Synthesis and Characterization of Coconut-Derived Graphene Nano Sheet (GNS) and Its Properties in Nickel/GNS and Zinc/GNS Hybrid Electrodes
Abstract
:1. Introduction
2. Methodology
2.1. Chemical Reagents
2.2. GNS Production
2.3. Preparation of Ni/GNS and Zn/GNS
2.4. Characterizations
3. Results and Discussion
3.1. GNS Characterization and Electrochemical Performance
3.2. Ni or Zn Decorated on GNS Study
3.3. Ni/GNS and Zn/GNS Electrode Performance
4. Conclusions
- (1)
- Synthesis and Characterization: GNS was successfully produced using a scalable pyrolysis method, displaying high surface area and electrical conductivity, confirming the potential of biomass-derived materials.
- (2)
- Enhanced Performance of Zn/GNS: Zn/GNS showed superior electrical conductivity (340 µS/cm2) and electrochemical performance compared to Ni/GNS and undoped GNS, attributed to Zinc’s favourable electron transfer properties and smaller particle size.
- (3)
- Application in Energy Storage: Zn/GNS demonstrated potential as a high-performance electrode material for batteries, offering enhanced conductivity and stability, making it a promising candidate for sustainable energy storage solutions.
- (4)
- Environmental and Scalability Benefits: Utilizing coconut shells not only provides a cost-effective and scalable method for GNS production but also supports environmental sustainability by repurposing waste materials.
- (5)
- Future Research: Further optimization of GNS production and the exploration of additional applications, such as supercapacitors or sensors, are recommended to expand the utility of these composites.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borah, R.; Hughson, F.R.; Johnston, J.; Nann, T. On Battery Materials and Methods. Mater. Today Adv. 2020, 6, 100046. [Google Scholar] [CrossRef]
- Omenya, F.; Paiss, M.; Li, X.; Reed, D. Energy and Power Evolution Over the Lifetime of a Battery. ACS Energy Lett. 2023, 8, 2707–2710. [Google Scholar] [CrossRef]
- Mahmud, S.; Rahman, M.; Kamruzzaman, M.; Ali, M.O.; Emon, M.S.A.; Khatun, H.; Ali, M.R. Recent Advances in Lithium-Ion Battery Materials for Improved Electrochemical Performance: A Review. Results Eng. 2022, 15, 100472. [Google Scholar] [CrossRef]
- Tang, X.; Lv, S.; Jiang, K.; Zhou, G.; Liu, X. Recent Development of Ionic Liquid-Based Electrolytes in Lithium-Ion Batteries. J. Power Sources 2022, 542, 231792. [Google Scholar] [CrossRef]
- Fahmy, H.M.; Abu Serea, E.S.; Salah-Eldin, R.E.; Al-Hafiry, S.A.; Ali, M.K.; Shalan, A.E.; Lanceros-Méndez, S. Recent Progress in Graphene- and Related Carbon-Nanomaterial-Based Electrochemical Biosensors for Early Disease Detection. ACS Biomater. Sci. Eng. 2022, 8, 964–1000. [Google Scholar] [CrossRef]
- Amini, K.; Shocron, A.N.; Suss, M.E.; Aziz, M.J. Pathways to High-Power-Density Redox Flow Batteries. ACS Energy Lett. 2023, 8, 3526–3535. [Google Scholar] [CrossRef]
- Schaefer, J.L. Toward High-Energy Batteries: High-Voltage Stability via Superstructure Control. Joule 2020, 4, 296–298. [Google Scholar] [CrossRef]
