Improved Sugar Recovery from Mandarin Peel under Optimal Enzymatic Hydrolysis Conditions and Application to Bioethanol Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Biomass
2.3. Analysis of Carbohydrate Composition
2.4. Enzymatic Hydrolysis
2.5. Bioethanol Fermentation
2.6. HPLC Analysis
3. Results and Discussion
3.1. Carbohydrate Composition of Extracted Mandarin Peel
3.2. Determination of Efficient Enzymatic Hydrolysis Conditions
3.2.1. Effect of Enzyme Combination on Enzymatic Hydrolysis of eMP
3.2.2. Effect of pH on Enzymatic Hydrolysis of eMP
3.2.3. Effect of Enzyme Loading on Enzymatic Hydrolysis of eMP
3.3. Application of Extracted Mandarin Peel Hydrolysate in Bioethanol Production
3.4. Evaluation of the Overall Process for Sugar and Bioethanol Production from Extracted Mandarin Peel
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Gonzatto, M.P.; Santos, J.S. Introductory Chapter: World Citrus Production and Research. In Citrus Research-Horticultural and Human Health Aspects; IntechOpen: Rijeka, Croatia, 2023; Available online: https://www.intechopen.com/chapters/86388 (accessed on 6 May 2024).
- Sharma, K.; Mahato, N.; Cho, M.H.; Lee, Y.R. Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition 2017, 34, 29–46. [Google Scholar] [CrossRef] [PubMed]
- Mahato, N.; Sinha, M.; Sharma, K.; Koteswararao, R.; Cho, M.H. Modern extraction and purification techniques for obtaining high purity food-grade bioactive compounds and value-added co-products from citrus wastes. Foods 2019, 8, 523. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Benohoud, M.; Yamdeu, J.H.G.; Gong, Y.Y.; Orfila, C. Green extraction of polyphenols from citrus peel by-products and their antifungal activity against Aspergillus flavus. Food Chem. X 2021, 12, 100144. [Google Scholar] [CrossRef] [PubMed]
- Šafranko, S.; Ćorković, I.; Jerković, I.; Jakovljević, M.; Aladić, K.; Šubarić, D.; Jokić, S. Green extraction techniques for obtaining bioactive compounds from mandarin peel (Citrus unshiu var. Kuno): Phytochemical analysis and process optimization. Foods 2021, 10, 1043. [Google Scholar] [CrossRef]
- Jang, S.K.; Jung, C.D.; Seong, H.; Myung, S.; Kim, H. An integrated biorefinery process for mandarin peel waste elimination. J. Clean. Prod. 2022, 371, 133594. [Google Scholar] [CrossRef]
- Cho, E.J.; Lee, Y.G.; Chang, J.; Bae, H.J. A high-yield process for production of biosugars and hesperidin from mandarin peel wastes. Molecules 2022, 25, 4286. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, J.; Binns, M.; Kim, J.K. Process Design and Economic Assessment of Biomass-Based Hydrogen Production Processes. Korean J. Chem. Eng. 2024, 41, 2239–2249. [Google Scholar] [CrossRef]
- Çopur, M.; Pekdemir, T.; Kocakerim, M.M.; Korucu, H.; Guliyev, R. Industrial symbiosis: Boron waste valorization through CO2 utilization. Korean J. Chem. Eng. 2022, 39, 2600–2614. [Google Scholar] [CrossRef]
- Hiasa, S.; Iwamoto, S.; Endo, T.; Edashige, Y. Isolation of cellulose nanofibrils from mandarin (Citrus unshiu) peel waste. Ind. Crops Prod. 2014, 62, 280–285. [Google Scholar] [CrossRef]
- Yoo, H.Y.; Kim, S.W. The Next-Generation Biomass for Biorefining. BioResources 2021, 16, 2188–2219. [Google Scholar] [CrossRef]
- Wang, T.; Lu, X. Overcome saccharification barrier: Advances in hydrolysis technology. In Advances in 2nd Generation of Bioethanol Production; Woodhead: Cambridge, UK, 2021; pp. 137–159. [Google Scholar] [CrossRef]
- Oberoi, H.S.; Vadlani, P.V.; Nanjundaswamy, A.; Bansal, S.; Singh, S.; Kaur, S.; Babbar, N. Enhanced ethanol production from Kinnow mandarin (Citrus reticulata) waste via a statistically optimized simultaneous saccharification and fermentation process. Bioresour. Technol. 2011, 102, 1593–1601. [Google Scholar] [CrossRef] [PubMed]
