Effect of Centrifugal Load on Residual Stresses in Nickel-Based Single-Crystal Substrate and Thermal Barrier Coating System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geometric Modeling
2.2. Material Parameters
2.3. Boundary Condition
2.4. Dimensionless
2.5. Grid Irrelevance Test
3. Results and Discussions
3.1. Effect of Centrifugal Load on Residual Stresses
3.2. Effect of Temperature Conditions on Residual Stress
3.3. Effect of Number of Cycles on Residual Stress
3.4. Effect of TGO Thickness on Residual Stresses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations | Complete Terminology |
TBCs | Thermal barrier coatings |
APS | Atmospheric plasma spraying |
CMAS | Calcium-magnesium-alumino-silicate |
TGO | Thermally Grown Oxide |
TC | Top Coat |
BC | Bond Coating |
References
- Zhou, Y.; Liu, Q.; Yang, L.; Wu, D.; Mao, W. Failure mechanisms and life prediction of thermal barrier coatings. Acta Mech. Solida Sin. 2010, 31, 504–531. [Google Scholar]
- Evans, A.G.; Mumm, D.R.; Hutchinson, J.W.; Meier, G.H.; Pettit, F.S. Mechanisms controlling the durability of thermal barrier coatings. Prog. Mater. Sci. 2001, 46, 505–553. [Google Scholar] [CrossRef]
- Mao, W.G.; Jiang, J.P.; Zhou, Y.C.; Lu, C. Effects of substrate curvature radius, deposition temperature and coating thickness on the residual stress field of cylindrical thermal barrier coatings. Surf. Coat. Technol. 2011, 205, 3093–3102. [Google Scholar] [CrossRef]
- Sadowski, T.; Golewski, P. The influence of quantity and distribution of cooling channels of turbine elements on level of stresses in the protective layer TBC and the efficiency of cooling. Comput. Mater. Sci. 2012, 52, 293–297. [Google Scholar] [CrossRef]
- Padture, N.P.; Gell, M.; Jordan, E.H. Materials science—Thermal barrier coatings for gas-turbine engine applications. Science 2002, 296, 280–284. [Google Scholar] [CrossRef]
- Teixeira, V.; Andritschky, M.; Fischer, W.; Buchkremer, H.P.; Stöver, D. Analysis of residual stresses in thermal barrier coatings. J. Mater. Process. Technol. 1999, 93, 209–216. [Google Scholar] [CrossRef]
- Qian, G.; Nakamura, T.; Berndt, C.C. Effects of thermal gradient and residual stresses on thermal barrier coating fracture. Mech. Mater. 1998, 27, 91–110. [Google Scholar] [CrossRef]
- Hsueh, C.H.; Fuller, E.R. Residual stresses in thermal barrier coatings: Effects of interface asperity curvature/height and oxide thickness. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2000, 283, 46–55. [Google Scholar] [CrossRef]
- Hsueh, C.H.; Fuller, E.R. Analytical modeling of oxide thickness effects on residual stresses in thermal barrier coatings. Scr. Mater. 2000, 42, 781–787. [Google Scholar] [CrossRef]
- Limarga, A.M.; Widjaja, S.; Yip, T.H.; Teh, L.K. Modeling of the effect of Al2O3 interlayer on residual stress due to oxide scale in thermal barrier coatings. Surf. Coat. Technol. 2002, 153, 16–24. [Google Scholar] [CrossRef]
- Hao, Y.; Liang, L.; Qiu, T. Residual stress and high-temperature mechanical behavior of thermal barrier coated turbine blades. Chin. J. Theor. Appl. Mech. 2023, 55, 1319–1328. [Google Scholar]
- Yu, Q.M.; Zhou, H.L.; Wang, L.B. Influences of interface morphology and thermally grown oxide thickness on residual stress distribution in thermal barrier coating system. Ceram. Int. 2016, 42, 8338–8350. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Xiao, J.; Yang, L. Numerical simulation of thermal insulation performance and stress of thermal barrier coating for turbine blades. Xiangtan Daxue Xuebao 2020, 42, 107–115. [Google Scholar]
- Zhou, Y.H.; Yang, L.; Liu, Z.Y.; Zhu, W. Wolun yepian rezhang tuceng gere xiaoguo de yanjiu jinzhan [Research progress on thermal insulation effect of thermal barrier coatings for turbine blades]. Zhongguo Cailiao Jinzhan 2020, 39, 707–722+738. [Google Scholar]
