Integrated Hydrolysis of Mixed Agro-Waste for a Second Generation Biorefinery Using Nepenthes mirabilis Pod Digestive Fluids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lignocellulosic Biomass Feedstock: Mixed Agro-Waste
2.1.1. Collection and Preparation
2.1.2. Mixed Agro-Waste Lignin and Holocelluloses Content
2.1.3. Inhibitory Compound Quantification: Total Residual Phenolic Compounds (TRPCs)
2.2. Nepenthes Mirabilis Digestive Fluids
2.2.1. Collection and Preparation
2.2.2. N. mirabilis Digestive Fluids Characterisation
Physico–Chemical Characteristics of the N. mirabilis Digestive Fluids
Microbial Identification and Biocatalytic Activity of the N. mirabilis Digestive Fluids
2.2.3. Mixed Agro-Waste Hydrolysis Procedure Using N. mirabilis Digestive Fluids and Sequential Commercial Cellulases Hydrolysis
2.2.4. Hydrolysis of the Mixed Agro-Waste Using Hot Water, Dilute Acid and Cellulases
2.3. Determination of Total Reducing Sugars (TRS)
2.4. Powder X-ray Diffraction Analyses
2.5. Fourier-Transform Infrared Spectroscopy Analysis
2.6. Experimental Data Handling, Computations and Statistical Analysis
3. Results and Discussion
3.1. Selection of Agro-Waste
3.2. Biophysico–Chemical Characteristics of the N. mirabilis Digestive Fluids
Carboxylesterase, β-glucosidase, Xylanase and Commercial Cellulases Activity
3.3. Integrated Hydrolysis
3.3.1. Total Residual Phenolics Content (TRPCs)
3.3.2. Performance of the Single Pot Multi-Reaction Hydrolysis Process
3.3.3. Furthering of Agro-Waste Hydrolysis Using Commercial Cellulases
3.3.4. X-ray Diffraction Analysis
3.3.5. FTIR Analysis for Mixed Agro-Waste
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kudakasseril-Kurian, J.; Raveendran Nair, G.; Hussain, A.; Vijaya Raghavan, G.S. Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: A comprehensive review. Renew. Sustain. Energy Rev. 2013, 25, 205–219. [Google Scholar] [CrossRef]
- Lee, S.H.; Doherty, T.V.; Linhardt, R.J.; Dordick, J.S. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol. Bioeng. 2009, 102, 1368–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, C.L.; Che, P.Y.; Chen, B.Y.; Lee, W.J.; Lin, C.Y.; Chang, J.S. Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora. Appl. Energy 2012, 100, 3–9. [Google Scholar] [CrossRef]
- Chiaramonti, D.; Prussi, M.; Ferrero, S.; Oriani, L.; Ottonello, P.; Torre, P.; Cherchi, F. Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenergy 2012, 46, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.K.; Parikh, B.S.; Pravakar, M. Natural deep eutectic solvent mediated pretreatment of rice straw: Bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ. Sci. Pollut. Res. Int. 2016, 23, 9265–9275. [Google Scholar] [CrossRef]
- Martín, C.; Thomsen, A.B. Wet oxidation pretreatment of lignocellulosic residues of sugarcane, rice, cassava and peanuts for ethanol production. J. Chem. Technol. Biotechnol. 2007, 82, 174–181. [Google Scholar] [CrossRef]
- Narayanaswamy, N.; Dheeran, P.; Verma, S.; Kumar, S. Biological pretreatment of lignocellulosic biomass for enzymatic saccharification. In Pretreatment Techniques for Biofuels and Biorefineries; Fang, Z., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3–34. [Google Scholar]