- Ge, S.; Longchamps, R.S.; Liu, T.; Liao, J.; Leng, Y.; Wang, C.Y. High Safety and Cycling Stability of Ultrahigh Energy Lithium Ion Batteries. Cell Rep. Phys. Sci. 2021, 2, 100584. [Google Scholar] [CrossRef]
- Barcellona, S.; Colnago, S.; Dotelli, G.; Latorrata, S.; Piegari, L. Aging Effect on the Variation of Li-Ion Battery Resistance as Function of Temperature and State of Charge. J. Energy Storage 2022, 50, 104658. [Google Scholar] [CrossRef]
- Xu, L.; Liu, Y.; Ding, Z.; Xu, X.; Liu, X.; Gong, Z.; Li, J.; Lu, T.; Pan, L. Solvent-Free Synthesis of Covalent Organic Framework/Graphene Nanohybrids: High-Performance Faradaic Cathodes for Supercapacitors and Hybrid Capacitive Deionization. Small 2024, 20, 2307843. [Google Scholar] [CrossRef]
- Xiao, Y.; Yan, N. Battery and Biomass Refining: A Cost-Effective Integration. Chem. Catal. 2023, 3, 100722. [Google Scholar] [CrossRef]
- Oh, H.J.; Kang, H.K.; Ahn, H.; Park, J.; Choi, J.; Kim, H.Y.; Lee, E.; Yeo, S.Y.; Choi, Y.O.; Yeang, B.J.; et al. Layered Oxide Cathode-Inspired Secondary Hard Carbon Microsphere Anode Material for High-Power and Long-Life Rechargeable Batteries. Chem. Eng. J. 2023, 454, 140252. [Google Scholar] [CrossRef]
- Wang, D.; Wang, G.; Zhang, M.; Cui, Y.; Yu, J.; Shi, S. Composite Cathode Materials for Next-Generation Lithium Fluorinated Carbon Primary Batteries. J. Power Sources 2022, 541, 231716. [Google Scholar] [CrossRef]
- Song, J.; Zheng, J.; Yang, A.; Liu, H.; Zhao, Z.; Wang, N.; Yan, F. Metal–Organic Framework Transistors for Dopamine Sensing. Mater. Chem. Front. 2021, 5, 3422–3427. [Google Scholar] [CrossRef]
- Duffner, F.; Mauler, L.; Wentker, M.; Leker, J.; Winter, M. Large-Scale Automotive Battery Cell Manufacturing: Analyzing Strategic and Operational Effects on Manufacturing Costs. Int. J. Prod. Econ. 2021, 232, 107982. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, R.; Wang, J.; Wang, Y. Current and Future Lithium-Ion Battery Manufacturing. iScience 2021, 24, 102332. [Google Scholar] [CrossRef]
- Supeno, M.; Simanjuntak, C.; Siburian, R. Facile and Benign Method to Produce Large Scale Graphene Nano Sheets. Iran. J. Chem. Chem. Eng. 2020, 39, 211–214. [Google Scholar]
- Worku, A.K.; Ayele, D.W. Recent Advances of Graphene-Based Materials for Emerging Technologies. Results Chem. 2023, 5, 100971. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Sahoo, S.; Wang, N.; Huczko, A. Graphene Research and Their Outputs: Status and Prospect. J. Sci. Adv. Mater. Devices 2020, 5, 10–29. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Chaudhuri, A.; Joydhar, A. Graphene Nanocomposites and Applications in Electrochemical Energy Storage Materials. Mater. Today Proc. 2022, 64, 1569–1581. [Google Scholar] [CrossRef]
- Campbell, B.; Manning, J. The Rise of Victimhood Culture: Microaggressions, Safe Spaces, and the New Culture Wars; Palgrave Macmillan: Cham, Germany, 2018; pp. 1–265. [Google Scholar] [CrossRef]
- Ares, P.; Novoselov, K.S. Recent Advances in Graphene and Other 2D Materials. Nano Mater. Sci. 2022, 4, 3–9. [Google Scholar] [CrossRef]
