Experimental Study on the Damage of Granite by Acoustic Emission after Cyclic Heating and Cooling with Circulating Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Experimental Equipment
3. Results and Discussion
3.1. Characteristics of Mechanical Strength of Granite
3.2. Mechanical Tensile Strength of Granite after Cyclic Heating and Cooling with Circulating Water
3.3. AE Characteristics of Rock Samples after Cyclic Heating and Water Cooling
3.4. Rock Damage Analysis
3.4.1. Uniaxial Compression Mechanical Damage
3.4.2. Heat Shock Damage of High Temperature and Cold Water
3.4.3. The Cracking Mechanism of Granite under High-Temperature and Cold-Water Impact
3.5. Failure Mode of Granite at Different Temperatures
3.6. Analysis and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nicholson, K. Environmental protection and the development of geothermal energy resources. Environ. Geochem. Health. 1994, 16, 86–87. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Li, B.; Jiang, Y. Critical hydraulic gradient for nonlinear flow through rock fracture networks: Theroles of aperture, surface roughness, and number of intersections. Adv. Water Resour. 2016, 88, 53–65. [Google Scholar] [CrossRef]
- Liu, R.; Li, B.; Jiang, Y. A fractal model based on a new governing equation of fluid flow in fractures for characterizing hydraulic properties of rock fracture networks. Comput. Geotech. 2016, 75, 57–68. [Google Scholar] [CrossRef]
- Liu, R.; Jiang, Y.; Li, B.; Wang, X. A fractal model for characterizing fluid flow in fractured rock masses based on randomly distributed rock fracture networks. Comput. Geotech. 2015, 65, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Liu, R.; Jiang, Y. Influences of hydraulic gradient, surface roughness, intersecting angle, and scale effect on nonlinear flow behavior at single fracture intersections. J. Hydrol. 2016, 538, 440–453. [Google Scholar] [CrossRef]
- Tapponnier, P.; Brace, W.F. Development of stress-induced microcracks in Westerly Granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1976, 13, 103–112. [Google Scholar] [CrossRef]
- Wair, R.S.C.; Lo, k.Y.; Rowe, R.K. Thermal stress analysis in rock with nonlinear properties. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1982, 19, 211–220. [Google Scholar]
- Simpson, C. Deformation of granitic rocks across the brittle-ductile transition. J. Struct. Geol. 1985, 7, 503–511. [Google Scholar] [CrossRef]
- Singh, B.; Ranjith, P.G.; Chandrasekharam, D.; Viete, D.; Singh, H.K.; Lashin, A.; Arifi, N.A. Thermo-mechanical properties of Bundelkhand granite near Jhansi, India. J. Geomech. Geophys. Geo-Energy Geo-Resour. 2015, 1, 35–53. [Google Scholar] [CrossRef] [Green Version]
- Sygała, A.; Bukowska, M.; Janoszek, T. High Temperature Versus Geomechanical Parameters of Selected Rocks—The Present State of Research. J. Sustain. Min. 2013, 12, 45–51. [Google Scholar] [CrossRef]
- Ranjith, P.G.; Viete, D.R.; Chen, B.J.; Perera, M.S. Transformation plasticity and the effect of temperature on the mechanical behaviour of Hawkesbury sandstone at atmospheric pressure. Eng. Geol. 2012, 151, 120–127. [Google Scholar]
- Araújo, R.G.S.; Sousa, J.L.A.O.; Bloch, M. Experimental investigation on the influence of temperature on the mechanical properties of reservoir rocks. Int. J. Rock Mech. Min. Sci. 1997, 34, 298.e1–298.e16. [Google Scholar] [CrossRef]
- Su, H.; Jing, H.; Du, M.; Wang, C. Experimental investigation on tensile strength and its loading rate effect of sandstone after high temperature treatment. Arab. J. Geosci. 2016, 9, 616–627. [Google Scholar] [CrossRef]
- Meng, X.; Liu, W.; Meng, T. Experimental Investigation of Thermal Cracking and Permeability Evolution of Granite with Varying Initial Damage under High Temperature and Triaxial Compression. Adv. Mater. Sci. Eng. 2018, 4, 1–9. [Google Scholar] [CrossRef]
- Chen, S.; Yang, C.; Wang, G. Evolution of thermal damage and permeability of Beishan granite. Appl. Therm. Eng. 2017, 110, 1533–1542. [Google Scholar] [CrossRef]
- Guo, L.L.; Zhang, Y.B.; Zhang, Y.J.; Yu, Z.W.; Zhang, J.N. Experimental investigation of granite properties under different temperatures and pressures and numerical analysis of damage effect in enhanced geothermal system. Renew. Energy 2018, 126, 107–125. [Google Scholar] [CrossRef]