- Procentese, A.; Raganati, F.; Olivieri, G.; Elena Russo, M.; Marzocchella, A. Pre-treatment and enzymatic hydrolysis of lettuce residues as feedstock for bio-butanol production. Biomass Bioenergy 2017, 96, 172–179. [Google Scholar] [CrossRef]
- Rajan, K.; Carrier, D.J. Effect of dilute acid pretreatment conditions and washing on the production of inhibitors and on recovery of sugars during wheat straw enzymatic hydrolysis. Biomass Bioenergy 2014, 62, 222–227. [Google Scholar] [CrossRef]
- Jönsson, L.J.; Martín, C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 2016, 199, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Chan, X.Y.; Hong, K.W.; Yin, W.F.; Chan, K.G. Microbiome and biocatalytic bacteria in monkey cup (Nepenthes pitcher) digestive fluid. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef]
- Lee, L.; Zhang, Y.; Ozar, B.; Sensen, C.W.; Schriemer, D.C. Carnivorous nutrition in pitcher plants (Nepenthes spp.) via an unusual complement of endogenous enzymes. J. Proteome Res. 2016, 15, 3108–3117. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, Y.; Salcher, M.M.; Ushio, M.; Shimizu-Inatsugi, R.; Kobayashi, M.J.; Diway, B.; Von Mering, C.; Pernthaler, J.; Shimizu, K.K. In situ enzyme activity in the dissolved and particulate fraction of the fluid from four pitcher plant species of the genus Nepenthes. PLoS ONE 2011, 6, e25144. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, Y.; Chaffron, S.; Salcher, M.M.; Shimizu-Inatsugi, R.; Kobayashi, M.J.; Diway, B.; Von Mering, C.; Pernthaler, J.; Shimizu, K.K. Bacterial diversity and composition in the fluid of pitcher plants of the genus Nepenthes. Syst. Appl. Microbiol. 2015, 38, 330–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siragusa, A.J.; Swenson, J.E.; Casamatta, D.A. Culturable bacteria present in the fluid of the hooded-pitcher plant Sarracenia minor based on 16S rDNA gene sequence data. Microb. Ecol. 2007, 54, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Dhavale, A.; Vhanmarathi, A.; Deshmukh, S.; Dabeer, S. Unstructured Kinetic Modeling of Glutathione Production by Saccharomyces cerevisiae NCIM 3345. In Biotechnology and Biochemical Engineering; B. D. P., Gummadi, S., Vadlani, P., Eds.; Springer: Singapore, 2016. [Google Scholar]
- Mansouri, N.-E.E.; Salvadó, J. Structural characterization of technical lignins for the production of adhesives: Application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Ind. Crop. Prod. 2006, 24, 8–16. [Google Scholar] [CrossRef]
- Garnier, A.; Gaillet, B. Analytical solution of Luedeking–Piret equation for a batch fermentation obeying Monod growth kinetics. Biotechnol. Bioeng. 2015, 112, 2468–2474. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Ximenes, E.; Mosier, N.S.; Ladisch, M.R. Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzym. Microb. Technol. 2011, 48, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Singhania, R.R.; Patel, A.K.; Sukumaran, R.K.; Larroche, C.; Pandey, A. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour. Technol. 2013, 127, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.; Blümmel, M.; Borowy, N.K.; Becker, K. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J. Sci. Food Agric. 1993, 61, 161–165. [Google Scholar] [CrossRef]
- Baba, S.A.; Malik, S.A. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. J. Taibah Univ. Sci. 2015, 9, 449–454. [Google Scholar] [CrossRef]
