Polyetherimide-Montmorillonite Nano-Hybrid Composite Membranes: CO2 Permeance Study via Theoretical Models
Abstract
:1. Introduction
Background of Gas Permeation Models
2. Methods
2.1. Models Used for Developed Membranes
2.2. Estimation of f-MMT Aspect Ratio
3. Results and Discussion
4. Validation of Developed Membranes CO2 Permeance via Theoretical Models
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- He, X.; Hagg, M.-B. Membranes for environmentally friendly energy processes. Membranes 2012, 2, 706–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, Q.T.; Sublet, J.; Langevin, D.; Chappey, C.; Marais, S.E.; Valleton, J.M.; Poncin-Epaillard, F. CO2 Permeation with pebax based membranes for global warming reduction. Membr. Gas Sep. 2010, 9, 255–277. [Google Scholar]
- Baicha, Z.; Salar-García, M.J.; Ortiz-Martínez, V.M.; Hernández-Fernández, F.J.; de los Ríos, A.P.; Maqueda Marín, D.P.; Collado, J.A.; Tomás-Alonso, F.; El Mahi, M. On the Selective Transport of Nutrients through Polymer Inclusion Membranes Based on Ionic Liquids. Processes 2019, 7, 544. [Google Scholar] [CrossRef] [Green Version]
- Murali, R.S.; Sankarshana, T.; Sridhar, S. Air separation by polymer-based membrane technology. Sep. Purif. Rev. 2013, 42, 130–186. [Google Scholar] [CrossRef]
- Jusoh, N.; Yeong, Y.F.; Lau, K.K.; Shariff, A.M. Fabrication of silanated zeolite T/6FDA-durene composite membranes for CO2/CH4 separation. J. Clean. Prod. 2017, 166, 1043–1058. [Google Scholar] [CrossRef]
- Baker, R.W.; Low, B.T. Gas separation membrane materials: A perspective. Macromolecules 2014, 47, 6999–7013. [Google Scholar] [CrossRef]
- Mustafa, M.Z.; bin Mukhtar, H.; Md Nordin, N.A.; Mannan, H.A.; Nasir, R.; Fazil, N. Recent Developments and Applications of Ionic Liquids in Gas Separation Membranes. Chem. Eng. Technol. 2019, 42, 2580–2593. [Google Scholar] [CrossRef]
- Bernardo, P.; Drioli, E.; Golemme, G. Membrane gas separation: A review/state of the art. Ind. Eng. Chem. Res. 2009, 48, 4638–4663. [Google Scholar] [CrossRef]
- Nasir, R.; Kim, J.O.; Chae, S.R. Material Advancements in Fabrication of Nano-hybrid composite membranes. Chem. Eng. Technol. 2013, 36, 717–727. [Google Scholar] [CrossRef]
- Oh, P.C.; Mansur, N.A. Effects of Aluminosilicate Mineral Nano-Clay Fillers on Polysulfone Mixed Matrix Membrane for Carbon Dioxide Removal. J. Teknol. 2014, 69, 23–27. [Google Scholar]
- Jamil, A.; Ching, O.P.; Shariff, A.B.M. Current Status and Future Prospect of Polymer Layered Silicate Mixed Matrix Membranes for CO2/CH4 Separation. Chem. Eng. Technol. 2016, 39, 1393–1405. [Google Scholar] [CrossRef]
- Khan, A.L.; Klaysom, C.; Gahlaut, A.; Khan, A.U.; Vankelecom, I.F. Mixed matrix membranes comprising of Matrimid and SO3H functionalized mesoporous MCM-41 for gas separation. J. Membr. Sci. 2013, 447, 73–79. [Google Scholar] [CrossRef]
- Jamil, A.; Ching, O.P.; Shariff, A.M. Mixed matrix hollow fibre membrane comprising polyetherimide and modified montmorillonite with improved filler dispersion and CO2/CH4 separation performance. App. Clay Sci. 2017, 143, 115–124. [Google Scholar] [CrossRef]
- Jamil, A.; Oh, P.C.; Shariff, A.M. Polyetherimide-montmorillonite mixed matrix hollow fibre membranes: Effect of inorganic/organic montmorillonite on CO2/CH4 separation. Sep. Purif. Technol. 2018, 206, 256–267. [Google Scholar] [CrossRef]
