Modelling the Nanomechanical Responses of Biofilms Grown on the Indenter Probe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Finite Element Model (FEM)
2.2. Linear Viscoelastic Model
2.3. Nonlinear Viscoelastic Model
2.4. Analytical Viscoelastic Model
3. Results
3.1. New Predictive Model Based on the Analytical Viscoelastic Model
3.2. An Alternative Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Walter, M.; Safari, A.; Ivankovic, A.; Casey, E. Detachment characteristics of a mixed culture biofilm using particle size analysis. Chem. Eng. J. 2013, 228, 1140–1147. [Google Scholar] [CrossRef] [Green Version]
- Lau, P.C.Y.; Dutcher, J.R.; Beveridge, T.J.; Lam, J.S. Absolute quantitation of bacterial biofilm adhesion and viscoelasticity by microbead force spectroscopy. Biophys. J. 2009, 96, 2935–2948. [Google Scholar] [CrossRef] [PubMed]
- Sousa, C.; Henriques, M.; Oliveira, R. Mini-review: Antimicrobial central venous catheters-recent advances and strategies. Biofouling 2011, 27, 609–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanematsu, H.; Barry, D.M. Biofilm and Materials Science; Springer: Berlin, Germany, 2015. [Google Scholar]
- Beech, I.B.; Sunner, J. Biocorrosion: Towards understanding interactions between biofilms and metals. Curr. Opin. Biotechnol. 2004, 15, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Waters, M.S.; Kundu, S.; Lin, N.J.; Lin-Gibson, S. Microstructure and mechanical properties of in situ Streptococcus mutans biofilms. ACS Appl. Mater. Interfaces 2013, 6, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Cense, A.; Peeters, E.; Gottenbos, B.; Baaijens, F.; Nuijs, A.; Van Dongen, M. Mechanical properties and failure of Streptococcus mutans biofilms, studied using a microindentation device. J. Microbiol. Methods 2006, 67, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Gorur, A.; Lyle, D.M.; Schaudinn, C.; Costerton, J.W. Biofilm removal with a dental water jet. Compend. Contin. Educ. Dent. 2009, 30, 1–6. [Google Scholar] [PubMed]
- Chen, X.; Stewart, P.S. Biofilm removal caused by chemical treatments. Water Res. 2000, 34, 4229–4233. [Google Scholar] [CrossRef]
- Chen, J. On the determination of coating toughness during nanoindentation. Surf. Coat. Technol. 2012, 206, 3064–3068. [Google Scholar] [CrossRef]
- Ebenstein, D.M.; Pruitt, L.A. Nanoindentation of biological materials. Nano Today 2006, 1, 26–33. [Google Scholar] [CrossRef]
- Duan, P.; Chen, J. Nanomechanical and microstructure analysis of extracellular matrix layer of immortalized cell line Y201 from human mesenchymal stem cells. Surf. Coat. Technol. 2015, 284, 417–421. [Google Scholar] [CrossRef]
- Duan, P.; Toumpaniari, R.; Partridge, S.; Birch, M.A.; Genever, P.G.; Bull, S.J.; Dalgarno, K.W.; McCaskie, A.W.; Chen, J. How cell culture conditions affect the microstructure and nanomechanical properties of extracellular matrix formed by immortalized human mesenchymal stem cells: An experimental and modelling study. Mater. Sci. Eng. C 2018, 89, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Birch, M.A.; Bull, S.J. Nanomechanical characterization of tissue engineered bone grown on titanium alloy in vitro. J. Mater. Sci. Mater. Med. 2010, 21, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Gouldstone, A.; Koh, H.-J.; Zeng, K.-Y.; Giannakopoulos, A.; Suresh, S. Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 2000, 48, 2277–2295. [Google Scholar] [CrossRef]
- Chen, X.; Vlassak, J.J. Numerical study on the measurement of thin film mechanical properties by means of nanoindentation. J. Mater. Res. 2001, 16, 2974–2982. [Google Scholar] [CrossRef]
- Chen, J.; Bull, S. Multi-cycling nanoindentation study on thin optical coatings on glass. J. Phys. D Appl. Phys. 2008, 41, 074009. [Google Scholar] [CrossRef]
