Valorization of Industrial Vegetable Waste Using Dilute HCl Pretreatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Waste Sample Preparation
2.3. Waste Composition Determination
2.4. Pretreatment Optimization
2.4.1. Design of Experiment
2.4.2. Experimental Procedure
2.5. Kinetic Experiments
2.6. Sample Analysis
3. Results and Discussion
3.1. Waste Composition
3.2. Pretreatment Optimization
3.2.1. Total Sugar Concentration
3.2.2. Total Furan Concentration
3.2.3. Total Organic Acid Concentration
3.2.4. Principal Component Analysis
3.2.5. Minimax Multi-Objective Function
3.2.6. Composition of Pretreated Feedstock
3.2.7. Other Considerations
3.3. Kinetic Experiments
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dun & Bradstreet First Research. Fruit & Vegetable Processing Industry Profile. 2018. Available online: http://www.firstresearch.com/Industry-Research/Fruit-and-Vegetable-Processing.html (accessed on 1 March 2018).
- Kumar, R.S.; Manimegalai, G. Fruit and Vegetable Processing Industries and Environment. In Industrial Pollution & Management; Kumar, A., Ed.; APH Publishing Corporation: New Delhi, India, 2004; pp. 97–117. [Google Scholar]
- Lubberding, H.J.; Gijzen, H.J.; Heck, M.; Vogels, G.D. Anaerobic Digestion of Onion Waste by Means of Rumen Microorganisms. Biol. Wastes 1988, 25, 61–67. [Google Scholar] [CrossRef]
- Ligisan, A.R.; Tuates, A.M., Jr. Utilization of Onion Solid Waste as Feedstock for Biogas Production. Asian J. Appl. Sci. 2016, 4, 1154–1162. [Google Scholar]
- Brehm, P. Natural Gas Prices, Electric Generation Investment, and Greenhouse Gas Emissions. Resour. Energy Econ. 2019, 58, 101106. [Google Scholar] [CrossRef]
- Jönsson, L.J.; Martín, C. Pretreatment of Lignocellulose: Formation of Inhibitory by-Products and Strategies for Minimizing Their Effects. Bioresour. Technol. 2016, 199, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Rabus, R.; Hansen, T.A.; Widdel, F. Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes. In The Prokaryotes: Ecophysiology and Biochemistry; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 659–768. [Google Scholar] [CrossRef]
- Bauer, S.; Ibáñez, A.B. Rapid Determination of Cellulose. Biotechnol. Bioeng. 2014, 111, 2355–2357. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Kumar, R.; Wyman, C.E. Fast Hemicellulose Quantification via a Simple One-Step Acid Hydrolysis. Biotechnol. Bioeng. 2014, 111, 1088–1096. [Google Scholar] [CrossRef] [PubMed]
- Midwest Microlab. Analysis of Carbon, Hydrogen, Nitrogen, Oxygen, and Halogens Including Fluorine. 2018. Available online: http://midwestlab.com/elemental-analysis-services/ (accessed on 20 November 2018).
- NJFL Inc. Proximate Analysis. 2018. Available online: http://njfl.com/proximate.html (accessed on 20 November 2018).
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; National Renewable Energy Laboratory: Golden, CO, USA, 2011. Available online: https://www.nrel.gov/docs/gen/fy13/42618.pdf (accessed on 25 August 2017).
- Kumar, P.; Barrett, D.M.; Delwiche, M.J.; Stroeve, P. Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Ind. Eng. Chem. Res. 2009, 48, 3713–3729. [Google Scholar] [CrossRef]
- Lee, C.C.; Shallenberger, R.; Vittum, M. Free Sugars in Fruits and Vegetables. In New York’s Food and Life Sciences Bulletin; New York State Agricultural Experiment Station: Ithaca, NY, USA, 1970; pp. 1–12. Available online: https://ecommons.cornell.edu/bitstream/handle/1813/4021/FLS-001.pdf?sequence=1&isAllowed=y (accessed on 12 September 2018).
