Using PSO Algorithm to Compensate Power Loss Due to the Aeroelastic Effect of the Wind Turbine Blade
Abstract
:1. Introduction
2. Aeroelastic Model
2.1. Aerodynamic Model and Verification
2.2. Structure Model and Verification
2.3. Building the BEM-3DFEM Model
3. An Aeroelastic Coupling Optimization Model
3.1. Objective Function
3.2. Free Variables
3.3. Constraints
3.4. Optimization Process
4. Results & Discussion
4.1. Pre-Assigned Variables
- PSO algorithm, such as inertial weight, accelerating factors;
- Aerodynamic profile, such as chord distribution, twist distribution, relative thickness distribution;
- Structure layers, such as the number, size, location, materials; and
- Some other parameters about the wind turbine, such as the hub height, hub radius, cut-in wind speed, cut-out wind speed, rated wind speed.
4.2. Results and Analysis
- The origin blade without considering the aeroelastic coupling effect, which is represented as ucpl.;
- The origin blade considering the aeroelastic coupling effect, which is represented as cpl.;
- The PSO blade considering the aeroelastic effect, which is represented as PSO + cpl.; and
- The iteration blade considering the aeroelastic effect, which is represented as pret. + cpl.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bavanish, B.; Thyagarajan, K. Optimization of power coefficient on a horizontal axis wind turbine using bem theory. Renew. Sustain. Energy Rev. 2013, 26, 169–182. [Google Scholar] [CrossRef]
- Liu, X.W.; Wang, L.; Tang, X.Z. Optimized linearization of chord and twist angle profiles for fixed-pitch fixed-speed wind turbine blades. Renew. Energy 2013, 57, 111–119. [Google Scholar] [CrossRef]
- Saenz-Aguirre, A.; Fernandez-Gamiz, U.; Zulueta, E.; Ulazia, A.; Martinez-Rico, J. Optimal Wind Turbine Operation By Artificial Neural Network-based Active Gurney Flap Flow Control. Sustainability 2019, 11, 2809. [Google Scholar] [CrossRef]
- Fernandez-Gamiz, U.; Zulueta, E.; Boyano, A.; Ansoategui, I.; Uriarte, I. Five Megawatt Wind Turbine Power Output Improvements By Passive Flow Control Devices. Energies 2017, 10, 742. [Google Scholar] [CrossRef]
- Fernandez-Gamiz, U.; Zulueta, E.; Boyano, A.; Ramos-Hernanz, J.A.; Lopez-Guede, J.M. Microtab Design And Implementation On A 5 Mw Wind Turbine. Appl. Sci. 2017, 7, 536. [Google Scholar] [CrossRef]
- González-González, A.; Etxeberria-Agiriano, I.; Zuluet, E.; Oterino-Echavarri, F.; Lopez-Guede, J.M. Pitch Based Wind Turbine Intelligent Speed Setpoint Adjustment Algorithms. Energies 2014, 7, 3793–3809. [Google Scholar] [CrossRef]
- Kusiak, A.; Zheng, H.Y.; Song, Z. Power optimization of wind turbines with data mining and evolutionary computation. Renew. Energy 2010, 35, 695–702. [Google Scholar] [CrossRef]
- Stäblein, A.R.; Tibaldi, C.; Hansen, M.H. Using Pretwist to Reduce Power Loss of Bend-Twist Coupled Blades. In Proceedings of the 34th Wind Energy Symposium, San Diego, CA, USA, 4–8 January 2016; American Institute of Aeronautics & Astronautics: San Diego, CA, USA, 2016. AIAA 2016-1010. [Google Scholar] [Green Version]
- Lobitz, D.W.; Veers, P.S. Load Mitigation with Bending/Twist-coupled Blades on Rotors using Modern Control Strategies. Wind Energy 2003, 6, 105–117. [Google Scholar] [CrossRef]
- Verelst, D.R.; Larsen, T.J. Load Consequences When Sweeping Blades—A Case Study of a 5 MW Pitch Controlled Wind Turbine; Risø-R-Report; Risø National Laboratory for Sustainable Energy: Roskilde, Denmark, 2010; Risø-R-1724(EN). [Google Scholar]
- Lee, Y.J.; Jhan, Y.T.; Chung, C.H. Fluid–structure interaction of FRP wind turbine blades under aerodynamic effect. Compos. Part B Eng. 2012, 43, 2180–2191. [Google Scholar] [CrossRef]
- Bottasso, C.L.; Campagnolo, F.; Croce, A.; Tibaldi, C. Optimization-Based Study of Bend-Twist Coupled Rotor Blades for Passive and Integrated Passive/Active Load Alleviation. Wind Energy 2013, 16, 1149–1166. [Google Scholar] [CrossRef]
- Hansen, M.O.L. Aerodynamics of Wind Turbines; Earthscan Publications Ltd.: London, UK, 2008. [Google Scholar]
- Hansen, M.O.L.; Sørensen, J.N.; Voutsinas, S.; Sørensen, N.; Madsen, H.A. State of the art in wind turbine aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 2006, 42, 285–330. [Google Scholar] [CrossRef]
- Wang, L.; Liu, X.W.; Kolios, A. State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling. Renew. Sustain. Energy Rev. 2016, 64, 195–210. [Google Scholar] [CrossRef] [Green Version]
- Bai, C.J.; Wang, W.C. Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs). Renew. Sustain. Energy Rev. 2016, 63, 506–519. [Google Scholar] [CrossRef]
- Hand, M.M.; Simms, D.A.; Fingersh, L.J.; Jager, D.W.; Cotrell, J.R.; Schreck, S.; Larwood, S.M. Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns; Techinical Report; National Renewable Energy Laboratory: Golden, CO, USA, 2001; NREL/TP-500-29955.