- Chen, J. Nanobiomechanics of living cells: A review. Interface Focus 2014, 4, 20130055. [Google Scholar] [CrossRef] [PubMed]
- Chen, J. Understanding the nanoindentation mechanisms of a microsphere for biomedical applications. J. Phys. D Appl. Phys. 2013, 46, 495303. [Google Scholar] [CrossRef]
- Guélon, T.; Mathias, J.-D.; Stoodley, P. Advances in biofilm mechanics. In Biofilm Highlights; Springer: Berlin, Germany, 2011; pp. 111–139. [Google Scholar]
- Baudez, J.-C.; Gupta, R.K.; Eshtiaghi, N.; Slatter, P. The viscoelastic behaviour of raw and anaerobic digested sludge: Strong similarities with soft-glassy materials. Water Res. 2013, 47, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.W.; He, Y.; Ren, Y.; Zerdoum, A.; Libera, M.R.; Sharma, P.K.; Van Winkelhoff, A.-J.; Neut, D.; Stoodley, P.; Van Der Mei, H.C. Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges. FEMS Microbiol. Rev. 2015, 39, 234–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böl, M.; Ehret, A.E.; Bolea Albero, A.; Hellriegel, J.; Krull, R. Recent advances in mechanical characterisation of biofilm and their significance for material modelling. Crit. Rev. Biotechnol. 2013, 33, 145–171. [Google Scholar] [CrossRef] [PubMed]
- Tzikang, C. Determining a Prony Series for a Viscoelastic Material from Time Varying Strain Data; Army Research Laboratory: Hampton, VA, USA, 2000. [Google Scholar]
- Park, S.W.; Kim, Y.R. Fitting Prony-series viscoelastic models with power-law presmoothing. J. Mater. Civ. Eng. 2001, 13, 26–32. [Google Scholar] [CrossRef]
- Duan, P.; Bull, S.; Chen, J. Modeling the nanomechanical responses of biopolymer composites during the nanoindentation. Thin Solid Films 2015, 596, 277–281. [Google Scholar] [CrossRef]
- Chen, J.; Lu, G. Finite element modelling of nanoindentation based methods for mechanical properties of cells. J. Biomech. 2012, 45, 2810–2816. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, J.-C.; Coufort, C.; Escudié, R.; Liné, A.; Paul, E. Influence of non-uniform distribution of shear stress on aerobic biofilms. Chem. Eng. Sci. 2007, 62, 3672–3684. [Google Scholar] [CrossRef]
- Picioreanu, C.; Van Loosdrecht, M.C.M.; Heijnen, J.J. Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol. Bioeng. 2001, 72, 205–218. [Google Scholar] [CrossRef]
- Kim, B.; Lee, S.B.; Lee, J.; Cho, S.; Park, H.; Yeom, S.; Park, S.H. A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for chloroprene rubber. Int. J. Precis. Eng. Manuf. 2012, 13, 759–764. [Google Scholar] [CrossRef]
- Zeng, G.; Vad, B.S.; Dueholm, M.S.; Christiansen, G.; Nilsson, M.; Tolker-Nielsen, T.; Nielsen, P.H.; Meyer, R.L.; Otzen, D.E. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness. Front. Microbiol. 2015, 6, 1099. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Niu, T. Finite element modeling of the indentation behavior of two-dimensional materials. Acta Mech. 2018, 229, 1–10. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Duan, P.; Chen, J. Modelling the Nanomechanical Responses of Biofilms Grown on the Indenter Probe. Processes 2018, 6, 84. https://doi.org/10.3390/pr6070084
Xia Y, Duan P, Chen J. Modelling the Nanomechanical Responses of Biofilms Grown on the Indenter Probe. Processes. 2018; 6(7):84. https://doi.org/10.3390/pr6070084
Chicago/Turabian StyleXia, Yuqing, Pengfei Duan, and Jinju Chen. 2018. "Modelling the Nanomechanical Responses of Biofilms Grown on the Indenter Probe" Processes 6, no. 7: 84. https://doi.org/10.3390/pr6070084
APA StyleXia, Y., Duan, P., & Chen, J. (2018). Modelling the Nanomechanical Responses of Biofilms Grown on the Indenter Probe. Processes, 6(7), 84. https://doi.org/10.3390/pr6070084