Prediction of Air Purifier Effectiveness for Eliminating Exhaled Droplets in a Confined Room
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Description
2.2. CFD-DPM Model Development
2.2.1. Fluid Turbulence Model and Eulerian Mesh Characteristics
2.2.2. Droplet Tracking Model
3. Results and Discussion
3.1. Air Purifier at Position 1
3.2. Air Purifier at Position 2
3.3. Without an Air Purifier
4. Additional Remarks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anderson, R.M.; Heesterbeek, H.; Klinkenberg, D.; Hollingsworth, T. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet 2020, 395, 931–934. [Google Scholar] [CrossRef] [PubMed]
- Asadi, S.; Bouvier, N.; Wexler, A.S.; Ristenpart, W.D. The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles? Aerosol. Sci. Technol. 2020, 54, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.A.; Man, J.C.; Brand, P.; Katstra, J.P.; Sommerer, K.; Stone, H.A.; Scheuch, G. Inhaling to mitigate exhaled bioaerosols. Proc. Natl. Acad. Sci. USA 2004, 101, 17383–17388. [Google Scholar] [CrossRef] [PubMed]
- Gralton, J.; Tovey, E.; McLaws, M.L.; Rawlinson, W.D. The role of particle size in aerosolised pathogen transmission: A review. J. Infect. 2011, 62, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.R.; Morawska, L. The mechanism of breath aerosol formation. J. Aerosol Med. Pulm. Drug Deliv. 2009, 22, 229–237. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Q.; Chen, J.; Xiang, R.; Song, H.; Shu, S.; Wu, P. Detection of COVID-19 in children in early January 2020 in Wuhan, China. N. Engl. J. Med. 2020, 382, 1370–1371. [Google Scholar] [CrossRef]
- Prather, K.A.; Wang, C.C.; Schooley, R.T. Reducing transmission of SARS-CoV-2. Science 2020, 368, 1422–1424. [Google Scholar] [CrossRef]
- Richmond-Bryant, J. Transport of exhaled particulate matter in airborne infection isolation rooms. Build. Environ. 2009, 44, 44–55. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines for the Global Surveillance of Severe Acute Respiratory Syndrome (SARS). 2004. Available online: https://www.https://www.who.int/publications/i/item/who-guidelines-for-the-global-surveillance-of-severe-acute-respiratory-syndrome-(-sars) (accessed on 12 May 2023).
- Chong, K.L.; Ng, C.S.; Hori, N.; Yang, R.; Verzicco, R.; Lohse, D. Extended lifetime of respiratory droplets in a turbulent vapor puff and its implications on airborne disease transmission. Phys. Rev. Lett. 2021, 126, 034502. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Kogan, V.; Harto, C.; Hesse, D.J.; Hofacre, K.C.; Evaluation of in-room particulate matter air filtration devices. Environmental Protection Agency: 2008. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NHSRC&subject=Homeland%2520Security%2520Research&dirEntryId=188372/ (accessed on 12 May 2023).
- Murakami, S.; Kato, S.; Nagano, S.; Tanaka, S. Diffusion characteristics of airborne particles with gravitational setting in an convection-dominant indoor flow field. ASHRAE Trans. 1992, 98, 82–97. [Google Scholar]
- Matthews, T.G.; Thompson, C.V.; Wilson, D.L.; Hawthorne, A.R.; Mage, D.T. Air velocities inside domestic environments: An important parameter in the study of indoor air quality and climate. Environ. Int. 1989, 15, 545–550. [Google Scholar] [CrossRef]
- Khare, P.; Marr, L.C. Simulation of Vertical Concentration Gradient of Influenza Viruses in Dust Resuspended by Walking. Indoor Air 2015, 25, 428–440. [Google Scholar] [CrossRef] [PubMed]
- Gupta, J.K.; Lin, C.H.; Chen, Q. Transport of expiratory droplets in an aircraft cabin. Indoor Air 2011, 21, 3–11. [Google Scholar] [CrossRef]
- Chen, Q. Comparison of different k-ε models for indoor airflow computations. Numer. Heat. Tr. B Fund. 1995, 28, 353–369. [Google Scholar] [CrossRef]
- Zhao, B.; An, N.; Chen, C. Using air purifier as a supplementary protective measure in dental clinics during the COVID-19 pandemic. Infect. Control Hosp. Epidemiol. 2021, 42, 493. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control Prevention. III. Infection Control in Healthcare Facilities: Public Health Guidance for Community-Level Preparedness and Response to Severe Acute Respiratory Syndrome (SARS). 2005. Available online: https://archive.cdc.gov/www_cdc_gov/sars/guidance/i-infection/healthcare.html (accessed on 11 May 2023).