- Simms, D.; Schreck, S.; Hand, M.; Fingersh, L.J. NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel: A Comparison of Predictions to Measurements; Techinical Report; National Renewable Energy Laboratory: Golden, Colorado, USA, 2001; NREL/TP-500-29494.
- Bossanyi, E.A. GH Bladed Theory Manual; Garrad Hassan and Partners Limited: Bristol, UK, 2008. [Google Scholar]
- Hayat, K.; Ha, S.K. Load mitigation of wind turbine blade by aeroelastic tailoring via unbalanced laminates composites. Compos. Struct. 2015, 128, 122–133. [Google Scholar] [CrossRef]
- Chen, X.; Qin, Z.W.; Yang, K.; Zhao, X.L.; Xu, J.Z. Numerical Analysis and Experimental Investigation of Wind Turbine Blades with Innovative Features: Structural Response and Characteristics. Sci. China Tech. Sci. 2014, 58, 1–8. [Google Scholar] [CrossRef]
- Li, Y.; Castro, A.M.; Sinokrot, T.; Prescott, W.; Carrica, P.M. Coupled multi-body dynamics and CFD for wind turbine simulation including explicit wind turbulence. Renew. Energy 2015, 76, 338–361. [Google Scholar] [CrossRef]
- Mo, W.W.; Li, D.Y.; Wang, X.N.; Zhong, C.T. Aeroelastic Coupling Analysis of the Flexible Blade of a Wind Turbine. Energy 2015, 89, 1001–1009. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, J.S.; Han, J.H.; Shin, H.K. Aeroelastic analysis of wind turbine blades based on modified strip theory. J. Wind Eng. Ind. Aerodyn. 2012, 110, 62–69. [Google Scholar] [CrossRef]
- Liao, C.C.; Zhao, X.L.; Xu, J.Z. Blade layers optimization of wind turbines using FAST and improved PSO algorithm. Renew. Energy 2012, 42, 227–233. [Google Scholar]
- Shi, Y.; Eberhart, R.C. Empirical study of particle swarm optimization. Evolutionary Computation. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, Washington, DC, USA, 6–9 July 1999; pp. 1945–1950. [Google Scholar]
- Shi, Y.; Eberhart, R.C. A modified particle swarm optimizer. Evolutionary Computation. In Proceedings of the IEEE World Congress on Computational Intelligence, Anchorage, AK, USA, 4–9 May 1998; pp. 69–73. [Google Scholar]
- Eberhart, R.; Kennedy, J. A New Optimizer Using Particle Swarm Theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
Experiment (m) | FEM (m) | Relative Error (%) |
---|---|---|
1.369 | 1.330 | 2.8 |
Parameter Names | Values |
---|---|
Maximum inertial weight | 1 |
Minimum inertial weight | 0 |
accelerating factors | 1 |
accelerating factors | 1 |
Maximum number of iterations | 25 |
Number of individuals | 22 |
Number of the blade sections | 16 |
Radius of the rotor (m) | 10.292 |
Hub height (m) | 26.2 |
Number of blades | 3 |
1.00 × 10−6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Liao, C.; Qin, Z.; Yang, K. Using PSO Algorithm to Compensate Power Loss Due to the Aeroelastic Effect of the Wind Turbine Blade. Processes 2019, 7, 633. https://doi.org/10.3390/pr7090633
Zhao Y, Liao C, Qin Z, Yang K. Using PSO Algorithm to Compensate Power Loss Due to the Aeroelastic Effect of the Wind Turbine Blade. Processes. 2019; 7(9):633. https://doi.org/10.3390/pr7090633
Chicago/Turabian StyleZhao, Ying, Caicai Liao, Zhiwen Qin, and Ke Yang. 2019. "Using PSO Algorithm to Compensate Power Loss Due to the Aeroelastic Effect of the Wind Turbine Blade" Processes 7, no. 9: 633. https://doi.org/10.3390/pr7090633
APA StyleZhao, Y., Liao, C., Qin, Z., & Yang, K. (2019). Using PSO Algorithm to Compensate Power Loss Due to the Aeroelastic Effect of the Wind Turbine Blade. Processes, 7(9), 633. https://doi.org/10.3390/pr7090633