- Hayat, A.; Sohail, M.; Jery, A.E.; Al-Zaydi, K.M.; Raza, S.; Ali, H.; Ajmal, Z.; Zada, A.; Taha, T.A.; Din, I.U.; et al. Recent Advances, Properties, Fabrication and Opportunities in Two-Dimensional Materials for Their Potential Sustainable Applications. Energy Storage Mater. 2023, 59, 102780. [Google Scholar] [CrossRef]
- Umar, E.; Ikram, M.; Haider, J.; Nabgan, W.; Imran, M.; Nazir, G. 3D Graphene-Based Material: Overview, Perspective, Advancement, Energy Storage, Biomedical Engineering and Environmental Applications a Bibliometric Analysis. J. Environ. Chem. Eng. 2023, 11, 110339. [Google Scholar] [CrossRef]
- Ba, H.; Truong-Phuoc, L.; Romero, T.; Sutter, C.; Nhut, J.-M.; Schlatter, G.; Giambastiani, G.; Pham-Huu, C. Lightweight, Few-Layer Graphene Composites with Improved Electro-Thermal Properties as Efficient Heating Devices for de-Icing Applications. Carbon N. Y. 2021, 182, 655–668. [Google Scholar] [CrossRef]
- Xiong, B.; Peng, F.; Chen, W.; Li, C.; Zhu, Q.; Niu, Z.; Zheng, F.; Cheng, D. Outstanding Strength and Toughness in Graphene Reinforced Nb/Nb5Si3 Composites with Interfacial Nano-Phases. J. Mater. Res. Technol. 2023, 25, 6886–6897. [Google Scholar] [CrossRef]
- Chang, G.; Wang, L.; Zhang, Y.; Li, X.; Chen, K.; Kan, D.; Zhang, W.; Zhang, S.; Dong, L.; Li, L.; et al. Superior Thermal Conductivity of Graphene Film/Cu-Zr Alloy Composites for Thermal Management Applications. ACS Appl. Mater. Interfaces 2022, 14, 56156–56168. [Google Scholar] [CrossRef]
- Naveen, T.B.; Durgalakshmi, D.; Mohanraj, J.; Kunhiraman, A.K.; Balakumar, S.; Rakkesh, R.A. Insights on the Electrochemical Properties of Lattice Strain Induced Layered V2O3–Al2O3 Nanocomposites Derived from the Carbonization Process. J. Mater. Sci. Mater. Electron. 2023, 34, 1636. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, H.; Liu, J.; Bao, C. Measuring the Specific Surface Area of Monolayer Graphene Oxide in Water. Mater. Lett. 2020, 261, 127098. [Google Scholar] [CrossRef]
- Shchegolkov, A.V.; Galunin, E.V.; Shchegolkov, A.V., Jr.; Zyablova, A.M.; Memetov, N.R.; Korotkov, S.V. The Study of Operating Parameters of a Graphene Electrode-Based Supercapacitor by the Voltmeter-Ammeter Method. Adv. Mater. Technol. 2016, 3, 53–60. [Google Scholar] [CrossRef]
- Xue, Q.; Yang, D.; Jiang, L.; Li, B.; Ming, P. Modifying Carbon Supports of Catalyst for the Oxygen Reduction Reaction in Vehicle PEMFCs. Automot. Innov. 2021, 4, 119–130. [Google Scholar] [CrossRef]
- Naraprawatphong, R.; Chokradjaroen, C.; Thiangtham, S.; Yang, L.; Saito, N. Nanoscale Advanced Carbons as an Anode for Lithium-Ion Battery. Mater. Today Adv. 2022, 16, 100290. [Google Scholar] [CrossRef]
- Jamnuch, S.; Pascal, T.A. Electronic Signatures of Lorentzian Dynamics and Charge Fluctuations in Lithiated Graphite Structures. Nat. Commun. 2023, 14, 2291. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.S.; Yeo, C.; Kim, S.J.; Lee, J.-Y.; Kim, Y.; Cho, K.R.; Ju, S.; Hong, B.H.; Park, S.Y. Multifunctional Reduced Graphene Oxide-CVD Graphene Core–Shell Fibers. Nanoscale 2019, 11, 12637–12642. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Siyar, M.; Park, C.; Javaid, F.; Umer, M.A.; Jin, W.; Saleem, M.; Adnan, A. Tuning the Electronic Properties in Facile In-Situ Solution Synthesis of SnSe2/RGO Nanocomposites with Enhanced Thermoelectric Performance. J. Mater. Res. 2023, 38, 3913–3922. [Google Scholar] [CrossRef]