- Rong, G.; Peng, J.; Yao, M.; Jiang, Q.H.; Wong, L.N.Y. Effects of specimen size and thermal-damage on physical and mechanical behavior of a fine-grained marble. Eng. Geol. 2018, 232, 46–55. [Google Scholar] [CrossRef]
- Yu, Q.L.; Ranjith, P.G.; Liu, H.Y.; Yang, T.H.; Tang, S.B.; Tang, C.A.; Yang, S.Q. A Mesostructure-based Damage Model for Thermal Cracking Analysis and Application in Granite at Elevated Temperatures. Rock Mech. Rock Eng. 2015, 48, 2263–2282. [Google Scholar] [CrossRef]
- Yang, S.Q.; Ranjith, P.G.; Jing, H.W.; Tain, W.L.; Ju, Y. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments. Geothermics 2017, 65, 180–197. [Google Scholar] [CrossRef]
- Uetsuji, Y.; Zako, M. On Evaluation Procedure to AE Test for Fiber Reinforced Composite Materials based on Damage Mechanics. Trans. Jpn. Soc. Mech. Eng. 1998, 64, 2938–2944. [Google Scholar] [CrossRef]
- Venturini Autieri, M.R.; Dulieu-Barton, J.M. Initial Studies for AE Characterisation of Damage in Composite Materials. Adv. Mater. Res. 2010, 13–14, 273–280. [Google Scholar]
- Ding, Q.L.; Ju, F.; Mao, X.B.; Ma, D.; Yu, B.Y.; Song, S.B. Experimental investigation of the mechanical behavior in unloading conditions of Sandstone after high-temperature treatment. Rock Mech. Rock Eng. 2016, 49, 2641–2653. [Google Scholar] [CrossRef]
- Watanabe, H.; Murakami, Y.; Ohtsu, M. Quantitative Evaluation of Damage in Concrete Based on AE. J. Soc. Mater. Sci. Jpn. 2001, 50, 1370–1374. [Google Scholar] [CrossRef]
- Suzuki, T.; Ohtsu, M. Quantitative damage evaluation of structural concrete by a compression test based on AE rate process analysis. Constr. Build. Mater. 2004, 18, 197–202. [Google Scholar] [CrossRef]
- Sagar, R.V.; Prasad, B.K.R.; Kumar, S.S. An experimental study on cracking evolution in concrete and cement mortar by the b-value analysis of acoustic emission technique. Cem. Concr. Res. 2012, 42, 1094–1104. [Google Scholar] [CrossRef]
- Vidya Sagar, R.; Raghu Prasad, B.K. A Review of recent development in parametric based acoustic emission techniques applied to concrete structures. Nondestruct. Test. Eval. 2012, 27, 47–68. [Google Scholar] [CrossRef]
- Wu, G.; Zhai, S.T.; Wang, Y. Research on characteristics of mesostructure and acoustic emission of granite under high temperature. J. Rock Soil Mech. 2015, 36, 351–356. [Google Scholar]
- Chen, G.Q.; Li, T.B.; Zhang, G.F.; Yin, H.Y.; Zhang, H. Temperature effect of rock burst for hard rock in deep-buried tunnel. Nat. Hazard 2014, 72, 915–926. [Google Scholar] [CrossRef]
- Wang, J.S.Y.; Mangold, D.C.; Tsang, C.F. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of high-level nuclear waste. Environ. Geol. Water Sci. 1988, 11, 183–239. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.H.; Chen, Y.L.; Liu, M.L. Experimental study of mechanical properties of granite under high/low temperature freeze-thaw cycles. Rock Soil Mech. 2011, 32, 319–323. [Google Scholar]
- Kim, K.; Kemeny, J.; Nickerson, M. Effect of Rapid Thermal Cooling on Mechanical Rock Properties. Rock Mech. Rock Eng. 2014, 47, 2005–2019. [Google Scholar] [CrossRef]
- Kumari, W.G.P.; Ranjith, P.G.; Perera, M.S.A.; Chen, B.K.; Abdulagatov, I.M. Temperature-dependent mechanical behaviour of Australian Strathbogie granite with different cooling treatments. Eng. Geol. 2017, 229, 31–44. [Google Scholar] [CrossRef]
- Isaka, B.L.A.; Gamage, R.P.; Rathnaweera, T.D.; Perera, M.S.A.; Chandrasekharam, D.; Kumari, W.G.P. An Influence of Thermally-Induced Micro-Cracking under Cooling Treatments: Mechanical Characteristics of Australian Granite. Energies 2018, 11, 1338. [Google Scholar] [CrossRef]
- Xu, X.L.; Zhang, Z.Z. Acoustic Emission and Damage Characteristics of Granite Subjected to High Temperature. Adv. Mater. Sci. Eng. 2018, 4, 1–12. [Google Scholar] [CrossRef]
- Shao, S.; Wasantha, P.L.P.; Ranjith, P.G.; Chen, B.K. Effect of cooling rate on the mechanical behavior of heated Strathbogie granite with different grain sizes. Int. J. Rock Mech. Min. Sci. 2014, 70, 381–387. [Google Scholar] [CrossRef]