- Patsalou, M.; Samanides, C.G.; Protopapa, E.; Stavrinou, S.; Vyrides, I.; Koutinas, M. A citrus peel waste biorefinery for ethanol and methane production. Molecules 2019, 24, 2451. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, D.; Tortajada, M.; Ramón, D.; Rojas, A. Production of D-lactic acid by the fermentation of orange peel waste hydrolysate by lactic acid bacteria. Fermentation 2019, 6, 1. [Google Scholar] [CrossRef]
- An, H.-E.; Lee, K.H.; Jang, Y.W.; Kim, C.-B.; Yoo, H.Y. Improved Glucose Recovery from Sicyos angulatus by NaOH Pretreatment and Application to Bioethanol Production. Processes 2021, 9, 245. [Google Scholar] [CrossRef]
- Markets and Market. Bioethanol Market by Feedstock (Starch Based, Sugar Based, Cellulose-Based), Fuel Blend (E5, E10, E15 to E70, E75 & E85), End-Use (Transportation, Pharmaceutical, Cosmetic, Alcoholic Beverages), Generation and Region Global Forecast to 2028; Markets and Market: London, UK, 2023. [Google Scholar]
- Eisentraut, A. Sustainable Production of Second-Generation Biofuels: Potential and Perspectives in Major Economies and Developing Countries; IEA Energy Papers; OECD Publishing: Paris, France, 2010. [Google Scholar] [CrossRef]
- Son, H. Development of Bioconversion Process for Flavonoid and Sugar Recovery from Mandarin Peel. Master’s Thesis, Sangmyung University, Seoul, Republic of Korea, 2024. [Google Scholar]
- Lee, J.; Kim, S.; Lee, K.H.; Lee, S.K.; Chun, Y.; Kim, S.W.; Park, C.; Yoo, H.Y. Improvement of bioethanol production from waste chestnut shells via evaluation of mass balance-based pretreatment and glucose recovery process. Environ. Technol. Innov. 2022, 28, 102955. [Google Scholar] [CrossRef]
- Sun, W.; Li, X.; Zhao, J.; Qin, Y. Pretreatment strategies to enhance enzymatic hydrolysis and cellulosic ethanol production for biorefinery of corn stover. Int. J. Mol. Sci. 2022, 23, 13163. [Google Scholar] [CrossRef]
- Kaur Sandhu, S.; Singh Oberoi, H.; Singh Dhaliwal, S.; Babbar, N.; Kaur, U.; Nanda, D.; Kumar, D. Ethanol production from Kinnow mandarin (Citrus reticulata) peels via simultaneous saccharification and fermentation using crude enzyme produced by Aspergillus oryzae and the thermotolerant Pichia kudriavzevii strain. Ann. Microbiol. 2012, 62, 655–666. [Google Scholar] [CrossRef]
- Faisal, M.; Saeed, A. Sustainable approaches toward the production of bioethanol from biomass. In Sustainable Ethanol and Climate Change: Sustainability Assessment for Ethanol Distilleries; Springer: Cham, Switzerland, 2021; pp. 15–38. [Google Scholar] [CrossRef]
- Jeong, D.; Park, H.; Jang, B.K.; Ju, Y.; Shin, M.H.; Oh, E.J.; Kim, S.R. Recent advances in the biological valorization of citrus peel waste into fuels and chemicals. Bioresour. Technol. 2021, 323, 124603. [Google Scholar] [CrossRef]
- Boluda-Aguilar, M.; García-Vidal, L.; del Pilar González-Castañeda, F.; López-Gómez, A. Mandarin peel wastes pretreatment with steam explosion for bioethanol production. Bioresour. Technol. 2010, 101, 3506–3513. [Google Scholar] [CrossRef]
- Azadi, P.; Inderwildi, O.R.; Farnood, R.; King, D.A. Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renew. Sust. Energy Rev. 2013, 21, 506–523. [Google Scholar] [CrossRef]
- Said, N.S.; Olawuyi, I.F.; Cho, H.S.; Lee, W.Y. Novel edible films fabricated with HG-type pectin extracted from different types of hybrid citrus peels: Effects of pectin composition on film properties. Int. J. Biol. Macromol. 2023, 253, 127238. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Srivastava, M.; Alhazmi, A.; Kausar, T.; Haque, S.; Singh, R.; Gupta, V.K. Technological advances for improving fungal cellulase production from fruit wastes for bioenergy application: A review. Environ. Pollut. 2021, 287, 117370. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jang, H.; Park, S.; Kim, S.M.; Jeon, T.J. Colorimetric detection of milk spoilage at low temperatures: A novel PDA/ZnO@NC membrane for pH-based freshness monitoring. Biotechnol. Bioprocess Eng. 2024, 29, 177–183. [Google Scholar] [CrossRef]
