Measurement and Correlation of the Solubility of β-Cyclodextrin in Different Solutions at Different Temperatures and Thermodynamic Study of the Dissolution Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Solubility Measurement
2.3. Test of Apparatus
3. Thermodynamic Models
4. Results and Discussion
4.1. The Molecule Thermodynamic Model of the Solubility of β-Cyclodextrin in Different Solutions at Different Temperatures
4.2. Evaluation of the Model
4.3. Thermodynamic Study of the Dissolution Process of β-Cyclodextrin in Different Solutions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Tongqun, Z. A method of making instant boiled dumplings. Chinese Patent CN96122586.6, 10 September 1997. [Google Scholar]
- Dayong, W. The invention relates to a production method of instant food convenient dumplings and wonton. Chinese Patent CN99119150.1, 19 April 2004. [Google Scholar]
- Shulan, W. Instant wonton or instant dumpling making method. Chinese Patent CN01130698.X 01130698.X, 19 March 2003. [Google Scholar]
- Wanli, Z. Convenient instant dumpling making process. Chinese Patent CN200510085184.7, 31 January 2007. [Google Scholar]
- Lianbin, W. Convenient instant wonton. Chinese Patent CN200710169855.7, 6 November 2007. [Google Scholar]
- Di, T. A Kind of Instant Wonton That Can Be Brewed in Boiling Water. Chinese Patent CN200610094432.9, 19 June 2006. [Google Scholar]
- Kai, Z. The Invention Relates to a Freeze-Dried Instant Nutritious Dumpling or Wonton and Its Processing Method. Chinese Patent CN201610045895.X, 15 January 2016. [Google Scholar]
- Wang, F.; Fang, J.; Zheng, X. Study on freeze-dried wonton. Cereal Feed Ind. 2005, 28, 27–28. [Google Scholar]
- Wei, X.; Xiong, Z. Technical conditions for freeze-drying of instant boiled dumplings. Cold Drinks Frozen Food Ind. 2006, 12, 19–20. [Google Scholar]
- Guoyan, Z.; Weihu, Q.; Hongwei, L.; Yingying, S. Characteristics of freeze-drying technology and its application in convenient staple food. Sci. Technol. Food Ind. 2010, 3, 389–392. [Google Scholar]
- Li, H.; Cui, X.; Shen, G. Measurement and correlation of solubility of β-cyclodextrin in sucrose solution. Afr. J. Eng. Res. 2017, 5, 97–98. [Google Scholar] [CrossRef]
- Li, R.; Li, B.; Jiang, H.; Yang, J.; He, B.; You, Y.; Zhao, J. Solid–liquid equilibrium (SLE) of ternary system 3-nitrophthalic acid + 4-nitrophthalic acid + 1,4-dioxane at (283.15, 293.15, 303.15, 313.15 and 323.15) K. Fluid Phase Equilibria 2013, 348, 17–22. [Google Scholar] [CrossRef]
- Petrova, E.; Crampon, C.; Ali, E.; Neau, E.; Badens, E.; Charbit, G.; Jaubert, J.N. Solubility of CO2 in some heavy alcohols and correlation of fluid phase equilibrium. Fluid Phase Equilibria 2018, 213, 153–162. [Google Scholar] [CrossRef]
- De Morais, S.C.; Cardoso, O.R.; de Carvalho Balaban, R. Thermal stability of water-soluble polymers in solution. J. Mol. Liq. 2018, 265, 818–823. [Google Scholar] [CrossRef]
