 01 13 * Fly ash containing dangerous substances (MH) 19 01 14 Fly ash other than those mentioned in 19 01 13 (MNH) 19 01 17 * Pyrolysis waste containing dangerous substances (MH) 19 01 18 Pyrolysis waste other than those mentioned in 19 01 17 (MNH) |
Compound | Total | pH = 3 (n = 3) | pH = 7 (n = 4) | pH = 11.6 (n = 6) | LLV |
---|---|---|---|---|---|
Concentration in g kg−1 dry weight | |||||
Ca | 301 | 26.6 ± 1.9 | 1.93 ± 0.91 | 0.074 ± 0.018 | -- |
P | 140 | 16.1 ± 1.2 | 4.12 ± 0.57 | 3.56 ± 0.74 | -- |
Na | 30.1 | 27.4 ± 3.6 | 13.9 ± 0.6 | 12.6 ± 1.0 | -- |
K | 19.7 | 15.7 ± 1.3 | 13.7 ± 1.0 | 12.7 ± 1.6 | -- |
Mg | 8.23 | 5.30 ± 0.69 | 1.08 ± 0.36 | 0.15 ± 0.02 | -- |
Concentration in mg kg−1 dry weight | |||||
Al | 3350 | 207 ± 33 | 16 ± 5 | 61 ± 14 | -- |
Fe | 2070 | 28.4 ± 6.0 | 3.5 ± 1.1 | 3.1 ± 1.9 | -- |
Zn | 412 | 86 ± 16 | 0.90 ± 0.27 | 2.4 ± 0.3 | 50 |
Mn | 48 | 10.2 ± 1.8 | 0.66 ± 0.18 | 0.50 ± 0.09 | -- |
Cu | 54 | 5.4 ± 1.6 | 2.7 ± 0.5 | 6.6 ± 0.3 | 50 |
Pb | 47 | 6.0 ± 0.6 | 4.2 ± 0.6 | 4.6 ± 0.1 | 10 |
Cr | 24 | 3.1 ± 1.2 | 3.0 ± 1.2 | 2.8 ± 1.3 | 10 |
Ni | 32 | 5.9 ± 0.5 | 2.7 ± 0.2 | 2.4 ± 0.5 | 10 |
Co | 15 | 3.5 ± 0.6 | 1.5 ± 0.2 | 0.79 ± 0.41 | -- |
Cd | 6.1 | 0.72 ± 0.10 | 0.37 ± 0.01 | 0.32 ± 0.09 | 1 |
Sample | Ca | P | Na | K | Mg | Al | Zn | Fe | Mn | Cu | Pb | Cr | Co | Ni | Cd | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MBM ash | 316 | 131 | 22.5 | 8.0 | 7.66 | 3.70 | 0.157 | 15.3 | 0.230 | 0.183 | 0.005 | 0.017 | 0.011 | 0.007 | bdl | [18] |
MBM ash | 245 | 95 | 88 | 50.9 | 7.23 | 1.78 | 0.830 | 4.04 | 0.180 | 0.141 | 0.041 | 0.034 | 0.009 | 0.007 | bdl | [18] |
MBM ash | 360 | 165 | 18 | 6.2 | 7.9 | 0.57 | 0.37 | 3.75 | 0.08 | 0.04 | nr | 0.033 | nr | nr | nr | [16] |
Beef bone ash | 254 | 142 | nr | 3.8 | 2.70 | 0.09 | 0.094 | 1.22 | nr | 0.004 | nr | 0.005 | nr | 0.002 | 0.0003 | [19] |
Chicken bone ash | 210 | 155 | nr | 15.5 | 4.95 | 0.08 | 0.281 | 1.33 | nr | 0.006 | nr | 0.007 | nr | 0.003 | 0.0004 | [19] |
MBM ash | 307 | 184 | 26.8 | 24.8 | 7.90 | 1.60 | 0.600 | 4.60 | bdl | 0.200 | nd | bdl | bdl | bdl | bdl | [27] |
Pork bone ash | 385 | 175 | nr | nr | nr | nr | nr | nr | nr | bdl | bdl | bdl | nr | nr | bdl | [10] |
MBM ash | 368 | 130 | 23.7 | 8.2 | 7.88 | 3.60 | 0.149 | 13.13 | 0.241 | 0.166 | 0.004 | 0.019 | 0.012 | 0.006 | bdl | [21] |
Animal carcass ash | 305 | 183 | 19.0 | 12.0 | 6.00 | 5.00 | Nr | 7.00 | nr | nr | nr | nr | nr | nr | nr | [22] |
MBM ash | 306 | 184 | 27.0 | 25.0 | 8.00 | 1.60 | nr | 4.60 | nr | nr | nr | nr | nr | nr | nr | [22] |
Ruminant ash | 301 | 153 | 30.1 | 19.7 | 8.23 | 3.35 | 0.412 | 2.07 | 0.048 | 0.054 | 0.047 | 0.024 | 0.015 | 0.032 | 0.006 | This study |
Parameter | Cost (EUR t−1 ABP) |
---|---|
Electricity costs | 3 |
Fuel costs | 4 |
Transportation costs | 15 |
Personnel costs | 28 |
Maintenance costs | 42 |
Total operational costs | 92 |
Annualized capital costs | 67 |
Total incineration costs | 159 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charitidis, P.J.; Eftaxias, A.; Voudrias, E.A.; Diamantis, V. The Evaluation and Optimization of a Decentralized Incineration Facility for Animal By-Products: Performance, Cost Analysis and Resource Recovery. Processes 2024, 12, 1847. https://doi.org/10.3390/pr12091847
Charitidis PJ, Eftaxias A, Voudrias EA, Diamantis V. The Evaluation and Optimization of a Decentralized Incineration Facility for Animal By-Products: Performance, Cost Analysis and Resource Recovery. Processes. 2024; 12(9):1847. https://doi.org/10.3390/pr12091847
Chicago/Turabian StyleCharitidis, Panagiotis J., Alexandros Eftaxias, Evangelos A. Voudrias, and Vasileios Diamantis. 2024. "The Evaluation and Optimization of a Decentralized Incineration Facility for Animal By-Products: Performance, Cost Analysis and Resource Recovery" Processes 12, no. 9: 1847. https://doi.org/10.3390/pr12091847
APA StyleCharitidis, P. J., Eftaxias, A., Voudrias, E. A., & Diamantis, V. (2024). The Evaluation and Optimization of a Decentralized Incineration Facility for Animal By-Products: Performance, Cost Analysis and Resource Recovery. Processes, 12(9), 1847. https://doi.org/10.3390/pr12091847