- Liyanage, C.D.; Kumar, H.; Perera, I.; Abeykoon, P.G.; Chen, F.; Joya, J.S.; Suib, S.L.; Adamson, D.H. Synthesis of Graphene Oxide: Effect of Sonication during Oxidation. Carbon N. Y. 2024, 223, 119047. [Google Scholar] [CrossRef]
- Olatomiwa, A.L.; Adam, T.; Gopinath, S.C.B.; Kolawole, S.Y.; Olayinka, O.H.; Hashim, U. Graphene Synthesis, Fabrication, Characterization Based on Bottom-up and Top-down Approaches: An Overview. J. Semicond. 2022, 43, 61101. [Google Scholar] [CrossRef]
- Siburian, R.; Tang, L.W.; Alias, Y.; Tok, A.I.Y.; Goei, R.; Simanjuntak, C.; Tarigan, K.; Paiman, S.; Goh, B.T.; Anshori, I.; et al. Coconut Waste to Green Nanomaterial: Large Scale Synthesis of N-Doped Graphene Nano Sheets. Nano-Struct. Nano-Objects 2023, 36, 101061. [Google Scholar] [CrossRef]
- Siburian, R.; Tarigan, K.; Gopas Oetama Manik, Y.; Hutagalung, F.; Alias, Y.; Ching Chan, Y.; Peng Chang, B.; Siow, J.; Jiamin Ong, A.; Huang, J.; et al. Converting Candlenut Shell Waste into Graphene for Electrode Applications. Processes 2024, 12, 1544. [Google Scholar] [CrossRef]
- Tamuly, J.; Bhattacharjya, D.; Saikia, B.K. Graphene/Graphene Derivatives from Coal, Biomass, and Wastes: Synthesis, Energy Applications, and Perspectives. Energy Fuels 2022, 36, 12847–12874. [Google Scholar] [CrossRef]
- Supeno, M.; Siburian, R. New Route: Convertion of Coconut Shell Tobe Graphite and Graphene Nano Sheets. J. King Saud Univ.-Sci. 2020, 32, 189–190. [Google Scholar] [CrossRef]
- Haruyama, J.; Takagi, S.; Shimoda, K.; Watanabe, I.; Sodeyama, K.; Ikeshoji, T.; Otani, M. Thermodynamic Analysis of Li-Intercalated Graphite by First-Principles Calculations with Vibrational and Configurational Contributions. J. Phys. Chem. C 2021, 125, 27891–27900. [Google Scholar] [CrossRef]
- Scaravonati, S.; Sidoli, M.; Magnani, G.; Morenghi, A.; Canova, M.; Kim, J.-H.; Riccò, M.; Pontiroli, D. Combined Capacitive and Electrochemical Charge Storage Mechanism in High-Performance Graphene-Based Lithium-Ion Batteries. Mater. Today Energy 2022, 24, 100928. [Google Scholar] [CrossRef]
- Kotal, M.; Jakhar, S.; Roy, S.; Sharma, H.K. Cathode Materials for Rechargeable Lithium Batteries: Recent Progress and Future Prospects. J. Energy Storage 2022, 47, 103534. [Google Scholar] [CrossRef]
- Utkan, G.; Yumusak, G.; Tunali, B.C.; Ozturk, T.; Turk, M. Production of Reduced Graphene Oxide by Using Three Different Microorganisms and Investigation of Their Cell Interactions. ACS Omega 2023, 8, 31188–31200. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Lei, Z.; Zhang, Y. Non-Covalent Interactions of Graphene Surface: Mechanisms and Applications. Chem 2022, 8, 947–979. [Google Scholar] [CrossRef]
- Han, J.; Tang, X.; Ge, S.; Shi, Y.; Zhang, C.; Li, F.; Bai, S. Si/C Particles on Graphene Sheet as Stable Anode for Lithium-Ion Batteries. J. Mater. Sci. Technol. 2021, 80, 259–265. [Google Scholar] [CrossRef]