- Bruin, S. Phase equilibria for food product and process design 1. Fluid Phase Equilibria 1999, s158–s160, 657–671. [Google Scholar] [CrossRef]
- Marié, T.; Willig, G.; Teixeira, A.R.S.; Barboza, E.G.; Kotland, A.; Gratia, A.; Courot, E.; Hubert, J.; Renault, J.; Allais, F. Enzymatic synthesis of resveratrol α-glycosides from β-cyclodextrin-resveratrol complex in water. ACS Sustain. Chem. Eng. 2018, 6, 5370–5380. [Google Scholar] [CrossRef]
- Jin, S.; Cui, X.; Qi, Y.; Shen, Y.; Li, H. Measurement and correlation of electrical conductivity of β-cyclodextrin in water solution. J. Mater. Sci. Eng. B 2018, 7–8, 178–180. [Google Scholar] [CrossRef]
- Jia, X.T.; Yang, Y.C.; Liu, G.Z.; Pan, Z.Y.; Tong, J. Measurement of the solubilities of 2-ethylanthraquinone and 2-amylanthraquinone in TMB/DIBC mixed solvents and their correlation with thermodynamic equations. J. Chem. Eng. Chin. Univ. 2014, 28, 1183–1189. [Google Scholar]
- Zorrilla-Veloz, R.I.; Stelzer, T.; López-Mejías, V. Measurement and correlation of the solubility of 5-fluorouracil in pure and binary solvents. J. Chem. Eng. Data 2018, 63, 3809–3817. [Google Scholar] [CrossRef]
- Wang, X.; Qin, Y.; Zhang, T.; Tang, W.; Ma, B.; Gong, J. Measurement and correlation of solubility of azithromycin monohydrate in five pure solvents. J. Chem. Eng. Data 2014, 59, 784–791. [Google Scholar] [CrossRef]
- Coto, B.; Martos, C.; Peña, J.L.; Rodríguez, R.; Pastor, G. Effects in the solubility of CaCO3: Experimental study and model description. Fluid Phase Equilibria 2012, 324, 1–7. [Google Scholar] [CrossRef]
- Bin-Dong, L.I.; Chun-Xu, L.V. Synthesis of sevoflurane in ionic liquids by halogen-exchange fluorination. Chin. J. Appl. Chem. 2009, 26, 1126–1128. [Google Scholar]
- Li, H.; Jiao, X.; Chen, X. Thermodynamic analysis for solubility of pimelic acid in ionic liquids. Russ. J. Phys. Chem. A 2014, 88, 1133–1137. [Google Scholar] [CrossRef]
- Linhui, T. Cyclodextrin Chemistry—Basic and Application; Science Publishing Company: New York, NY, USA, 2001; pp. 154–196. [Google Scholar]
- Huang, Q.; Hao, X.; Qiao, L.; Wu, M.; Shen, G.; Ma, S. Measurement and thermodynamic functions of solid–liquid phase equilibrium of d-(−)-quinic acid in H2O, methanol, ethanol and (H2O + methanol), (H2O + ethanol) binary solvent mixtures. J. Chem. Thermodyn. 2016, 100, 140–147. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.; Chen, X.; Ren, T. Thermodynamics of the solubility of KF in N, N-dimethyl ethanolamine, pyridine, diethanolamine, and sulfolane from 308.73 to 367.37 K. Ind. Eng. Chem. Res. 2012, 51, 5592–5595. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, L.-Y.; Li, X.-C.; Sha, Z.-L.; Wang, Y.-F.; Yang, L.-B. Experimental determination and correlation of the solubility of 4-hydroxy-2,5-dimethyl-3(2H)-furanone (DMHF) in six different solvents. J. Chem. Thermodyn. 2015, 91, 369–377. [Google Scholar] [CrossRef]