- Voragen, F.G.J.; Timmers, J.P.J.; Linssen, J.P.H.; Schols, H.A.; Pilnik, W. Methods of Analysis for Cell-Wall Polysaccharides of Fruit and Vegetables. Zeitschrift Lebensmittel Untersuchung Forschung 1983, 177, 251–256. [Google Scholar] [CrossRef]
- Alexander, M.M.; Sulebele, G.A. Pectic Substances in Onion and Garlic Skins. J. Sci. Food Agric. 1973, 24, 611–615. [Google Scholar] [CrossRef]
- Jafari, F.; Khodaiyan, F.; Kiani, H.; Hosseini, S.S. Pectin from Carrot Pomace: Optimization of Extraction and Physicochemical Properties. Carbohydr. Polym. 2017, 157, 1315–1322. [Google Scholar] [CrossRef]
- Petrova, I.; Petkova, N.; Kyobashieva, K.; Denev, P.; Simitchiev, A.; Todorova, M.; Dencheva, N. Isolation of Pectic Polysaccharides from Celery (Apium Graveolens Var. Rapaceum, D.C.) and Their Application in Food Emulsions. Turk. J. Agric. Nat. Sci. 2014, 1, 1818–1824. [Google Scholar]
- Sun, Y.; Cheng, J. Hydrolysis of Lignocellulosic Materials for Ethanol Production: A Review. Bioresour. Technol. 2002, 83, 1–11. [Google Scholar] [CrossRef]
- García-García, D.; Balart, R.; Lopez-Martinez, J.; Ek, M.; Moriana, R. Optimizing the Yield and Physico-Chemical Properties of Pine Cone Cellulose Nanocrystals by Different Hydrolysis Time. Cellulose 2018, 25, 2925–2938. [Google Scholar] [CrossRef]
- Revellame, E.; Hernandez, R.; French, W.; Holmes, W.; Alley, E. Biodiesel from Activated Sludge through in situ Transesterification. J. Chem. Technol. Biotechnol. 2010, 85, 614–620. [Google Scholar] [CrossRef]
- Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of Lignocellulose Hydrolysates. II: Inhibitors and Mechanisms of Inhibition. Bioresour. Technol. 2000, 74, 25–33. [Google Scholar] [CrossRef]
- Xiang, Q.; Lee, Y.; Torget, R. Kinetics of Glucose Decomposition During Dilute-Acid Hydrolysis of Lignocellulosic Biomass. Appl. Biochem. Biotechnol. 2004, 115, 1127–1138. [Google Scholar] [CrossRef]
- Wyman, C.E.; Decker, S.R.; Himmel, M.E.; Brady, J.W.; Skopec, C.E.; Viikari, L. Hydrolysis of Cellulose and Hemicellulose. In Polysaccharides: Structural Diversity and Functional Versatility; Dumitriu, S., Ed.; Marcel Dekker: New York, NY, USA, 2005; pp. 995–1034. [Google Scholar]
- Chang, C.; Ma, X.; Cen, P. Kinetics of Levulinic Acid Formation from Glucose Decomposition at High Temperature. Chin. J. Chem. Eng. 2006, 14, 708–712. [Google Scholar] [CrossRef]
- Hansen, S.L. Content of Free Amino Acids in Onion (Allium cepa L.) as Influenced by the Stage of Development at Harvest and Long-Term Storage. Acta Agric. Scand. Sect. B Plant Soil Sci. 2001, 51, 77–83. [Google Scholar] [CrossRef]
- Biosynthesis. The Maillard Reaction and Amadori Rearrangement. 2017. Available online: http://www.biosyn.com/tew/The-Maillard-reaction-and-Amadori-rearrangement.aspx (accessed on 5 November 2017).