- Lavate, S.M.; Kale, A.; Patil, J.; Deshpande, N.R. Spectroscopic determination of total phenolic and flavonoid contents of Aglaia lawii leaves. Int. J. Pharm. Pharm. Sci. 2013, 5, 851–853. [Google Scholar]
- Urmila, M.; Poonam, N.; Shivani, M.; Kaur, K. A growth of different types of microorganism, intrinsic and extrinsic factors of microorganism and their affects in food: A Review. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 290–298. [Google Scholar]
- Pincus, D. Microbial Identification Using the Biomérieux Vitek® 2 System; bioMérieux Inc.: Hazelwood, MO, USA, 2005. [Google Scholar]
- Mekuto, L.; Ntwampe, S.K.O.; Mudumbi, J.B.N. Microbial communities associated with the co-metabolism of free cyanide and thiocyanate under alkaline conditions. 3 Biotech 2018, 8, 93. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.Y.C.; Takahashi, K.; Liu, Z. Isolation, characterization and optimization of an aerobic butanol producing bacteria from Singapore. Biotechnol. Appl. Biochem. 2016, 63, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed]
- García-Huante, Y.; Cayetano-Cruz, M.; Santiago-Hernández, A.; Cano-Ramírez, C.; Marsch-Moreno, R.; Campos, J.E.; Aguilar-Osorio, G.; Benitez-Cardoza, C.G.; Trejo-Estrada, S.; Hidalgo-Lara, M.E. The thermophilic biomass-degrading fungus Thielavia terrestris Co3Bag1 produces a hyperthermophilic and thermostable β-1, 4-xylanase with exo-and endo-activity. Extremophiles 2017, 21, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Manavalan, T.; Liu, R.; Zhou, Z.; Zou, G. Optimization of acetyl xylan esterase gene expression in Trichoderma reesei and its application to improve the saccharification efficiency on different biomasses. Process. Biochem. 2017, 58, 160–166. [Google Scholar] [CrossRef]
- Marques, A.R.; Coutinho, P.M.; Videira, P.; Fialho, A.M.; Isabel, S.-C. Sphingomonas paucimobilis beta-glucosidase Bgl1: A member of a new bacterial subfamily in glycoside hydrolase family. Biochem. J. 2003, 370, 793–804. [Google Scholar] [CrossRef]
- Bailey, M.J.; Biely, P.; Poutanen, K. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 1992, 23, 257–270. [Google Scholar] [CrossRef]
- Kim, S.; Kim, Y.O.; Lee, Y.; Choi, I.; Joshi, C.P.; Lee, K.; Bae, H.J. The transgenic poplar as an efficient bioreactor system for the production of xylanase. Biosci. Biotechnol. Biochem. 2012, 76, 1140–1145. [Google Scholar] [CrossRef]
- Sudfeldt, C.; Schaffer, A.; Kagi, J.H.; Bogumil, R.; Schulz, H.P.; Wulff, S.; Witzel, H. Spectroscopic studies on the metal-ion-binding sites of Co2+- substituted D-xylose isomerase from Streptomyces rubiginosus. Eur. J. Biochem. 1990, 193, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Ljungquist, Å.; Augustinsson, K.B. Purification and properties of two carboxylesterases from rat-liver microsomes. FEBS J. 1971, 23, 303–313. [Google Scholar] [CrossRef]
- Wheelock, C.E.; Severson, T.F.; Hammock, B.D. Synthesis of new carboxylesterase inhibitors and evaluation of potency and water solubility. Chem. Res. Toxicol. 2001, 14, 1563–1572. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Ebrik, M.A.; Yang, B.; Garlock, R.J.; Balan, V.; Dale, B.E.; Ramesh Pallapolu, V.; Lee, Y.Y.; Kim, Y.; Mosier, N.S.; et al. Application of cellulase and hemicellulase to pure xylan, pure cellulose, and switchgrass solids from leading pretreatments. Bioresour. Technol. 2011, 102, 11080–11088. [Google Scholar] [CrossRef] [PubMed]