- Liu, L.; Li, H.; Chen, D.; Zhou, X.; Huang, Q.; Yang, H. Solubility of 1,1-diamino-2,2-dinitroethylene in different pure solvents and binary mixtures (dimethyl sulfoxide + water) and (N, N-dimethylformamide + water) at different temperatures. Fluid Phase Equilibria 2018, 460, 95–104. [Google Scholar] [CrossRef]
- Acree, W.E.; Martínez, F. Measurement, correlation, and thermodynamic properties for solubilities of bioactive compound (−)-epicatechin in different pure solvents at 298.15 K to 338.15 K. J. Mol. Liq. 2018, 266, 441–442. [Google Scholar] [CrossRef]
T/K | x | x(lit) | 100RD |
---|---|---|---|
NaCl | |||
293.15 | 0.1015 | 0.0999 | 1.58 |
313.15 | 0.1021 | 0.1011 | 0.98 |
333.15 | 0.1045 | 0.1033 | 1.15 |
373.15 | 0.1108 | 0.1094 | 1.26 |
β-Cyclodextrin | |||
293.15 | 0.0166 | 0.0164 | 1.20 |
313.15 | 0.0353 | 0.0349 | 1.13 |
333.15 | 0.0736 | 0.0729 | 0.95 |
353.15 | 0.1989 | 0.1966 | 1.50 |
T/K | 104xi | Simplified Apelblat | Apelblat | λh | |||
---|---|---|---|---|---|---|---|
104xci | 100RD | 104xci | 100RD | 104xci | 100RD | ||
6% sucrose solution | |||||||
303.35 | 4.06 | 3.12 | 23.15 | 3.43 | 15.51 | 5.14 | −26.60 |
313.15 | 6.44 | 5.49 | 14.75 | 5.72 | 11.23 | 7.11 | −10.40 |
322.95 | 9.36 | 9.31 | 0.53 | 9.42 | −0.63 | 9.96 | −6.41 |
333.05 | 15.39 | 15.56 | −1.10 | 15.45 | −0.39 | 14.51 | 5.71 |
343.35 | 24.03 | 25.44 | −1.41 | 25.22 | −4.96 | 22.50 | 6.37 |
353.05 | 40.17 | 39.39 | 1.94 | 39.53 | 1.58 | 37.75 | 6.02 |
8% NaCl solution | |||||||
303.25 | 4.24 | 3.12 | 26.41 | 3.24 | 23.56 | 5.23 | −23.35 |
313.45 | 6.63 | 5.43 | 18.10 | 5.66 | 14.56 | 7.38 | −11.31 |
324.45 | 10.05 | 10.03 | 2.00 | 10.10 | −0.50 | 10.89 | −8.35 |
334.25 | 15.91 | 16.75 | −5.27 | 16.62 | −4.46 | 15.95 | −0.25 |
343.05 | 25.00 | 25.88 | −3.52 | 25.66 | −2.64 | 23.63 | 5.48 |
353.35 | 42.51 | 41.91 | 1.41 | 42.03 | 0.49 | 42.46 | 0.12 |
mixture of 6% sucrose and 8% NaCl | |||||||
303.35 | 4.22 | 3.33 | 21.09 | 3.82 | 9.43 | 5.16 | −22.27 |
313.45 | 6.54 | 5.77 | 11.77 | 6.21 | 4.97 | 7.21 | −10.24 |
323.05 | 9.71 | 9.42 | −5.17 | 9.72 | −0.08 | 10.06 | −3.60 |
333.65 | 14.9 | 15.67 | −5.17 | 15.72 | 5.49 | 14.98 | −0.54 |
343.15 | 23.09 | 24.08 | −4.29 | 23.88 | 3.46 | 22.56 | 2.30 |
352.95 | 37.18 | 36.60 | 1.56 | 36.36 | 2.18 | 38.19 | −2.72 |
Solvent | A | B | C | R2 | RAD |
---|---|---|---|---|---|
6% sucrose | −107.98 | 381.57 | 17.28 | 0.995 | 0.056 |
8% NaCl | −95.09 | −428.53 | 15.48 | 0.995 | 0.075 |
6% sucrose and 8% NaCl | −98.63 | 275.95 | 15.72 | 0.996 | 0.043 |
Solvent | A | B | R2 | RAD |
---|---|---|---|---|
6% sucrose | 19.144 | −5461.89 | 0.994 | 0.071 |
8% NaCl | 19.784 | −5670.77 | 0.994 | 0.095 |
6% sucrose + 8% NaCl | 18.257 | −5173.19 | 0.994 | 0.082 |
Solvent | λ | h | R2 | RAD |
---|---|---|---|---|
6% sucrose | 0.94 | 2409.01 | 0.996 | 0.103 |
8% NaCl | 0.94 | 2435.96 | 0.995 | 0.081 |
6% sucrose + 8% NaCl | 0.94045 | 2414.12 | 0.996 | 0.069 |
Solvent | PRESS | RMSEP | REP (%) | SEP | R2 |