- Simanjuntak, C.; Siburian, R.; Marpaung, H. Tamrin Properties of Mg/Graphite and Mg/Graphene as Cathode Electrode on Primary Cell Battery. Heliyon 2020, 6, e03118. [Google Scholar] [CrossRef]
- Tung, S.o.; Fisher, S.L.; Kotov, N.A.; Thompson, L.T. Nanoporous Aramid Nanofibre Separators for Nonaqueous Redox Flow Batteries. Nat. Commun. 2018, 9, 4193. [Google Scholar] [CrossRef]
- Sarigamala, K.K.; Shukla, S.; Struck, A.; Saxena, S. Graphene-Based Coronal Hybrids for Enhanced Energy Storage. Energy Mater. Adv. 2021, 2021, 7273851. [Google Scholar] [CrossRef]
- Ullah, K.; Shah, N.; Wadood, R.; Khan, B.M.; Oh, W.C. Recent Trends in Graphene Based Transition Metal Oxides as Anode Materials for Rechargeable Lithium-Ion Batteries. Nano Trends 2023, 1, 100004. [Google Scholar] [CrossRef]
- Shen, G.; Kong, J.; Fei, Y.; Xu, L.; Zhang, L.; Jie, X.; Ning, D.; Chen, Z. Zn/Ni Composite Coating Modified by Reduced Graphene Oxide and Layered Double Hydroxide with Synergistic Effect for Superior Corrosion Protection of Mg Alloys. Appl. Surf. Sci. 2024, 645, 158849. [Google Scholar] [CrossRef]
- Malyala, L.; Thatipamula, S.; Jetti, V.R. Magnesium–Graphene Composite Coated on SS Mesh as Cathode Material for Rechargeable Magnesium Ion Battery. Trans. Indian Inst. Met. 2019, 72, 2503–2510. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, B.; Ren, H.; Li, D.; Wang, D.; Liu, H.; Dou, S. Recent Advances in Structural Optimization and Surface Modification on Current Collectors for High-Performance Zinc Anode: Principles, Strategies, and Challenges; Springer Nature: Singapore, 2023; Volume 15, ISBN 0123456789. [Google Scholar]
- Liu, Q.; Zhang, H.; Xie, J.; Liu, X.; Lu, X. Recent Progress and Challenges of Carbon Materials for Zn-Ion Hybrid Supercapacitors. Carbon Energy 2020, 2, 521–539. [Google Scholar] [CrossRef]
- Tatrari, G.; Tewari, C.; Pathak, M.; Bhatt, D.; Solanki, M.; Shah, F.U.; Sahoo, N.G. Coconut-Husk Derived Graphene for Supercapacitor Applications: Comparative Analysis of Polymer Gel and Aqueous Electrolytes. Mater. Adv. 2023, 4, 3310–3322. [Google Scholar] [CrossRef]
- Siburian, R.; Ali, A.M.M.; Sebayang, K.; Supeno, M.; Tarigan, K.; Simanjuntak, C.; Aritonang, S.P.; Hutagalung, F. The Loading Effect of Pt Clusters on Pt/Graphene Nano Sheets Catalysts. Sci. Rep. 2021, 11, 2532. [Google Scholar] [CrossRef] [PubMed]
- Lou, G.; Chen, Y.; Xu, J.; Qian, Y.; Cheng, H.; Wei, Z.; Yang, Y.; Shen, L.; Shuai, C. Preparation of Graphene Oxide-Loaded Nickel with Excellent Antibacterial Property by Magnetic Field-Assisted Scanning Jet Electrodeposition. Int. J. Bioprint. 2022, 8, 432. [Google Scholar] [CrossRef]
- Siburian, R.; Goei, R.; Manurung, H.; Aritonang, S.P.; Simanjuntak, C.; Hutagalung, F.; Anshori, I.; Alias, Y.; Paiman, S.; Affi, J.; et al. Distribution Model of Iron (Fe) on Fe/Graphene Nano Sheets. Ceram. Int. 2023, 49, 28571–28579. [Google Scholar] [CrossRef]