- El-Zawawy, W.K.; Ibrahim, M.M.; Abdel-Fattah, Y.R.; Soliman, N.A.; Mahmoud, M.M. Acid and enzyme hydrolysis to convert pretreated lignocellulosic materials into glucose for ethanol production. Carbohydr. Polym. 2011, 84, 865–871. [Google Scholar] [CrossRef]
- Ko, J.K.; Kim, Y.; Ximenes, E.; Ladisch, M.R. Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 2015, 112, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Taherzadeh, M.; Karimi, K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A Review. Int. J. Mol. Sci. 2008, 9, 1621–1651. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Qiu, Z.; Aita, G.M.; Walker, M.S. Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresour. Technol. 2012, 117, 251–256. [Google Scholar] [CrossRef]
- Segal, L.; Creely, J.; Martin, A., Jr.; Conrad, C. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Zeng, J.; Singh, D.; Chen, S. Biological pretreatment of wheat straw by Phanerochaete chrysosporium supplemented with inorganic salts. Bioresour. Technol. 2011, 102, 3206–3214. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S.R.; Moser, B.R.; Rich, J.O.; Gibbons, W.R. Sustainable Multipurpose Biorefineries for Third-Generation Biofuels and Value-Added Co-Products; INTECH Open Access Publisher: Rijeka, Croatia, 2013. [Google Scholar]
- Hunlun, C.; De Beer, D.; Sigge, G.O.; Wyk, J.V. Characterisation of the flavonoid composition and total antioxidant capacity of juice from different citrus varieties from the Western Cape region. J. Food Compos. Anal. 2017, 62, 115–125. [Google Scholar] [CrossRef]
- Xu, F.; Yu, J.; Tesso, T.; Dowell, F.; Wang, D. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. Appl. Energy 2013, 104, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Tan, F.; Xu, Y. Enhancement of biogas and methanization of citrus waste via biodegradation pretreatment and subsequent optimized fermentation. Fuel 2016, 181, 843–851. [Google Scholar] [CrossRef]
- Taghizadeh-Alisaraei, A.; Hosseini, S.H.; Ghobadian, B.; Motevali, A. Biofuel production from citrus wastes: A feasibility study in Iran. Renew. Sustain. Energy Rev. 2017, 69, 1100–1112. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, C.M.; Kim, M.Y.; Yeo, Y.S.; Yoon, S.H.; Kang, H.C.; Koo, B.S. Screening and characterization of an enzyme with beta-glucosidase activity from environmental DNA. J. Microbiol. Biotechnol. 2007, 17, 905–912. [Google Scholar] [PubMed]
- Asem, D.; Leo, V.V.; Passari, A.K.; Tonsing, M.V.; Joshi, J.B.; Uthandi, S.; Hashem, A.; Abd_Allah, E.F.; Singh, B.P. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction. PLoS ONE 2017, 12, e0186355. [Google Scholar] [CrossRef]
- Abreu, F.C.D.; Ferraz, P.a.D.L.; Goulart, M.O. Some applications of electrochemistry in biomedical chemistry. Emphasis on the correlation of electrochemical and bioactive properties. J. Mex. Chem. Soc. 2002, 13, 19–3552. [Google Scholar] [CrossRef]
- Faulds, C.; Williamson, G. Release of ferulic acid from wheat bran by a ferulic acid esterase (FAE-III) from Aspergillus niger. Appl. Microbiol. Biotechnol. 1995, 43, 1082–108751. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, N.; Yang, J.; Lin, Y.; Liu, J.; Wang, R.; Wang, F.; Yuan, H. A novel bifunctional acetyl xylan esterase/arabinofuranosidase from Penicillium chrysogenum P33 enhances enzymatic hydrolysis of lignocellulose. Microb. Cell Fact. 2017, 16, 166. [Google Scholar] [CrossRef]