- Manley, D. Sugars and Syrups as Biscuit Ingredients. In Manley’s Technology of Biscuits, Crackers and Cookies, 4th ed.; Manley, D., Ed.; Woodhead Publishing: Cambridge, UK, 2011; pp. 143–159. [Google Scholar] [CrossRef]
- Wrolstad, R.E. Reactions of Sugars. In Food Carbohydrate Chemistry; John Wiley & Sons Inc.: West Sussex, UK, 2012; pp. 35–47. [Google Scholar] [CrossRef]
- Rodríguez Galdón, B.; Tascón Rodríguez, C.; Rodríguez Rodríguez, E.; Díaz Romero, C. Organic Acid Contents in Onion Cultivars (Allium cepa L.). J. Agric. Food Chem. 2008, 56, 6512–6519. [Google Scholar] [CrossRef]
- Liguori, L.; Califano, R.; Albanese, D.; Raimo, F.; Crescitelli, A.; Di Matteo, M. Chemical Composition and Antioxidant Properties of Five White Onion (Allium cepa L.) Landraces. J. Food Qual. 2017, 2017, 6873651. [Google Scholar] [CrossRef]
- Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.V.; Pavlostathis, S.G.; Rozzi, A.; Sanders, W.T.M.; Siegrist, H.; Vavilin, V.A. The IWA Anaerobic Digestion Model No 1 (ADM 1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Fortela, D.L.B.; Hernandez, R.; Chistoserdov, A.; Zappi, M.; Bajpai, R.; Gang, D.D.; Revellame, E.; Holmes, W.E. Biodiesel Profile Stabilization and Microbial Community Selection of Activated Sludge Feeding on Acetic Acid as Carbon Source. ACS Sustain. Chem. Eng. 2016, 4, 6427–6434. [Google Scholar] [CrossRef]
- Yook, S.D.; Sanchez, R.S.; Ha, J.H.; Park, J.M. Effects of the Ratio of Carbon to Nitrogen Concentration on Lipid Production by Bacterial Consortium of Sewage Sludge Using Food Wastewater as a Carbon Source. Korean J. Chem. Eng. 2016, 33, 1805–1812. [Google Scholar] [CrossRef]
- Kwon, S.Y.; Baek, H.H. Effects of Temperature, pH, Organic Acids, and Sulfites on Tagatose Browning in Solutions During Processing and Storage. Food Sci. Biotechnol. 2014, 23, 677–684. [Google Scholar] [CrossRef]
- Jursic, B.S.; Zdravkovski, Z. A Simple Preparation of Amides from Acids and Amines by Heating of Their Mixture. Synth. Commun. 1993, 23, 2761–2770. [Google Scholar] [CrossRef]
- Lanigan, R.M.; Sheppard, T.D. Recent Developments in Amide Synthesis: Direct Amidation of Carboxylic Acids and Transamidation Reactions. Eur. J. Org. Chem. 2013, 2013, 7453–7465. [Google Scholar] [CrossRef]
- Martius, C. Density, Humidity, and Nitrogen Content of Dominant Wood Species of Floodplain Forests (Várzea) in Amazonia. Holz Roh-und Werkstoff 1992, 50, 300–303. [Google Scholar] [CrossRef]
- Martin, A.R.; Erickson, D.L.; Kress, W.J.; Thomas, S.C. Wood Nitrogen Concentrations in Tropical Trees: Phylogenetic Patterns and Ecological Correlates. New Phytol. 2014, 204, 484–495. [Google Scholar] [CrossRef]
- Zhu, M.; Ghodsi, A. Automatic Dimensionality Selection from the Scree Plot via the Use of Profile Likelihood. Comput. Stat. Data Anal. 2006, 51, 918–930. [Google Scholar] [CrossRef]