- Christopherson, D.A.; Yao, W.C.; Lu, M.; Vijayakumar, R.; Sedaghat, A.R. High-efficiency particulate air filters in the aera of COVID-19: Function and efficacy. Otolaryng–Head. Neck Surg. 2020, 163, 1153–1155. [Google Scholar] [CrossRef]
- Ham, S. Prevention of exposure to and spread of COVID-19 using air purifiers: Challenges and concerns. Epidemiol. Health 2020, 42, e2020027. [Google Scholar] [CrossRef]
- Narayanan, S.R.; Yang, S. Airborne transmission of virus-laden aerosols inside a music classroom: Effects of portable purifiers and aerosol injection rates. Phys. Fluids 2021, 33, 033307. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, B.; Cui, W.; Dong, L.; An, N.; Ouyang, X. The effectiveness of an air cleaner in controlling droplet/aerosol particle dispersion emitted from a patient’s mouth in the indoor environment of dental clinics. J. R. Soc. Interface 2010, 7, 1105–1118. [Google Scholar] [CrossRef]
- Wei, J.; Li, Y. Enhanced spread of expiratory droplets by turbulence in a cough jet. Build. Environ. 2015, 93, 86–96. [Google Scholar] [CrossRef]
- Zhu, S.; Srebric, J.; Spengler, J.D.; Demokritou, P. An advanced numerical model for the assessment of airborne transmission of influenza in bus microenvironments. Build. Environ. 2012, 47, 67–75. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Q. Experimental measurements and numerical simulations of particle transport and distribution in ventilated rooms. Atmos. Environ. 2006, 40, 3396–3408. [Google Scholar] [CrossRef]
- Fabian, P.; McDevitt, J.J.; DeHaan, W.H.; Fung, R.O.; Cowling, B.J.; Chan, K.H.; Leung, G.M.; Milton, D.K. Influenza virus in human exhaled breath: An observational study. PLoS ONE 2008, 3, e2691. [Google Scholar] [CrossRef]
- Gupta, J.K.; Lin, C.H.; Chen, Q. Characterizing exhaled airflow from breathing and talking. Indoor Air 2010, 20, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Feng, G.; Bi, Y.; Cai, Y.; Zhang, Z.; Cao, G. Distribution of droplet aerosols generated by mouth coughing and nose breathing in an air-conditioned room. Sustain. Cities Soc. 2019, 51, 101721. [Google Scholar] [CrossRef]
- Hall, R.L. Energetics of nose and mouth breathing, body size, body composition, and nose volume in young adult males and females. Am. J. Hum. Biol. 2005, 17, 321–330. [Google Scholar] [CrossRef] [PubMed]
- ANSYS Fluent Theory Guide. Release 2022R2; ANSYS, Inc.: Canonsburg, PA, USA, 2022.
- Zhang, Z.; Chen, Q. Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces. Atmos. Environ. 2007, 41, 5236–5248. [Google Scholar] [CrossRef]
- Holmberg, S.; Li, Y. Modelling of the indoor environment–particle dispersion and deposition. Indoor Air 1998, 8, 113–122. [Google Scholar] [CrossRef]
- Russo, F.; Basse, N.T. Scaling of turbulence intensity for low-speed flow in smooth pipes. Flow Meas. Instrum. 2016, 52, 101–114. [Google Scholar] [CrossRef]
- Li, C.; Wang, H.; Yu, C.W.; Xie, D. Diffusion characteristics of the industrial submicron particle under Brownian motion and turbulent diffusion. Indoor Built Environ. 2022, 31, 17–30. [Google Scholar] [CrossRef]
- Walton, J.J.; Michael, C.M.; Steven, J.G. A global-scale Lagrangian trace species model of transport, transformation, and removal processes. J. Geophys. Res.-Atmos. 1988, 93, 8339–8354. [Google Scholar] [CrossRef]
- Parker, G.J.; Lee, P. Studies of the deposition of sub-micron particles on turbine blades. Proc. Inst. Mech. Eng. 1972, 186, 519–526. [Google Scholar] [CrossRef]
- Riemer, N.; Wexler, A.S. Droplets to drops by turbulent coagulation. J. Atmos. Sci. 2005, 62, 1962–1975. [Google Scholar] [CrossRef]
