Fabrication of New Liquid Crystal Device Using Layer-by-Layer Thin Film Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of LCD Cells Using SWNT LBL Transparent Electrodes
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
BL | Bilayer |
CNT | Carbon nanotube |
CVD | Chemical vapor deposition |
DI | Deionized, DOC: Sodium deoxycholate |
E-O | Electro-optical |
FE-SEM | Field emission scanning electron microscopy |
FFS | Fringe-field switching |
IPA | Isopropylalcohol |
IPS | In-plane switching |
ITO | Indium tin oxide |
LBL | layer-by-layer |
LCD | Liquid crystal display |
PDDA | Poly(diallyldimethylammonium chloride) |
PET | Poly(ethylene terephthalate) |
PI | Polyimide |
POM | Polarized optical microscope |
QCM | Quartz crystal microbalance |
SWNT | Single-walled carbon nanotube |
TNI | Nematic-to-isotropic transition temperature |
UV–Vis | UV–Visible spectroscopy |
VA | Vertical alignment |
V-T | Voltage-transmittance |
References
- Ohe, M.H.; Kondo, K.S. Electro-optical characteristics and switching behavior of the in-plane switching mode. Appl. Phys. Lett. 1995, 67, 3895–3897. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, Y.K.; Jo, S.I.; Bae, K.S.; Choi, B.D.; Kim, J.H.; Yu, C.J. Fast vertical alignment mode with continuous multi-domains for a liquid crystal display. Opt. Express 2009, 17, 23417–23422. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Lee, S.L.; Kim, H.Y. Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching. Appl. Phys. 1998, 73, 2881–2883. [Google Scholar] [CrossRef]
- Igasaki, Y.; Saito, H. Substrate temperature dependence of electrical properties of ZnO:Al epitaxial films on sapphire. J. Appl. Phys. 1991, 69, 2190–2195. [Google Scholar] [CrossRef]
- Lan, Y.F.; Peng, W.C.; Lo, Y.H.; He, J.L. Indium tin oxide films deposited by thermionic-enhanced DC magnetron sputtering on unheated polyethylene terephthalate polymer substrate. Mater. Res. Bull. 2009, 44, 1760–1764. [Google Scholar] [CrossRef]
- Lin, Y.C.; Shi, W.Q.; Chen, Z.Z. Effect of deflection on the mechanical and optoelectronic properties of indium tin oxide films deposited on polyethylene terephthalate substrates by pulse magnetron sputtering. Thin Solid Films 2009, 517, 1701–1705. [Google Scholar] [CrossRef]
- Gu, G.; Shen, Z.; Burrows, P.E.; Forrest, S.R. Transparent flexible organic light-emitting devices. Adv. Mater. 1997, 9, 725–728. [Google Scholar] [CrossRef]
- Cairns, D.R.; Witte, R.P.; Sparacin, D.K.; Sachsman, S.M.; Paine, D.C.; Crawford, G.P.; Newton, R.P. Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Appl. Phys. Lett. 2000, 76, 1425–1427. [Google Scholar] [CrossRef]
- Tao, C.S.; Jiang, J.; Tao, M. Natural resource limitations to terawatt-scale solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, 3176–3180. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, Z.; Du, X.; Logan, J.M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J.R.; Tanner, D.B.; Hebard, A.F.; et al. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Fang, S.; Zakhidov, A.A.; Lee, S.B.; Aliev, A.E.; Williams, C.D.; Atkinson, K.R.; Baughman, R.H. Strong, transparent, multifunctional, carbon nanotube sheets. Science 2005, 309, 1215–1219. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Connor, S.T.; Cui, Y.; Peumans, P. Solution-Processed Metal Nanowire Mesh Transparent Electrodes. Nano Lett. 2008, 8, 689–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, P.C.; Wang, S.; Wu, H.; Narasimhan, V.K.; Kong, D.; Lee, H.R.; Cui, Y. Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires. Nat. Commun. 2013, 25, 2522–2528. [Google Scholar] [CrossRef] [PubMed]
- Meiss, J.; Riede, M.K.; Leo, K. Optimizing the morphology of metal multilayer films for indium tin oxide (ITO)-free inverted organic solar cells. Appl. Phys. Lett. 2009, 105, 063108-1–063108-5. [Google Scholar] [CrossRef]
- Tung, V.C.; Chen, L.M.; Allen, M.J.; Wassei, J.K.; Nelson, K.; Kaner, R.B.; Yang, Y. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 2009, 9, 1949–1955. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.G.; Ouyang, J.Y. Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon 2011, 49, 5389–5397. [Google Scholar] [CrossRef]
- Alemu, D.L.; Wei, H.Y.; Ho, K.C.; Chu, C.W. Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy Environ. Sci. 2012, 5, 9662–9671. [Google Scholar] [CrossRef]
- Na, S.I.; Kim, S.S.; Jo, J.; Kim, D.Y. Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes. Adv. Mater. 2008, 21, 4061–4067. [Google Scholar] [CrossRef]