- Komiya, D.; Hori, A.; Ishida, T.; Igarashi, K.; Samejima, M.; Koseki, T.; Fushinobu, S. Crystal structure and substrate specificity modification of acetyl xylan esterase from Aspergillus luchuensis. Appl. Environ. Microbiol. 2017, 83, e01251-17. [Google Scholar] [CrossRef] [PubMed]
- Marais, C. Screening, Isolating and Characterizing Acetyl Xylan Esterase Enzymes from a Novel Ecological Niche. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2017. [Google Scholar]
- Ng, H.S.; Chai, C.X.Y.; Chow, Y.H.; Loh, W.L.C.; Yim, H.S.; Tan, J.S.; Lan, J.C.-W. Direct recovery of Bacillus subtilis xylanase from fermentation broth with an alcohol/salt aqueous biphasic system. J. Biosci. Bioeng. 2018, 125, 585–58964. [Google Scholar] [CrossRef] [PubMed]
- Alzagameem, A.; Khaldi-Hansen, B.; Büchner, D.; Larkins, M.; Kamm, B.; Witzleben, S.; Schulze, M. Lignocellulosic biomass as source for lignin-based environmentally benign antioxidants. Molecules 2018, 23, 2664. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Mago, G.; Balan, V.; Wyman, C.E. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour. Technol. 2009, 100, 3948–3962. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Ma, F.; Zhang, X.; Chen, S. Biological pretreatment of corn stover by Irpex lacteus for enzymatic hydrolysis. J. Agric. Food Chem. 2010, 58, 10893–1089860. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 2010, 3. [Google Scholar] [CrossRef] [PubMed]
- El Fels, L.; Zamama, M.; Hafidi, M. Advantages and limitations of using FTIR spectroscopy for assessing the maturity of sewage sludge and olive oil waste co-composts. In Biodegradation and Bioremediation of Polluted Systems-New Advances and Technologies; InTech: New York, NY, USA, 2015. [Google Scholar]
- Hafidi, M.; Amir, S.; Revel, J.-C. Structural characterization of olive mill waster-water after aerobic digestion using elemental analysis, FTIR and 13C NMR. Process. Biochem. 2005, 40, 2615–2622. [Google Scholar] [CrossRef]
- Chundawat, S.P.; Beckham, G.T.; Himmel, M.E.; Dale, B.E. Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 121–145. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.L.; Hsu, D.C.; Chen, W.-H.; Chen, W.H.; Hwang, W.-S. Characterization of enzymatic saccharification for acid-pretreated lignocellulosic materials with different lignin composition. Enzym. Microb. Technol. 2009, 45, 80–87. [Google Scholar] [CrossRef]
- Guilherme, A.; Dantas, P.; Santos, E.; Fernandes, F.; Macedo, G. Evaluation of composition, characterization and enzymatic hydrolysis of pretreated sugar cane bagasse. Braz. J. Chem. Eng. 2015, 32, 23–3363. [Google Scholar] [CrossRef]
- Barnette, A.L.; Lee, C.; Bradley, L.C.; Schreiner, E.P.; Park, Y.B.; Shin, H.; Cosgrove, D.J.; Park, S.; Kim, S.H. Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Carbohydr. Polym. 2012, 89, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Negi, Y.S.; Choudhary, V.; Bhardwaj, N.K. Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. Mater. Chem. Phys. 2014, 2, 1–8. [Google Scholar]
Characteristic/Parameter | Values (units) |
---|---|