- Baqiya, M.A.; Nugraheni, A.Y.; Islamiyah, W.; Kurniawan, A.F.; Ramli, M.M.; Yamaguchi, S.; Furukawa, Y.; Soontaranon, S.; Putra, E.G.R.; Cahyono, Y.; et al. Structural Study on Graphene-Based Particles Prepared from Old Coconut Shell by Acid–Assisted Mechanical Exfoliation. Adv. Powder Technol. 2020, 31, 2072–2078. [Google Scholar] [CrossRef]
- González-Hourcade, M.; Simões dos Reis, G.; Grimm, A.; Dinh, V.M.; Lima, E.C.; Larsson, S.H.; Gentili, F.G. Microalgae Biomass as a Sustainable Precursor to Produce Nitrogen-Doped Biochar for Efficient Removal of Emerging Pollutants from Aqueous Media. J. Clean. Prod. 2022, 348, 131280. [Google Scholar] [CrossRef]
- Budde, H.; Coca-López, N.; Shi, X.; Ciesielski, R.; Lombardo, A.; Yoon, D.; Ferrari, A.C.; Hartschuh, A. Raman Radiation Patterns of Graphene. ACS Nano 2016, 10, 1756–1763. [Google Scholar] [CrossRef]
- Shah, J.; Lopez-Mercado, J.; Carreon, M.G.; Lopez-Miranda, A.; Carreon, M.L. Plasma Synthesis of Graphene from Mango Peel. ACS Omega 2018, 3, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Nazarov, E.E.; Aksyonov, D.A.; Antipov, E.V.; Fedotov, S.S. A Comprehensive Review of Defects Genealogy in Olivines: From the Mineral World to Modern Electrode Materials. Energies 2023, 16, 5083. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, Y.; Ji, Y.; Dong, Y.; Leng, H.; Li, X.; He, W.; Qiao, L. A Promising Crystalline KCl: Electrolyte Material for Studying the Electrochemical Properties of Cerium on Liquid Indium Electrodes. Crystals 2022, 12, 1509. [Google Scholar] [CrossRef]
- Yusran, Y.; Li, H.; Guan, X.; Li, D.; Tang, L.; Xue, M.; Zhuang, Z.; Yan, Y.; Valtchev, V.; Qiu, S.; et al. Exfoliated Mesoporous 2D Covalent Organic Frameworks for High-Rate Electrochemical Double-Layer Capacitors. Adv. Mater. 2020, 32, 1907289. [Google Scholar] [CrossRef] [PubMed]
- Prasankumar, T.; Jose, S.; Ajayan, P.M.; Ashokkumar, M. Functional Carbons for Energy Applications. Mater. Res. Bull. 2021, 142, 111425. [Google Scholar] [CrossRef]
- Li, T.; Wang, X.; Liu, P.; Yang, B.; Diao, S.; Gao, Y. Synthesis of Graphene/Polyaniline Copolymer for Solid-State Supercapacitor. J. Electroanal. Chem. 2020, 860, 113908. [Google Scholar] [CrossRef]
- Li, S.; Song, G.; Zhang, Y.; Fu, Q.; Pan, C. Graphene-Reinforced Zn-Ni Alloy Composite Coating on Iron Substrates by Pulsed Reverse Electrodeposition and Its High Corrosion Resistance. ACS Omega 2021, 6, 13728–13741. [Google Scholar] [CrossRef]
- Dave, P.N.; Sirach, R. Influence of BaZnCuO3 and BaZnCuO3/RGO on the Thermal Decomposition of Ammonium Perchlorate and 3-Nitro-3H-1,2,4-Triazol-5-One (NTO). Asia-Pac. J. Chem. Eng. 2023, 18, e2894. [Google Scholar] [CrossRef]
- Zhang, D.; Cui, X.; Jin, G.; Jiao, Y.; Li, D. Preparation, Deposited Behavior and Hydrophobic Property of Modified Graphene Oxide Reinforced Ni Composite Coatings by Magnetic Field Assisted Electro-Brush Plating. Surf. Coat. Technol. 2020, 403, 126363. [Google Scholar] [CrossRef]
- Mohamed, M.E.; Mekhaiel, P.S.; Mahgoub, F.M. Construction of Superhydrophobic Graphene-Based Coating on Steel Substrate and Its Ultraviolet Durability and Corrosion Resistance Properties. Sci. Rep. 2023, 13, 590. [Google Scholar] [CrossRef]