- Cen, L.; Qin, W.Y.; Yu, Q.M. Finite Element Analysis of Interface Undulation and Interface Delamination in the MCrAlY Coating System Under Thermal Cycling: Considering Oxide Thickness and Top-Coat Effects. J. Therm. Spray Technol. 2020, 29, 597–610. [Google Scholar] [CrossRef]
- Guo, D.; Yu, Q.; Cen, L. Effect of CMAS on Interfacial Crack and Residual Stress of Thermal Barrier Coatings. Rare Met. Mater. Eng. 2020, 49, 2937–2947. [Google Scholar]
- Tolpygo, V.K.; Clarke, D.R. Rumpling induced by thermal cycling of an overlay coating: The effect of coating thickness. Acta Mater. 2004, 52, 615–621. [Google Scholar] [CrossRef]
- Choi, S.R.; Hutchinson, J.W.; Evans, A.G. Delamination of multilayer thermal barrier coatings. Mech. Mater. 1999, 31, 431–447. [Google Scholar] [CrossRef]
- Chen, L.; Gong, S.; Xu, H. Evaluation Method of Thermal Cycling Property of EB-PVD Thermal Barrier Coatings. Rare Met. Mater. Eng. 2013, 42, 340–344. [Google Scholar]
- Yan, W.L.; Li, C.; Liu, Z.Y.; Cheng, C.Y.; Yang, L. Reliability Evaluation of EB-PVD Thermal Barrier Coatings in High-Speed Rotation and Gas Thermal Shock. Coatings 2024, 14, 136. [Google Scholar] [CrossRef]
- Liu, L.; Liu, D.; Cai, H.; Mu, R.; Yang, W.; He, L. Failure of Electron Beam Physical Vapor Deposited Thermal Barrier Coatings System under Cyclic Thermo-Mechanical Loading with a Thermal Gradient. Coatings 2024, 14, 902. [Google Scholar] [CrossRef]
- Wang, Z.; Han, Z.; Chen, Y.; Ding, K. Relations between 3 dimension interface topography with thermal stress of thermal barrier coatings. Trans. China Weld. Inst. 2011, 32, 21. [Google Scholar]
- Wang, L.L.; Fan, Q.B.; Liu, Y.B.; Li, G.J.; Zhang, H.M.; Wang, Q.S.; Wang, F.C. Simulation of damage and failure processes of thermal barrier coatings subjected to a uniaxial tensile load. Mater. Des. 2015, 86, 89–97. [Google Scholar] [CrossRef]
- Varacalle, D.J., Jr.; Guillen, D.P.; Deason, D.M.; Rhodaberger, W.; Sampson, E. Effect of grit-blasting on substrate roughness and coating adhesion. J. Therm. Spray Technol. 2006, 15, 348–355. [Google Scholar] [CrossRef]
- Busso, E.P.; Evans, H.E.; Qian, Z.Q.; Taylor, M.P. Effects of breakaway oxidation on local stresses in thermal barrier coatings. Acta Mater. 2010, 58, 1242–1251. [Google Scholar] [CrossRef]
- Pan, D.; Chen, M.W.; Wright, P.K.; Hemker, K.J. Evolution of a diffusion aluminide bond coat for thermal barrier coatings during thermal cycling. Acta Mater. 2003, 51, 2205–2217. [Google Scholar] [CrossRef]
- Bialas, M. Finite element analysis of stress distribution in thermal barrier coatings. Surf. Coat. Technol. 2008, 202, 6002–6010. [Google Scholar] [CrossRef]
- Yu, Q.M.; Hou, N.X.; Yue, Z.F. Finite element analysis of void growth behavior in nickel-based single crystal superalloys. Comput. Mater. Sci. 2010, 48, 597–608. [Google Scholar] [CrossRef]
- Zhu, D.; Miller, R.A. Thermal conductivity and elastic modulus evolution of thermal barrier coatings under high heat flux conditions. J. Therm. Spray Technol. 2000, 9, 175–180. [Google Scholar]
- Ranjbar-Far, M.; Absi, J.; Mariaux, G.; Dubois, F. Simulation of the effect of material properties and interface roughness on the stress distribution in thermal barrier coatings using finite element method. Mater. Des. 2010, 31, 772–781. [Google Scholar] [CrossRef]
- Sfar, K.; Aktaa, J.; Munz, D. Analysing the Failure Behaviour of Thermal Barrier Coatings Using the Finite Element Method. Ceram. Eng. Sci. Proc. 2000, 21, 203–211. [Google Scholar]
- Yue, Z.; Lu, Z.; Yang, Z.; Cheng, X.; Yin, Z. Influence of Deviation and Randomnessof Crystal lographic Orientations on the Strengthand Life of Nickel-Base Single Crystal Superalloy Turbine Blades. J. Aerosp. Power 2003, 18, 477–480. [Google Scholar]