- Ackleh, A.S.; Allen, E.J.; Kearfott, R.B.; Seshaiyer, P. Classical and Modern Numerical Analysis: Theory, Methods and Practice; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Siqueira, M.R.; Reginatto, V. Inhibition of Fermentative H2 Production by Hydrolysis Byproducts Of lignocellulosic Substrates. Renew. Energy 2015, 80, 109–116. [Google Scholar] [CrossRef]
- Park, J.-H.; Yoon, J.-J.; Park, H.-D.; Kim, Y.J.; Lim, D.J.; Kim, S.-H. Feasibility of Biohydrogen Production from Gelidium Amansii. Int. J. Hydrogen Energy 2011, 36, 13997–14003. [Google Scholar] [CrossRef]
- Rahman, S.; Arbter, P.; Popovic, M.; Bajpai, R.; Subramaniam, R. Microbial Lipid Production from Lignocellulosic Hydrolyzates: Effect of Carbohydrate Mixtures and Acid-Hydrolysis Byproducts on Cell Growth and Lipid Production by Lipomyces Starkeyi. J. Chem. Technol. Biotechnol. 2017, 92, 1980–1989. [Google Scholar] [CrossRef]
- Fortela, D.L.; Hernandez, R.; French, W.T.; Zappi, M.; Revellame, E.; Holmes, W.; Mondala, A. Extent of Inhibition and Utilization of Volatile Fatty Acids as Carbon Sources for Activated Sludge Microbial Consortia Dedicated for Biodiesel Production. Renew. Energy 2016, 96, 11–19. [Google Scholar] [CrossRef]
- Cao, G.-L.; Ren, N.-Q.; Wang, A.-J.; Guo, W.-Q.; Xu, J.-F.; Liu, B.-F. Effect of Lignocellulose-Derived Inhibitors on Growth and Hydrogen Production by Thermoanaerobacterium Thermosaccharolyticum W16. Int. J. Hydrogen Energy 2010, 35, 13475–13480. [Google Scholar] [CrossRef]
- Canilha, L.; de Almeida e Silva, J.B.; Solenzal, A.I.N. Eucalyptus Hydrolysate Detoxification with Activated Charcoal Adsorption or Ion-Exchange Resins for Xylitol Production. Process Biochem. 2004, 39, 1909–1912. [Google Scholar] [CrossRef]
- Frazer, F.R.; McCaskey, T.A. Wood Hydrolyzate Treatments for Improved Fermentation of Wood Sugars to 2,3-Butanediol. Biomass 1989, 18, 31–42. [Google Scholar] [CrossRef]
- Sainio, T.; Turku, I.; Heinonen, J. Adsorptive Removal of Fermentation Inhibitors from Concentrated Acid Hydrolyzates of Lignocellulosic Biomass. Bioresour. Technol. 2011, 102, 6048–6057. [Google Scholar] [CrossRef] [PubMed]
- Nissilä, M.; Li, Y.-C.; Wu, S.-Y.; Puhakka, J. Dark Fermentative Hydrogen Production from Neutralized Acid Hydrolysates of Conifer Pulp. Appl. Biochem. Biotechnol. 2012, 168, 2160–2169. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.C.C.; Tu, Y.-H.; Huang, M.-H.; Lay, C.-H.; Lin, C.-Y. Hydrogen Production by the Anaerobic Fermentation from Acid Hydrolyzed Rice Straw Hydrolysate. Int. J. Hydrogen Energy 2011, 36, 14280–14288. [Google Scholar] [CrossRef]
- Nichols, N.N.; Dien, B.S.; Cotta, M.A. Fermentation of Bioenergy Crops into Ethanol Using Biological Abatement for Removal of Inhibitors. Bioresour. Technol. 2010, 101, 7545–7550. [Google Scholar] [CrossRef]
- Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of Lignocellulosic Hydrolysates. I: Inhibition and Detoxification. Bioresour. Technol. 2000, 74, 17–24. [Google Scholar] [CrossRef]