- Meakin, P. Droplet deposition growth and coalescence. Rep. Prog. Phys. 1992, 55, 157–240. [Google Scholar] [CrossRef]
- Chen, X.; Kleinstreuer, C.; Zhong, W.; Feng, Y.; Zhou, X. Effects of thermal airflow and mucus-layer interaction on hygroscopic droplet deposition in a simple mouth-throat model. Aerosol Sci. Technol. 2018, 52, 900–912. [Google Scholar] [CrossRef]
- Lai, A.C.K.; Nazaroff, W.W. Supermicron particle deposition from turbulent chamber flow onto smooth and rough vertical surfaces. Atmos. Environ. 2005, 39, 4893–4900. [Google Scholar] [CrossRef]
- Yu, H.; Li, C.; Tang, H.; Cui, P.; Deng, W.; Zhang, Q. An experimental study on the resuspension characteristics of evaporation residues of human exhaled droplets on medical clothing. Build. Environ. 2023, 237, 110365. [Google Scholar] [CrossRef]
- Blocken, B.; van Druenen, T.; Ricci, A.; Kang, L.; van Hooff, T.; Qin, P.; Xia, L.; Ruiz, C.A.; Arts, J.H.; Diepens, J.F.L.; et al. Ventilation and air cleaning to limit aerosol particle concentrations in a gym during the COVID-19 pandemic. Build. Environ. 2021, 193, 107659. [Google Scholar] [CrossRef]
- Eilts, S.M.; Li, L.; Pope, Z.C.; Hogan, C.J. Characterization of exhaled particle deposition and ventilation in an indoor setting. Atmos. Environ. 2021, 262, 118602. [Google Scholar] [CrossRef]
- Burgmann, S.; Janoske, U. Transmission and reduction of aerosols in classrooms using air purifier systems. Phys. Fluids 2021, 33, 033321. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liu, W.; Lin, C.-H.; Chen, Q. A Markov chain model for predicting transient particle transport in closed environments. Build. Environ. 2015, 90, 30–36. [Google Scholar] [CrossRef] [PubMed]
Particle Property/Parameter | Symbol | Value |
---|---|---|
Droplet density (kg/m3) | 998.2 | |
Droplet diameter (µm) [31] | 0.4 | |
Exhaled droplet mass flow rate (kg/s) | 2.2−14 | |
Exhaled droplet initial velocity (m/s) [31] | 3 | |
Gravitational acceleration (m/s2) | 9.81 | |
Air dynamic viscosity (Pa·s) | 1.82 × 10−5 | |
Air density (kg/m3) | 1.20 | |
Turbulent intensity | 5% | |
Turbulent viscosity ratio | 10 | |
Time step (s) | Δt | 0.001 |
Number of iterations per time step | 40 |
Outlet Velocity (V, m/s) | Inlet Flow Rate (kg/s) |
---|---|
2.0 | 0.1 |
1.5 | 0.0847 |
1.0 | 0.0566 |
0 | 0 |
Purifier Air Speed (m/s) | From Lofted bed to Non-Lofted Bed | From Non-Lofted Bed To Lofted Bed |
---|---|---|
1.0 | 27.1% | 18.0% |
1.5 | 26.0% | 18.7% |
2.0 | 25.2% | 16.7% |
Purifier Location and Air Speed | Suspended Droplet Concentration (×10−14 kg/m3) |
---|---|
Location 1, 1.0 m/s | 5.94 |
Location 1, 1.5 m/s | 5.05 |
Location 1, 2.0 m/s | 4.11 |
Location 2, 1.5 m/s | 2.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Russell, A.; Ambrose, K.; Wassgren, C.R. Prediction of Air Purifier Effectiveness for Eliminating Exhaled Droplets in a Confined Room. Processes 2024, 12, 1917. https://doi.org/10.3390/pr12091917
Zhao Y, Russell A, Ambrose K, Wassgren CR. Prediction of Air Purifier Effectiveness for Eliminating Exhaled Droplets in a Confined Room. Processes. 2024; 12(9):1917. https://doi.org/10.3390/pr12091917
Chicago/Turabian StyleZhao, Yumeng, Alexander Russell, Kingsly Ambrose, and Carl R. Wassgren. 2024. "Prediction of Air Purifier Effectiveness for Eliminating Exhaled Droplets in a Confined Room" Processes 12, no. 9: 1917. https://doi.org/10.3390/pr12091917
APA StyleZhao, Y., Russell, A., Ambrose, K., & Wassgren, C. R. (2024). Prediction of Air Purifier Effectiveness for Eliminating Exhaled Droplets in a Confined Room. Processes, 12(9), 1917. https://doi.org/10.3390/pr12091917