- Zhu, H.X.; Fleck, N.A.; Cocks, A.C.F.; Evans, A.G. Numerical simulations of crack formation from pegs in thermal barrier systems with NiCoCrAlY bond coats. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2005, 404, 26–32. [Google Scholar] [CrossRef]
- Lin, C.; Li, Y. Interface stress evolution considering the combined creep-plastic behavior in thermal barrier coatings. Mater. Des. 2016, 89, 245–254. [Google Scholar]
- Rösler, J.; Bäker, M.; Aufzug, K. A parametric study of the stress state of thermal barrier coatings: Part I: Creep relaxation. Acta Mater. 2004, 52, 4809–4817. [Google Scholar]
- Daniels, L.C. Film cooling of gas turbine blades. J. Eng. Power. 1978, 100, 476–481. [Google Scholar]
- Gao, Z.; Narzary, D.P.; Han, J.-C. Film cooling on a gas turbine blade pressure side or suction side with axial shaped holes. Int. J. Heat Mass Transf. 2008, 51, 2139–2152. [Google Scholar] [CrossRef]
- Dhar, D.; Sharan, A.M.; Rao, J.S. Transient stress analysis and fatigue life estimation of turbine blades. J. Vib. Acoust. Trans. ASME 2004, 126, 485–495. [Google Scholar] [CrossRef]
Material Properties | Young’s Modulus (GPa) [29,30,31] | Poisson’s Ratio [12,32] | Coefficient of Thermal Expansion (×10−6/°C) [12] | Yield Stress (GPa) [12,33,34] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | BC | TGO | TC | BC | TGO | TC | BC | TGO | TC | BC | TGO | TC |
20 | 200 | 400 | 48 | 0.30 | 0.23 | 0.10 | 13.6 | 8.0 | 9.0 | |||
25 | 1 | 1 | ||||||||||
100 | 10 | |||||||||||
200 | 190 | 390 | 47 | 0.30 | 0.23 | 0.10 | 14.2 | 8.2 | 9.2 | 10 | ||
295 | 1 | 1 | ||||||||||
400 | 175 | 380 | 44 | 0.31 | 0.24 | 0.10 | 14.6 | 8.4 | 9.6 | 10 | ||
600 | 160 | 370 | 40 | 0.31 | 0.24 | 0.11 | 15.2 | 8.7 | 10.1 | 10 | ||
750 | 0.11 | |||||||||||
800 | 145 | 355 | 34 | 0.32 | 0.25 | 0.11 | 16.1 | 9.0 | 10.8 | 10 | ||
850 | 0.079 | |||||||||||
1000 | 120 | 325 | 26 | 0.33 | 0.25 | 0.12 | 17.2 | 9.3 | 11.7 | 1 | 0.11 | |
1100 | 110 | 320 | 22 | 0.33 | 0.25 | 0.12 | 17.6 | 9.6 | 12.2 | 1 | ||
1200 | 0.079 |
Material Properties | Substrate Modulus of Elasticity and Poisson’s Ratio | Parameters of the Substrate Ontology Model | ||||
---|---|---|---|---|---|---|
Temperature (°C) | E (GPa) | ν | G (GPa) | h0 (MPa) | τs (MPa) | τ0 (MPa) |
20 | 13.6 | 8.0 | 9.0 | 200 | 402 | 383 |
760 | 17.2 | 9.3 | 11.7 | 230 | 492 | 385 |
980 | 17.6 | 19.6 | 12.2 | 21,700 | 300 | 213 |
Temperature (°C) | n | ||
---|---|---|---|
TGO | 1000 | 7.3 × 10−10 | 1 |
TC | 1000 | 1.8 × 10−7 | 1 |
BC | ≤600 | 6.54 × 10−19 | 4.75 |
700 | 2.2 × 10−12 | 2.99 | |
800 | 1.84 × 10−7 | 1.55 | |
≥850 | 2.15 × 10−8 | 2.45 | |
SUB | 10 | 4.85 × 10−36 | 1 |
1200 | 2.55 × 10−9 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Zhang, Y.; Zhao, R.; Wang, Y.; Yu, Q. Effect of Centrifugal Load on Residual Stresses in Nickel-Based Single-Crystal Substrate and Thermal Barrier Coating System. Processes 2025, 13, 269. https://doi.org/10.3390/pr13010269
Yu L, Zhang Y, Zhao R, Wang Y, Yu Q. Effect of Centrifugal Load on Residual Stresses in Nickel-Based Single-Crystal Substrate and Thermal Barrier Coating System. Processes. 2025; 13(1):269. https://doi.org/10.3390/pr13010269
Chicago/Turabian StyleYu, Liming, Yifei Zhang, Rujuan Zhao, Yi Wang, and Qingmin Yu. 2025. "Effect of Centrifugal Load on Residual Stresses in Nickel-Based Single-Crystal Substrate and Thermal Barrier Coating System" Processes 13, no. 1: 269. https://doi.org/10.3390/pr13010269
APA StyleYu, L., Zhang, Y., Zhao, R., Wang, Y., & Yu, Q. (2025). Effect of Centrifugal Load on Residual Stresses in Nickel-Based Single-Crystal Substrate and Thermal Barrier Coating System. Processes, 13(1), 269. https://doi.org/10.3390/pr13010269