- Petersson, A.; Almeida, J.R.M.; Modig, T.; Karhumaa, K.; Hahn-Hägerdal, B.; Gorwa-Grauslund, M.F.; Lidén, G. A 5-Hydroxymethyl Furfural Reducing Enzyme Encoded by the Saccharomyces Cerevisiae ADH6 Gene Conveys HMF Tolerance. Yeast 2006, 23, 455–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heer, D.; Sauer, U. Identification of Furfural as a Key Toxin in Lignocellulosic Hydrolysates and Evolution of a Tolerant Yeast Strain. Microb. Biotechnol. 2008, 1, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhao, J.; Yagoub, A.E.A.; Ma, H.; Yu, X.; Hu, J.; Bao, X.; Liu, S. Conversion of Glucose into 5-Hydroxymethylfurfural in Different Solvents and Catalysts: Reaction Kinetics and Mechanism. Egypt. J. Pet. 2017, 26, 477–487. [Google Scholar] [CrossRef] [Green Version]
Component | % Weight | |
---|---|---|
Cellulose | 5.68 ± 0.23 | |
Hemicellulose/Pectin | Glucan | 13.23 ± 0.07 |
Xylan/XGM | 39.67 ± 3.02 | |
Arabinan | 30.94 ± 1.44 | |
Protein | 11.36 ± 0.03 1 | |
C | 39.63 ± 0.42 2 | |
H | 6.24 ± 0.29 2 | |
N | 1.76 ± 0.05 2 |
Coefficient | Total Sugar | Total Furans | Total Organic Acids | |||
---|---|---|---|---|---|---|
Coded | Uncoded | Coded | Uncoded | Coded | Uncoded | |
β0 | −0.274 | −9.378 | −0.252 | −9.601 | −0.875 | −20.255 |
β1 | −0.593 | 10.687 | −0.523 | 1.290 | −0.323 | −6.619 |
β2 | 0.138 | 0.528 | 0.444 | 0.179 | 0.223 | 0.815 |
β11 | −0.221 | −0.880 | −0.180 | −0.059 | 0.322 | 1.914 |
β22 | NS 1 | NS | −0.421 | −0.001 | NS | NS |
β12 | −0.449 | −0.107 | −0.677 | −0.013 | −0.405 | −0.144 |
RMSE | 6.065 | 9.1741 | 0.3635 | |||
R2 (adjusted) | 0.81 | 0.94 | 0.70 |
Component | Concentration (g/L) |
---|---|
Glucose | 14.17 ± 0.23 |
Xylose | 12.53 ± 0.09 |
Arabinose | 8.60 ± 0.01 |
Lactic acid | 5.92 ± 0.53 |
Acetic acid | 6.05 ± 2.86 |
Propionic acid | 3.40 ± 2.40 |
Butyric acid | 6.99 ± 1.47 |
Hydroxymethylfurfural | 0.30 ± 0.02 |
Furfural | 1.96 ± 0.16 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blue, D.; Fortela, D.L.; Holmes, W.; LaCour, D.; LeBoeuf, S.; Stelly, C.; Subramaniam, R.; Hernandez, R.; Zappi, M.E.; Revellame, E.D. Valorization of Industrial Vegetable Waste Using Dilute HCl Pretreatment. Processes 2019, 7, 853. https://doi.org/10.3390/pr7110853
Blue D, Fortela DL, Holmes W, LaCour D, LeBoeuf S, Stelly C, Subramaniam R, Hernandez R, Zappi ME, Revellame ED. Valorization of Industrial Vegetable Waste Using Dilute HCl Pretreatment. Processes. 2019; 7(11):853. https://doi.org/10.3390/pr7110853
Chicago/Turabian StyleBlue, Donald, Dhan Lord Fortela, William Holmes, David LaCour, Shayla LeBoeuf, Cody Stelly, Ramalingam Subramaniam, Rafael Hernandez, Mark E. Zappi, and Emmanuel D. Revellame. 2019. "Valorization of Industrial Vegetable Waste Using Dilute HCl Pretreatment" Processes 7, no. 11: 853. https://doi.org/10.3390/pr7110853
APA StyleBlue, D., Fortela, D. L., Holmes, W., LaCour, D., LeBoeuf, S., Stelly, C., Subramaniam, R., Hernandez, R., Zappi, M. E., & Revellame, E. D. (2019). Valorization of Industrial Vegetable Waste Using Dilute HCl Pretreatment. Processes, 7(11), 853. https://doi.org/10.3390/pr7110853