- Srivastava, S.; Jadeja, G.C.; Parikh, J. Synergism Studies on Alumina-Supported Copper-Nickel Catalysts towards Furfural and 5-Hydroxymethylfurfural Hydrogenation. J. Mol. Catal. A Chem. 2017, 426, 244–256. [Google Scholar] [CrossRef]
- Yoo, M.; Kang, E.; Choi, H.; Ha, H.; Choi, H.; Choi, J.-S.; Lee, K.-S.; Celestre, R.; Shapiro, D.A.; Park, J.Y.; et al. Enhancing the Inherent Catalytic Activity and Stability of TiO2 Supported Pt Single-Atoms at CeOx–TiO2 Interfaces. J. Mater. Chem. A 2022, 10, 5942–5952. [Google Scholar] [CrossRef]
- Siburian, R.; Sihotang, H.; Lumban Raja, S.; Supeno, M.; Simanjuntak, C. New Route to Synthesize of Graphene Nano Sheets. Orient. J. Chem. 2018, 34, 182–187. [Google Scholar] [CrossRef]
- Allaedini, G.; Tasirin, S.M.; Aminayi, P. Synthesis of CNTs via Chemical Vapor Deposition of Carbon Dioxide as a Carbon Source in the Presence of NiMgO. J. Alloys Compd. 2015, 647, 809–814. [Google Scholar] [CrossRef]
- Khodaee, M.; Dalir, N.; Feghhi, F.; Ansari, N.; Mohammadimasoudi, M.; Goudarzi, A.; Nasiri, A.F.; Kolahdouz, M.; Mohseni, S. Enhancement in Electrical Conductivity of Liquid Crystals by Graphene Metal Oxide Composites. Sci. Rep. 2023, 13, 11688. [Google Scholar] [CrossRef]
- Ahmad, A.; Shaheen, S.; Majeed, S.; Pervaiz, M.; Saeed, Z.; Younas, U.; Javed, M.S.; Luque, R.; Gnanasekaran, L. RETRACTED: Recent Developments in Metal/Metalloid Nanomaterials for Battery Applications; a Comparative Review. Fuel 2023, 340, 127399. [Google Scholar] [CrossRef]
- Park, K.; Kwon, J.; Jo, S.; Choi, S.; Enkhtuvshin, E.; Kim, C.; Lee, D.; Kim, J.; Sun, S.; Han, H.; et al. Simultaneous Electrical and Defect Engineering of Nickel Iron Metal-Organic-Framework via Co-Doping of Metalloid and Non-Metal Elements for a Highly Efficient Oxygen Evolution Reaction. Chem. Eng. J. 2022, 439, 135720. [Google Scholar] [CrossRef]
- Subrati, A.; Gurzęda, B.; Jeżowski, P.; Kościński, M.; Nowaczyk, G.; Kempiński, M.; Florczak, P.; Peplińska, B.; Jarek, M.; Al Wahedi, Y.; et al. The Impact of Oxygen-Clustering on the Transformation of Electrochemically-Derived Graphite Oxide Framework. Carbon N. Y. 2024, 217, 118641. [Google Scholar] [CrossRef]
- Xu, H.; He, W.; Li, Z.; Chi, J.; Jiang, J.; Huang, K.; Li, S.; Sun, G.; Dou, H.; Zhang, X. Revisiting Charge Storage Mechanism of Reduced Graphene Oxide in Zinc Ion Hybrid Capacitor beyond the Contribution of Oxygen-Containing Groups. Adv. Funct. Mater. 2022, 32, 2111131. [Google Scholar] [CrossRef]
- Yuan, R.; Wang, H.; Shang, L.; Hou, R.; Dong, Y.; Li, Y.; Zhang, S.; Chen, X.; Song, H. Revealing the Self-Doping Defects in Carbon Materials for the Compact Capacitive Energy Storage of Zn-Ion Capacitors. ACS Appl. Mater. Interfaces 2023, 15, 3006–3016. [Google Scholar] [CrossRef]
- Kim, K.O.; Park, S.-H.; Chun, H.-B.; Lee, W.Y.; Jang, B.-Y.; Kim, D.; Yu, J.H.; Yun, K.S.; Kim, J.; Li, O.L.; et al. Design and Optimization of Composite Cathodes for Solid-State Batteries Using Hybrid Carbon Networks with Facile Electronic and Ionic Percolation Pathways. ACS Appl. Mater. Interfaces 2023, 15, 36748–36758. [Google Scholar] [CrossRef] [PubMed]