- Zhang, D.; Ryu, K.; Liu, X.; Polikarpov, E.; Ly, J.; Tompson, M.E.; Zhou, C. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 2006, 6, 1880–1886. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Song, L.; Yang, R.; Zhang, T.; Zhao, Y.; Sun, L.; Zhang, Z. Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. Nano Lett. 2007, 7, 2307–2311. [Google Scholar] [CrossRef] [PubMed]
- Green, A.A.; Hersam, M.C. Colored Semitransparent Conductive Coatings Consisting of Monodisperse Metallic Single-Walled Carbon Nanotubes. Nano Lett. 2008, 8, 1417–1422. [Google Scholar] [CrossRef] [PubMed]
- Dan, B.; Irvin, G.C.; Pasquali, M. Continuous and scalable fabrication of transparent conducting carbon nanotube films. ACS Nano 2009, 3, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.T.; Ham, A.Y.; Yang, Y.H.; Grunlan, J.C. Fully organic ITO replacement through acid doping of double-walled carbon nanotube thin film assemblies. RSC Adv. 2011, 1, 662–671. [Google Scholar] [CrossRef]
- Yu, X.; Rajamani, R.; Stelson, K.A.; Cui, T. Fabrication of carbon nanotube based transparent conductive thin films using layer-by-layer technology. Surf. Coat. Technol. 2008, 202, 2002–2007. [Google Scholar] [CrossRef]
- Decher, G.; Lvov, Y.; Schmitt, J. Proof of multilayer structural organization in self-assembled polycation-polyanion molecular films. Thin Solid Films 1994, 244, 772–777. [Google Scholar] [CrossRef]
- Hammond, P.T. Form and function in multilayer assembly: New applications at the nanoscale. Adv. Mater. 2004, 16, 1271–1293. [Google Scholar] [CrossRef]
- Park, Y.T.; Ham, A.Y.; Grunlan, J.C. High electrical conductivity and transparency in deoxycholate-stabilized carbon nanotube thin films. J. Phys. Chem. C 2010, 114, 6325–6333. [Google Scholar] [CrossRef]
- Park, Y.T.; Ham, A.Y.; Grunlan, J.C. Heating and acid doping thin film carbon nanotube assemblies for high transparency and low sheet resistance. J. Mater. Chem. 2011, 21, 363–368. [Google Scholar] [CrossRef]
- Park, J.J.; Hyun, W.J.; Mun, S.C.; Park, Y.T.; Park, O.O. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl. Mater. Interfaces 2015, 7, 6317–6324. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Dong, S. Bioelectrochemical interface engineering: Toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors. Accounts Chem. Res. 2011, 44, 1232–1243. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.J.; Kim, W.; Jang, W.; Park, H.W.; Sohn, A.; Chung, K.B.; Kim, D.W.; Choi, D.; Park, Y.T. Layer-by-layer assembled graphene multilayers on multidimensional surfaces for highly durable, scalable, and wearable triboelectric nanogenerators. J. Mater. Chem. A 2018, 6, 3108–3115. [Google Scholar] [CrossRef]
- Wang, H.Y.; Wu, T.X.; Zhu, X.Y.; Wu, S.T. Correlations between liquid crystal director reorientation and optical response time of a homeotropic cell. J. Appl. Phys. 2004, 95, 5502–5508. [Google Scholar] [CrossRef]
- Seo, D.S.; Kim, J.H. Generation of pretilt angle in NLC and EO characteristics of transcription-aligned TNLCD fabricated by transcription alignment on polyimide surfaces. Liq. Cryst. 1999, 26, 397–400. [Google Scholar] [CrossRef]
- Kim, T.H.; Ju, C.H.; Kang, H. Vertical alignment of liquid crystal on tocopherol substituted polystyrene films. Liq. Cryst. 2018, 45, 801–810. [Google Scholar] [CrossRef]
- Oh, S.K.; Nakagawa, M.S.; Ichimura, K.H. Relationship between the ability to control liquid crystal alignment and wetting properties of calix[4]resorcinarene monolayers. J. Mater. Chem. 2001, 11, 1563–1569. [Google Scholar] [CrossRef]
Electrodes | Resistance (kΩ) | Transparency (at 550 nm) |
---|---|---|
ITO | 0.02 | 84.14 |
SWNT 2 BLs | 29 | 95.50 |
SWNT 6 BLs | 1.3 | 82.22 |
SWNT 10 BLs | 0.5 | 69.02 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, G.; Jang, W.; Son, I.; Cho, H.A.; Park, Y.T.; Lee, J.H. Fabrication of New Liquid Crystal Device Using Layer-by-Layer Thin Film Process. Processes 2018, 6, 108. https://doi.org/10.3390/pr6080108
Moon G, Jang W, Son I, Cho HA, Park YT, Lee JH. Fabrication of New Liquid Crystal Device Using Layer-by-Layer Thin Film Process. Processes. 2018; 6(8):108. https://doi.org/10.3390/pr6080108
Chicago/Turabian StyleMoon, Gitae, Wonjun Jang, Intae Son, Hyun A. Cho, Yong Tae Park, and Jun Hyup Lee. 2018. "Fabrication of New Liquid Crystal Device Using Layer-by-Layer Thin Film Process" Processes 6, no. 8: 108. https://doi.org/10.3390/pr6080108
APA StyleMoon, G., Jang, W., Son, I., Cho, H. A., Park, Y. T., & Lee, J. H. (2018). Fabrication of New Liquid Crystal Device Using Layer-by-Layer Thin Film Process. Processes, 6(8), 108. https://doi.org/10.3390/pr6080108