pH | 1.80–2.2 |
Specific gravity (ρextracts/ρH2O) | 0.67–0.82 |
Redox potential (Eh) | 510–526 mV |
Conductivity | 3.5–5.89 mS/cm |
Reagent/Parameter | 1,4-β-glucosidase | Endo-Xylanase | Carboxylesterase |
---|---|---|---|
Substrate concentration | 0.35 mM pNPG # | 54.2 mM Xylan | 0.5 mM pNPA # |
Substrate volume | 0.8 mL | 1.8 mL | 0.8 mL |
Product formed | pNP | Xylose | pNP |
Buffer(s) & volumes | 50 mM sodium acetate, pH 6, 600 µL | 100 mM McIlvaine, pH 5, 1600 µL | 100 mM Tris-HCL, pH 7.8, 200 µL |
Volume of enzyme | 200 µL | 200 µL | 300 µL |
Temperature | 25 °C | 25 °C | 25 °C |
Wavelength (kinetics mode) | 410 nm | 586 nm | 410 nm |
Extinction coefficient () | 18,100 M−1·cm−1 | 135 M−1·cm−1 | 17,000 M−1·cm−1 |
Hydrolysis Methods | Residual Lignin (%) | Residual Holocellulose (%) | Ash (%) |
---|---|---|---|
Untreated mixed agro-waste | 27 | 72.9 | 0.1 |
N. mirabilis# | 39 | 60.7 | 0.1 |
N. mirabilis/Cellulases | 59 | 40.7 | 0.3 |
Hot water/Dilute acid/Cellulases | 43 | 56.8 | 0.2 |
Identity | Vitek 2 | 16S rDNA | Accession Number |
---|---|---|---|
Bacillus sp. | + | − | u/a |
Klebsiella oxytoca | + | − | u/a |
Bacillus cereus | − | + | KY249126.1 |
Bacillus thuringiensis | − | + | DQ513324.1 |
Bacillus anthracis | − | + | KU948294.1 |
Hydrolysis Methods | Sampling Time (h) | Total Phenolic Content (mg/L) # | SEM |
---|---|---|---|
Untreated mixed agro-waste | 168 | 3.95 ± 0.12 | 0.07 |
N. mirabilis | 72 | 6.25 ± 0.18 | 0.11 |
N. mirabilis/Cellulases | 168 | 4.26 ± 0.09 | 0.05 |
Hot water/Dilute acid/Cellulases | 168 | 5.65 ± 0.44 | 0.25 |
Hydrolysis Methods | Sampling Time (h) | Average TRS Concentration (mg/L) # | SEM |
---|---|---|---|
Untreated mixed agro-waste | 168 | 60.69 ± 1.7 | 1.02 |
N. mirabilis | 72 | 244.91 ± 20.55 | 11.86 |
N. mirabilis | 120 | 269.164 ± 18.94 | 10.94 |
N. mirabilis/Cellulases | 168 | 310.55 ± 5.19 | 3.00 |
Hydrolysis Methods | Crystalline Index (Crl) |
---|---|
Untreated mixed agro-waste | 15.64 |
N. mirabilis # | 23.14 |
N. mirabilis/Cellulases | 30.05 |
Hot water/Dilute acid/Cellulases | 25.82 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dlangamandla, N.; Ntwampe, S.K.O.; Angadam, J.O.; Itoba-Tombo, E.F.; Chidi, B.S.; Mekuto, L. Integrated Hydrolysis of Mixed Agro-Waste for a Second Generation Biorefinery Using Nepenthes mirabilis Pod Digestive Fluids. Processes 2019, 7, 64. https://doi.org/10.3390/pr7020064
Dlangamandla N, Ntwampe SKO, Angadam JO, Itoba-Tombo EF, Chidi BS, Mekuto L. Integrated Hydrolysis of Mixed Agro-Waste for a Second Generation Biorefinery Using Nepenthes mirabilis Pod Digestive Fluids. Processes. 2019; 7(2):64. https://doi.org/10.3390/pr7020064
Chicago/Turabian StyleDlangamandla, Nkosikho, Seteno Karabo Obed Ntwampe, Justine Oma Angadam, Elie Fereche Itoba-Tombo, Boredi Silas Chidi, and Lukhanyo Mekuto. 2019. "Integrated Hydrolysis of Mixed Agro-Waste for a Second Generation Biorefinery Using Nepenthes mirabilis Pod Digestive Fluids" Processes 7, no. 2: 64. https://doi.org/10.3390/pr7020064
APA StyleDlangamandla, N., Ntwampe, S. K. O., Angadam, J. O., Itoba-Tombo, E. F., Chidi, B. S., & Mekuto, L. (2019). Integrated Hydrolysis of Mixed Agro-Waste for a Second Generation Biorefinery Using Nepenthes mirabilis Pod Digestive Fluids. Processes, 7(2), 64. https://doi.org/10.3390/pr7020064