- Zulhairun, A.K.; Ismail, A.F. The role of layered silicate loadings and their dispersion states on the gas separation performance of mixed matrix membrane. J. Membr. Sci. 2014, 468, 20–30. [Google Scholar] [CrossRef]
- Kim, W.G.; Lee, J.S.; Bucknall, D.G.; Koros, W.J.; Nair, S. Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations. J. Membr. Sci. 2013, 441, 129–136. [Google Scholar] [CrossRef]
- Picard, E.; Vermogen, A.; Gérard, J.F.; Espuche, E. Barrier properties of nylon 6-montmorillonite nanocomposite membranes prepared by melt blending: Influence of the clay content and dispersion state: Consequences on modelling. J. Membr. Sci. 2007, 292, 133–144. [Google Scholar] [CrossRef]
- Cui, Y.; Kumar, S.; Kona, B.R.; van Houcke, D. Gas barrier properties of polymer/clay nanocomposites. RSC Adv. 2013, 5, 63669–63690. [Google Scholar] [CrossRef]
- Yampolskii, Y. Polymeric gas separation membranes. Macromolecules 2012, 45, 3298–3311. [Google Scholar] [CrossRef]
- Scholes, C.A.; Ghosh, U.K. Review of membranes for helium separation and purification. Membranes 2017, 7, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismail, N.M.; Ismail, A.F.; Mustafa, A.; Matsuura, T.; Soga, T.; Nagata, K.; Asaka, T. Qualitative and quantitative analysis of intercalated and exfoliated silicate layers in asymmetric polyethersulfone/cloisite15A mixed matrix membrane for CO2/CH4 separation. Chem. Eng. J. 2015, 268, 371–383. [Google Scholar] [CrossRef] [Green Version]
- Behroozi, M.; Pakizeh, M. Study the effects of Cloisite15 A nanoclay incorporation on the morphology and gas permeation properties of Pebax2533 polymer. J. App. Poly. Sci. 2017, 134, 45302. [Google Scholar] [CrossRef]
- Choudalakis, G.; Gotsis, A.D. Permeability of polymer/clay nanocomposites: A review. Euro. Poly. J. 2009, 45, 967–984. [Google Scholar] [CrossRef]
- Nielsen, L.E. Models for the permeability of filled polymer systems. J. Macromol. Sci. 1967, 1, 929–942. [Google Scholar] [CrossRef]
- Cussler, E.L.; Hughes, S.E.; Ward, W.J., III; Aris, R. Barrier membranes. J. Membr. Sci. 1988, 38, 161–174. [Google Scholar] [CrossRef]
- Yang, C.; Smyrl, W.H.; Cussler, E.L. Flake alignment in composite coatings. J. Membr. Sci. 2004, 231, 1–12. [Google Scholar] [CrossRef]
- Lape, N.K.; Nuxoll, E.E.; Cussler, E.L. Polydisperse flakes in barrier films. J. Membr. Sci. 2004, 236, 29–37. [Google Scholar] [CrossRef]
- Bharadwaj, R.K. Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 2001, 34, 9189–9192. [Google Scholar] [CrossRef]
- Yano, K.; Usuki, A.; Okada, A. Synthesis and properties of polyimide-clay hybrid films. J. Poly. Sci. Part A Poly. Chem. 1997, 35, 2289–2294. [Google Scholar] [CrossRef]
- Bhole, Y.S.; Wanjale, S.D.; Kharul, U.K.; Jog, J.P. Assessing feasibility of polyarylate-clay nanocomposites towards improvement of gas selectivity. J. Membr. Sci. 2007, 306, 277–286. [Google Scholar] [CrossRef]
- Zulhairun, A.K.; Ismail, A.F.; Matsuura, T.; Abdullah, M.S.; Mustafa, A. Asymmetric mixed matrix membrane incorporating organically modified clay particle for gas separation. Chem. Eng. J. 2014, 241, 495–503. [Google Scholar] [CrossRef]
Models | Equation | Ref | Description |
---|---|---|---|
Nielsen | [24] | Where, Pc, Permeability of composite, P0, Permeability of neat polymeric membrane φ, Volume fraction of filler a, Aspect ratio of dispersed filler S, is the order factor S = 0, Random orientation S = −1/2, Parallel orientation to the gas diffusion path S = 1, Horizontal orientation to the gas diffusion path | |
Cussler | [25] | ||