- Coll-Almela, L.; Saura-Lopez, D.; Laencina-Sanchez, J.; Schols, H.A.; Voragen, A.G.; Ros-Garcia, J.M. Characterisation of cell-wall polysaccharides from mandarin segment membranes. Food Chem. 2015, 175, 36–42. [Google Scholar] [CrossRef]
- Pocan, P.; Bahcegul, E.; Oztop, M.H.; Hamamci, H. Enzymatic hydrolysis of fruit peels and other lignocellulosic biomass as a source of sugar. Waste Biomass Valorization 2018, 9, 929–937. [Google Scholar] [CrossRef]
- Park, S.H.; Ransom, C.; Mei, C.; Sabzikar, R.; Qi, C.; Chundawat, S.; Sticklen, M. The quest for alternatives to microbial cellulase mix production: Corn stover-produced heterologous multi-cellulases readily deconstruct lignocellulosic biomass into fermentable sugars. J. Chem. Technol. Biotechnol. 2011, 86, 633–641. [Google Scholar] [CrossRef]
- Nahar, N.; Pryor, S.W. Enzymatic hydrolysis and fermentation of crushed whole sugar beets. Biomass Bioenergy 2013, 59, 512–519. [Google Scholar] [CrossRef]
- Wilkins, M.R.; Widmer, W.W.; Grohmann, K.; Cameron, R.G. Hydrolysis of grapefruit peel waste with cellulase and pectinase enzymes. Bioresour. Technol. 2007, 98, 1596–1601. [Google Scholar] [CrossRef] [PubMed]
- Espoui, A.H.; Larimi, S.G.; Darzi, G.N. Optimization of protease production process using bran waste using Bacillus licheniformis. Korean J. Chem. Eng. 2022, 39, 674–683. [Google Scholar] [CrossRef]
- Haile, S.; Ayele, A. Pectinase from microorganisms and its industrial applications. Sci. World J. 2022, 2022, 1881305. [Google Scholar] [CrossRef]
- Amadi, O.C.; Awodiran, I.P.; Moneke, A.N.; Nwagu, T.N.; Egong, J.E.; Chukwu, G.C. Concurrent production of cellulase, xylanase, pectinase and immobilization by combined Cross-linked enzyme aggregate strategy-advancing tri-enzyme biocatalysis. Bioresour. Technol. Rep. 2022, 18, 101019. [Google Scholar] [CrossRef]
- Farinas, C.S.; Loyo, M.M.; Junior, A.B.; Tardioli, P.W.; Neto, V.B.; Couri, S. Finding stable cellulase and xylanase: Evaluation of the synergistic effect of pH and temperature. New Biotechnol. 2010, 27, 810–815. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.G.; Knox, A.; Di Profio, F. Evaluation of macerating pectinase enzyme activity under various temperature, pH and ethanol regimes. Beverages 2018, 4, 10. [Google Scholar] [CrossRef]
- Gao, M.T.; Yano, S.; Inoue, H.; Sakanishi, K. Combination of wet disk milling and hydrogen peroxide treatments for enhancing saccharification of sugarcane bagasse. Biochem. Eng. J. 2014, 68, 152–158. [Google Scholar] [CrossRef]
- Kuglarz, M.; Alvarado-Morales, M.; Dąbkowska, K.; Angelidaki, I. Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment. Bioresour. Technol. 2018, 265, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, S.; Pistone, L.; Ottolina, G.; Xu, P.; Riva, S. Hemp hurds biorefining: A path to green l-(+)-lactic acid production. Bioresour. Technol. 2015, 191, 59–65. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Son, H.; Lee, K.H.; Park, C.; Yoo, H.Y. Physicochemical Characterization of Potassium Hydroxide Pretreated Chestnut Shell and Its Bioconversion to Lactic Acid by Lacticaseibacillus rhamnosus. Processes 2023, 11, 3340. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, L.; Lu, J.; Zhu, B.; Pan, Q.; Cheng, Y.; Wang, H. Integrating surfactants with low enzyme loading to increase the glucan conversion and ethanol concentration of reed after combined pretreatment. Ind. Crops Prod. 2023, 204, 117360. [Google Scholar] [CrossRef]
- Salimi, A.; Khodaiyan, F.; Askari, G.; Hosseini, S.S. A zero-waste approach towards a sustainable waste management of apple: Extraction of value-added products and their application as edible coating. Food Hydrocoll. 2024, 147, 109304. [Google Scholar] [CrossRef]