- Siburian, R.; Hutagalung, F.; Silitonga, O.; Paiman, S.; Simatupang, L.; Simanjuntak, C.; Aritonang, S.P.; Alias, Y.; Jing, L.; Goei, R.; et al. The New Materials for Battery Electrode Prototypes. Materials 2023, 16, 555. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, S.; Sudin, I.; Al-Naib, U.M.B.; Omar, M.F. Review of the Nanostructuring and Doping Strategies for High-Performance ZnO Thermoelectric Materials. Crystals 2022, 12, 1076. [Google Scholar] [CrossRef]
- Sivakumar, S.; Robinson, Y.; Mala, N.A. Pseudocapacitance Behavior of Copper and Nickel Co-Doped Zinc Oxide Nanoparticles with Enhanced Photocatalytic Performance. J. Mater. Sci. Mater. Electron. 2023, 34, 978. [Google Scholar] [CrossRef]
- Sajjad, M.; Ullah, I.; Khan, M.I.; Khan, J.; Khan, M.Y.; Qureshi, M.T. Structural and Optical Properties of Pure and Copper Doped Zinc Oxide Nanoparticles. Results Phys. 2018, 9, 1301–1309. [Google Scholar] [CrossRef]
D FWHM | G FWHM | 2D FWHM | |
---|---|---|---|
GNS | 239.92 ± 2.66 | 78.46 ± 0.85 | 690.21 ± 6.23 |
Commercial graphene | 28.19 ± 10.23 | 28.91 ± 0.86 | 64.46 ± 2.17 |
Rs (Ω) | Rct (Ω) | Q (µMho) | N | W (mMho) | |
---|---|---|---|---|---|
Bare GCE | 493.81 | 297.09 | 1.03 | 0.86 | 0.0017 |
GNS/GCE | 136.48 | 881 | 4.98 | 0.78 | 0.0016 |
Element | Ni/GNS | Zn/GNS | GNS |
---|---|---|---|
C | 89.54 (wt. %) | 71.29 (wt. %) | 90.72 (wt. %) |
O | 10.25 (wt. %) | 25.75 (wt. %) | 9.28 (wt. %) |
Ni | 0.21 (wt. %) | - | - |
Zn | - | 2.95 (wt. %) | - |
Sample | Measurement of Conductivity (µS/cm2) |
---|---|
GNS | 227 |
Ni/GNS | 264 |
Zn/GNS | 340 |
Commercial primary battery anode | 400 |
Commercial primary battery cathode | 580 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarigan, K.; Siburian, R.; Anshori, I.; Widiarti, N.; Alias, Y.B.; Goh, B.T.; Huang, J.; Bahfie, F.; Manik, Y.G.O.; Goei, R.; et al. Synthesis and Characterization of Coconut-Derived Graphene Nano Sheet (GNS) and Its Properties in Nickel/GNS and Zinc/GNS Hybrid Electrodes. Processes 2024, 12, 1943. https://doi.org/10.3390/pr12091943
Tarigan K, Siburian R, Anshori I, Widiarti N, Alias YB, Goh BT, Huang J, Bahfie F, Manik YGO, Goei R, et al. Synthesis and Characterization of Coconut-Derived Graphene Nano Sheet (GNS) and Its Properties in Nickel/GNS and Zinc/GNS Hybrid Electrodes. Processes. 2024; 12(9):1943. https://doi.org/10.3390/pr12091943
Chicago/Turabian StyleTarigan, Kerista, Rikson Siburian, Isa Anshori, Nuni Widiarti, Yatimah Binti Alias, Boon Tong Goh, Jingfeng Huang, Fathan Bahfie, Yosia Gopas Oetama Manik, Ronn Goei, and et al. 2024. "Synthesis and Characterization of Coconut-Derived Graphene Nano Sheet (GNS) and Its Properties in Nickel/GNS and Zinc/GNS Hybrid Electrodes" Processes 12, no. 9: 1943. https://doi.org/10.3390/pr12091943
APA StyleTarigan, K., Siburian, R., Anshori, I., Widiarti, N., Alias, Y. B., Goh, B. T., Huang, J., Bahfie, F., Manik, Y. G. O., Goei, R., & Tok, A. I. Y. (2024). Synthesis and Characterization of Coconut-Derived Graphene Nano Sheet (GNS) and Its Properties in Nickel/GNS and Zinc/GNS Hybrid Electrodes. Processes, 12(9), 1943. https://doi.org/10.3390/pr12091943