Yang–Cussler | [26] | ||
Lape–Cussler | [27] | ||
Bharadwaj | [28] |
Model | Membrane | Pc/Po(exp) | Pc/Po(cal) | %AARE | Aspect Ratio |
---|---|---|---|---|---|
Nielsen | PEI-f-MMT (1) | 0.83 | 0.91 | 8.84 | 40 |
PEI-f-MMT (2) | 0.79 | 0.83 | 4.82 | ||
PEI-f-MMT (3) | 0.79 | 0.76 | −3.4 | ||
PEI-f-MMT (4) | 0.92 | 0.71 | −22.65 | ||
Cussler | PEI-f-MMT (1) | 0.83 | 0.96 | 15.61 | 40 |
PEI-f-MMT (2) | 0.79 | 0.87 | 9.73 | ||
PEI-f-MMT (3) | 0.79 | 0.75 | −5.63 | ||
PEI-f-MMT (4) | 0.92 | 0.63 | −31.78 | ||
Yang–Cussler | PEI-f-MMT (1) | 0.83 | 0.96 | 15.09 | 60 |
PEI-f-MMT (2) | 0.79 | 0.85 | 7.95 | ||
PEI-f-MMT (3) | 0.79 | 0.72 | -8.53 | ||
PEI-f-MMT (4) | 0.92 | 0.60 | −34.83 | ||
Lape–Cussler | PEI-f-MMT (1) | 0.83 | 0.91 | 8.6 | 15 |
PEI-f-MMT (2) | 0.79 | 0.82 | 3.99 | ||
PEI-f-MMT (3) | 0.79 | 0.75 | −4.95 | ||
PEI-f-MMT (4) | 0.91 | 0.69 | −24.65 | ||
Bharadwaj | PEI-f-MMT (1) | 0.83 | 0.91 | 9.65 | 110 |
PEI-f-MMT (2) | 0.79 | 0.84 | 6.25 | ||
PEI-f-MMT (3) | 0.79 | 0.80 | −1.57 | ||
PEI-f-MMT (4) | 0.91 | 0.73 | −20.82 |
Model | Membrane | CO2 Feed Pressure (bar) | ||||
---|---|---|---|---|---|---|
2 | 4 | 6 | 8 | 10 | ||
Nielsen | PEI-f-MMT (1) | −8.46 | −10.17 | −14.08 | −11.72 | −5.30 |
PEI-f-MMT (2) | −12.28 | −15.99 | −18.38 | −19.60 | −6.22 | |
PEI-f-MMT (3) | −18.16 | −20.38 | −23.38 | −26.70 | −14.28 | |
PEI-f-MMT(4) | −36.97 | −38.23 | −40.86 | −40.67 | −31.19 | |
Cussler | PEI-f-MMT (1) | −2.65 | −4.47 | −8.63 | −6.12 | 0.70 |
PEI-f-MMT (2) | −12.06 | −15.78 | −18.17 | −19.40 | −5.98 | |
PEI-f-MMT (3) | −27.99 | −29.95 | −32.72 | −35.50 | −24.58 | |
PEI-f-MMT (4) | −52.78 | −53.72 | −55.69 | −55.54 | −48.45 | |
Yang–Cussler | PEI-f-MMT (1) | 0.49 | −1.39 | −5.69 | −3.09 | 3.94 |
PEI-f-MMT (2) | −1.75 | −5.91 | −8.58 | −9.95 | 5.04 | |
PEI-f-MMT (3) | −11.49 | −13.90 | −17.30 | −20.72 | −7.29 | |
PEI-f-MMT (4) | −36.50 | −37.77 | −40.42 | −40.22 | 30.68 | |
Lape–Cussler | PEI-f-MMT (1) | −24.74 | −26.15 | −29.37 | −27.42 | −22.15 |
PEI-f-MMT (2) | −38.79 | −41.38 | −43.05 | −43.90 | −34.56 | |
PEI-f-MMT (3) | −50.39 | −51.73 | −53.65 | −55.57 | −48.04 | |
PEI-f-MMT (4) | −66.21 | −66.89 | −68.30 | −68.19 | −63.12 | |
Bharadwaj | PEI-f-MMT (1) | −0.92 | −2.77 | −7.01 | −4.45 | 2.49 |
PEI-f-MMT (2) | 1.53 | −2.76 | −5.52 | −6.93 | 8.55 | |
PEI-f-MMT (3) | 0.36 | −2.37 | −6.23 | −10.11 | 5.11 | |
PEI-f-MMT (4) | −18.72 | −20.34 | −23.74 | −23.49 | −11.27 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamil, A.; Ching, O.P.; Naqvi, M.; Khan, H.A.A.; Naqvi, S.R. Polyetherimide-Montmorillonite Nano-Hybrid Composite Membranes: CO2 Permeance Study via Theoretical Models. Processes 2020, 8, 118. https://doi.org/10.3390/pr8010118
Jamil A, Ching OP, Naqvi M, Khan HAA, Naqvi SR. Polyetherimide-Montmorillonite Nano-Hybrid Composite Membranes: CO2 Permeance Study via Theoretical Models. Processes. 2020; 8(1):118. https://doi.org/10.3390/pr8010118
Chicago/Turabian StyleJamil, Asif, Oh Pei Ching, Muhammad Naqvi, Hafiza Aroosa Aslam Khan, and Salman Raza Naqvi. 2020. "Polyetherimide-Montmorillonite Nano-Hybrid Composite Membranes: CO2 Permeance Study via Theoretical Models" Processes 8, no. 1: 118. https://doi.org/10.3390/pr8010118
APA StyleJamil, A., Ching, O. P., Naqvi, M., Khan, H. A. A., & Naqvi, S. R. (2020). Polyetherimide-Montmorillonite Nano-Hybrid Composite Membranes: CO2 Permeance Study via Theoretical Models. Processes, 8(1), 118. https://doi.org/10.3390/pr8010118