---|---|---|---|---|---|
6% sucrose | 4.4140 × 10−8 | 8.57712 × 10−5 | 5.174733 | 9.39577 × 10−5 | 0.994 |
8% NaCl | 4.9188 × 10−8 | 9.05428 × 10−5 | 5.206601 | 9.91846 × 10−5 | 0.994 |
6% sucrose + 8% NaCl | 3.3785 × 10−8 | 7.50388 × 10−5 | 4.707583 | 8.22009 × 10−5 | 0.994 |
Solvent | PRESS | RMSEP | REP (%) | SEP | R2 |
---|---|---|---|---|---|
6% sucrose | 2.7482 × 10−8 | 6.76781 × 10−5 | 5.054669 | 7.41377 × 10−5 | 0.995 |
8% NaCl | 3.1135 × 10−8 | 7.20359 × 10−5 | 4.142375 | 7.89113 × 10−5 | 0.995 |
6% sucrose + 8% NaCl | 1.5655 × 10−8 | 5.10899 × 10−5 | 3.205138 | 5.59553 × 10−5 | 0.996 |
Solvent | PRESS | RMSEP | REP (%) | SEP | R2 |
---|---|---|---|---|---|
6% sucrose | 10.947 × 10−8 | 1.3507 × 10−4 | 8.149264 | 1.47966 × 10−4 | 0.996 |
8% NaCl | 4.1292 × 10−8 | 0.8285 × 10−4 | 4.770432 | 0.90875 × 10−4 | 0.995 |
6% sucrose+8% NaCl | 2.7624 × 10−8 | 0.6785 × 10−4 | 4.256761 | 0.74328 × 10−4 | 0.996 |
T (K) | ΔH (KJ·mol−1) | ΔS (J·mol−1·K−1) | ΔG (KJ·mol−1·K−1) |
---|---|---|---|
β-Cyclodextrin in 6% sucrose solution | |||
303.35 | 40.407 | 66.95 | 20.09 |
313.15 | 41.816 | 71.52 | 19.42 |
322.95 | 43.224 | 75.95 | 18.69 |
333.05 | 44.675 | 80.37 | 17.90 |
343.35 | 46.154 | 84.75 | 17.06 |
353.05 | 47.548 | 88.75 | 16.21 |
β-Cyclodextrin in 8% NaCl solution | |||
303.25 | 42.593 | 73.59 | 20.27 |
313.45 | 43.906 | 77.85 | 19.53 |
324.45 | 45.322 | 82.29 | 18.75 |
334.25 | 46.583 | 86.12 | 17.89 |
343.05 | 47.716 | 89.46 | 16.99 |
353.35 | 49.041 | 93.27 | 16.11 |
β-Cyclodextrin in a mixture of 6% sucrose and 8% NaCl | |||
303.35 | 37.357 | 57.56 | 24.47 |
313.45 | 38.677 | 61.88 | 23.88 |
323.05 | 39.932 | 66.39 | 23.26 |
333.65 | 41.317 | 70.28 | 22.57 |
343.15 | 42.559 | 73.67 | 21.83 |
352.95 | 43.840 | 77.54 | 21.10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, S.; Cui, X.; Qi, Y.; Shen, Y.; Li, H. Measurement and Correlation of the Solubility of β-Cyclodextrin in Different Solutions at Different Temperatures and Thermodynamic Study of the Dissolution Process. Processes 2019, 7, 135. https://doi.org/10.3390/pr7030135
Jin S, Cui X, Qi Y, Shen Y, Li H. Measurement and Correlation of the Solubility of β-Cyclodextrin in Different Solutions at Different Temperatures and Thermodynamic Study of the Dissolution Process. Processes. 2019; 7(3):135. https://doi.org/10.3390/pr7030135
Chicago/Turabian StyleJin, Shanshan, Xuewei Cui, Yingping Qi, Yongfeng Shen, and Hua Li. 2019. "Measurement and Correlation of the Solubility of β-Cyclodextrin in Different Solutions at Different Temperatures and Thermodynamic Study of the Dissolution Process" Processes 7, no. 3: 135. https://doi.org/10.3390/pr7030135
APA StyleJin, S., Cui, X., Qi, Y., Shen, Y., & Li, H. (2019). Measurement and Correlation of the Solubility of β-Cyclodextrin in Different Solutions at Different Temperatures and Thermodynamic Study of the Dissolution Process. Processes, 7(3), 135. https://doi.org/10.3390/pr7030135