- Rickard, H. Fire behavior of mining vehicles in underground hard rock mines. Int. J. Min. Sci. Technol. 2017, 27, 627–634. [Google Scholar]
- Wang, G. Experiment Research on the Effects of Temperature and Viscoelastoplastic Analysis of Beishan Granite. Ph.D. Thesis, Xi’an University of Science and Technology, Xi’an, China, 2003. [Google Scholar]
- Zhi, L.P.; Xu, J.Y.; Liu, Z.Q.; Liu, S.; Chen, T.F. Research on ultrasonic characteristics and Brazilian splitting tensile test of granite under post-high temperature. Rock Soil Mech. 2012, 33, 61–66. [Google Scholar]
- Yin, T.B.; Li, X.B.; Cao, W.Z.; Xia, K.W. Effects of Thermal Treatment on Tensile Strength of Laurentian Granite Using Brazilian Test. Rock Mech. Rock Eng. 2015, 48, 2213–2223. [Google Scholar] [CrossRef]
- Xu, X.L.; Gao, F.; Ji, M. Damage Mechanical Analysis of Fracture Behavior of Granite Under Temperature. J. Wuhan Univ. Technol. 2010, 32, 143–147. [Google Scholar]
- Xu, X. A preliminary study on basic mechanical properties for granite at high temperature. Chin. J. Geotech. Eng. 2000, 22, 332–335. [Google Scholar]
- Homand-Etienne, F.; Houpert, R. Thermally induced microcracking in granites: characterization and analysis. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1989, 26, 125–134. [Google Scholar] [CrossRef]
- Kou, S.Q. Effect of thermal cracking damage on the deformation and failure of granite. Acta Mech. Sin. 1987, 242, 235–240. [Google Scholar]
- Sun, Q.; Zhang, W.Q.; Xue, L.; Zhang, Z.Z.; Su, T.M. Thermal damage pattern and thresholds of granite. Environ. Earth Sci. 2015, 74, 2341–2349. [Google Scholar] [CrossRef]
- Somerton, W.H.; Boozer, G.D. A method of measuring thermal diffusivities of rocks at elevated temperatures. AIChE. J. 2010, 7, 87–90. [Google Scholar] [CrossRef]
- Hartlieb, P.; Toifl, M.; Kuchar, F.; Meisels, R.; Antretter, T. Thermo-physical properties of selected hard rocks and their relation to microwave-assisted comminution. Miner. Eng. 2016, 91, 34–41. [Google Scholar] [CrossRef]
- Just, J.; Kontny, A. Thermally induced alterations of minerals during measurements of the temperature dependence of magnetic susceptibility: A case study from the hydrothermally altered Soultz-sous-Forêts granite, France. Int. J. Earth Sci. 2012, 101, 819–839. [Google Scholar] [CrossRef]
Temperature | Mechanical Parameters | Fitting Formula (N:Cycle Numbers) | R2 |
---|---|---|---|
250 °C | Peak stress | = 122.16 exp (−N/25.55) − 11.69 | 0.9921 |
350 °C | Peak stress | = 60.65 exp (−N/5.24) + 42.04 | 0.9337 |
450 °C | Peak stress | = 38.93 exp (−N/11.34) + 34.45 | 0.9056 |
550 °C | Peak stress | = 19.31 exp (−N/6.56) + 37.24 | 0.8518 |
650 °C | Peak stress | = 9.25 exp (−N/0.31) − 6.79 exp (N/6.17) + 6.79 | 0.8674 |
Temperature | Thermal Shock | Fitting Formula (N:Cycle Numbers) | R2 |
---|---|---|---|
250 °C | D | D = −0.0168 N + 0.0124 N2 − 9.69 × 10−2 N3 + 2.261 × 10−5 N4 | 0.9902 |
350 °C | D | D = −0.0916 N − 0.004 N2 + 8.47 × 10−6 N3 + 3013 × 10−6 N4 | 0.9997 |
450 °C | D | D = 0.0693 N − 0.0065 N2 + 3.25 × 10−4 N3 − 5.868 × 10−6 N4 | 0.9654 |
550 °C | D | D = 0.0274 N + 0.0015 N2 − 2.50 × 10−4 N3 + 6.94 × 10−6 N4 | 0.9943 |
650 °C | D | D = 0.08975 N − 0.01308 N2 + 7.88 × 10−4 N3 − 1.614 × 10−5 N4 | 0.9675 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, D.; Jing, H.; Yin, Q.; Han, G. Experimental Study on the Damage of Granite by Acoustic Emission after Cyclic Heating and Cooling with Circulating Water. Processes 2018, 6, 101. https://doi.org/10.3390/pr6080101
Zhu D, Jing H, Yin Q, Han G. Experimental Study on the Damage of Granite by Acoustic Emission after Cyclic Heating and Cooling with Circulating Water. Processes. 2018; 6(8):101. https://doi.org/10.3390/pr6080101
Chicago/Turabian StyleZhu, Dong, Hongwen Jing, Qian Yin, and Guansheng Han. 2018. "Experimental Study on the Damage of Granite by Acoustic Emission after Cyclic Heating and Cooling with Circulating Water" Processes 6, no. 8: 101. https://doi.org/10.3390/pr6080101
APA StyleZhu, D., Jing, H., Yin, Q., & Han, G. (2018). Experimental Study on the Damage of Granite by Acoustic Emission after Cyclic Heating and Cooling with Circulating Water. Processes, 6(8), 101. https://doi.org/10.3390/pr6080101