- Ziegler-Devin, I.; Menana, Z.; Chrusciel, L.; Chalot, M.; Bert, V.; Brosse, N. Steam explosion pretreatment of willow grown on phytomanaged soils for bioethanol production. Ind. Crops Prod. 2019, 140, 111722. [Google Scholar] [CrossRef]
- Zheng, J.; Choo, K.; Bradt, C.; Lehoux, R.; Rehmann, L. Enzymatic hydrolysis of steam exploded corncob residues after pretreatment in a twin-screw extruder. Biotechnol. Rep. 2014, 3, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Lee, S.K.; Lee, J.; Kim, S.; Kim, S.W.; Park, C.; Yoo, H.Y. Energy-efficient glucose recovery from chestnut shell by optimization of NaOH pretreatment at room temperature and application to bioethanol production. Environ. Res. 2022, 208, 112710. [Google Scholar] [CrossRef]
- Lee, J.; Bae, J.; Shin, H.; Kim, M.; Yang, E.; Lee, K.H.; Yoo, H.Y.; Park, C. Improved recovery of mannitol from Saccharina japonica under optimal hot water extraction and application to lactic acid production by Lacticaseibacillus rhamnosus. GCB Bioenergy 2024, 16, e13166. [Google Scholar] [CrossRef]
- Fernández-Delgado, M.; Rodríguez-Sarmiento, M.; Medina, J.D.C.; Lucas, S.; García-Cubero, M.T.; Coca, M.; López-Linares, J.C. Bio-2, 3-butanediol production from banana waste: Preliminary techno-economic evaluation of processing strategies. Biomass Bioenergy 2024, 184, 107218. [Google Scholar] [CrossRef]
- Choi, I.S.; Kim, J.H.; Wi, S.G.; Kim, K.H.; Bae, H.J. Bioethanol production from mandarin (Citrus unshiu) peel waste using popping pretreatment. Appl. Energy 2013, 102, 204–210. [Google Scholar] [CrossRef]
- Tomita, H.; Okazaki, F.; Tamaru, Y. Direct IBE fermentation from mandarin orange wastes by combination of Clostridium cellulovorans and Clostridium beijerinckii. AMB Express 2019, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- John, I.; Muthukumar, K.; Arunagiri, A. A review on the potential of citrus waste for D-Limonene, pectin, and bioethanol production. Int. J. Green Energy 2017, 14, 599–612. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Pahmeyer, M.J.; Assadpour, E.; Jafari, S.M. Extraction and purification of d-limonene from orange peel wastes: Recent advances. Ind. Crops Prod. 2022, 177, 114484. [Google Scholar] [CrossRef]
- Boluda-Aguilar, M.; López-Gómez, A. Production of bioethanol by fermentation of lemon (Citrus limon L.) peel wastes pretreated with steam explosion. Ind. Crops Prod. 2013, 41, 188–197. [Google Scholar] [CrossRef]
- Panakkal, E.J.; Cheenkachorn, K.; Gundupalli, M.P.; Kitiborwornkul, N.; Sriariyanun, M. Impact of sulfuric acid pretreatment of durian peel on the production of fermentable sugar and ethanol. J. Indian Chem. Soc. 2021, 98, 100264. [Google Scholar] [CrossRef]
Component (%) a | Raw Mandarin Peel | Extracted Mandarin Peel |
---|---|---|
Glucan | 31.00 ± 0.12 | 25.39 ± 0.25 |
Arabinan | 5.80 ± 0.13 | 12.03 ± 0.08 |
Others | 63.20 ± 0.25 | 62.58 ± 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, H.; Lee, J.; Yoo, H.Y. Improved Sugar Recovery from Mandarin Peel under Optimal Enzymatic Hydrolysis Conditions and Application to Bioethanol Production. Processes 2024, 12, 1960. https://doi.org/10.3390/pr12091960
Son H, Lee J, Yoo HY. Improved Sugar Recovery from Mandarin Peel under Optimal Enzymatic Hydrolysis Conditions and Application to Bioethanol Production. Processes. 2024; 12(9):1960. https://doi.org/10.3390/pr12091960
Chicago/Turabian StyleSon, Hyerim, Jeongho Lee, and Hah Young Yoo. 2024. "Improved Sugar Recovery from Mandarin Peel under Optimal Enzymatic Hydrolysis Conditions and Application to Bioethanol Production" Processes 12, no. 9: 1960. https://doi.org/10.3390/pr12091960
APA StyleSon, H., Lee, J., & Yoo, H. Y. (2024). Improved Sugar Recovery from Mandarin Peel under Optimal Enzymatic Hydrolysis Conditions and Application to Bioethanol Production. Processes, 12(9), 1960. https://doi.org/10.3390/pr12091960