Interfacial Thermal Conductivity and Its Anisotropy
Abstract
:1. Introduction
2. Methodology Used to Study the Interfacial Thermal Conductivity
2.1. Solid-Liquid Interface System Set-Up
2.2. Liquid-Liquid Interface System Set-Up
2.3. Solid-Solid Interface System Set-Up
2.4. Models Used and Simulation Procedures
3. The Interfacial Thermal Conductivity and Its Anisotropy
3.1. The Kaptiza Resistance for Interfaces between Two Different Phases
3.1.1. The Kaptiza Resistance for a Solid-Fluid Interface
3.1.2. The Fluid-Fluid Interface
3.1.3. The Solid-Solid Interface
3.2. The Anisotropy of Thermal Conductivity at Interfacial Layers
3.2.1. The Anisotropy for Solid-Liquid Interfaces
3.2.2. The Anisotropy of Liquid-Liquid Interfaces
3.2.3. The Anisotropy of Solid-Solid Interfaces
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kapitza, P.L. Heat transfer and superfluidity of helium ii. Phys. Rev. 1941, 60, 354–355. [Google Scholar] [CrossRef]
- Murad, S.; Puri, I.K. Thermal transport across nanoscale solid-fluid interfaces. Appl. Phys. Lett. 2008, 92, 133105. [Google Scholar] [CrossRef] [Green Version]
- Murad, S.; Puri, I.K. Thermal transport through a fluid-solid interface. Chem. Phys. Lett. 2009, 476, 267–270. [Google Scholar] [CrossRef]
- Murad, S.; Puri, I.K. A thermal logic device based on fluid-solid interfaces. Appl. Phys. Lett. 2013, 102, 193109. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Venerus, D.; Puri, I.K.; Murad, S. On using the anisotropy in the thermal resistance of solid-fluid interfaces to more effectively cool nano-electronics. Mol. Simul. 2019, 46, 162–167. [Google Scholar] [CrossRef]
- Suleiman, B.M.; Larfeldt, J.; Leckner, B.; Gustavsson, M. Thermal conductivity and diffusivity of wood. Wood Sci. Technol. 1999, 33, 465–473. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, X.; Gu, B.-L.; Duan, W. Intrinsic anisotropy of thermal conductance in graphene nanoribbons. Appl. Phys. Lett. 2009, 95, 233116. [Google Scholar] [CrossRef] [Green Version]
- Roh, J.W.; Hippalgaonkar, K.; Ham, J.H.; Chen, R.; Li, M.Z.; Ercius, P.; Majumdar, A.; Kim, W.; Lee, W. Observation of anisotropy in thermal conductivity of individual single-crystalline bismuth nanowires. ACS Nano 2011, 5, 3954–3960. [Google Scholar] [CrossRef]
- Hennig, J.; Knappe, W. Anisotropy of thermal conductivity in stretched amorphous linear polymers and in strained elastomers. J. Polym. Sci. Part C Polym. Symp. 1964, 6, 167–174. [Google Scholar] [CrossRef]
- Renteria, J.D.; Ramirez, S.; Malekpour, H.; Alonso, B.; Centeno, A.; Zurutuza, A.; Cocemasov, A.I.; Nika, D.L.; Balandin, A.A. Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv. Funct. Mater. 2015, 25, 4664–4672. [Google Scholar] [CrossRef]
- Luo, Z.; Maassen, J.; Deng, Y.; Du, Y.; Garrelts, R.P.; Lundstrom, M.S.; Ye, P.D.; Xu, X. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 2015, 6, 8572. [Google Scholar] [CrossRef] [PubMed]
- Graebner, J.E.; Jin, S.; Kammlott, G.W.; Herb, J.A.; Gardinier, C.F. Large anisotropic thermal conductivity in synthetic diamond films. Nature 1992, 359, 401–403. [Google Scholar] [CrossRef]
- Crommie, M.F.; Zettl, A. Thermal-conductivity anisotropy of single-crystal Bi2Sr2CaCu2O8. Phys. Rev. B 1991, 43, 408–412. [Google Scholar] [CrossRef] [PubMed]
- Venkatasubramanian, R. Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures. Phys. Rev. B 2000, 61, 3091–3097. [Google Scholar] [CrossRef]
- Rondelez, F.; Urbach, W.; Hervet, H. Origin of thermal conductivity anisotropy in liquid crystalline phases. Phys. Rev. Lett. 1978, 41, 1058–1062. [Google Scholar] [CrossRef]
- Harada, M.; Ochi, M.; Tobita, M.; Kimura, T.; Ishigaki, T.; Shimoyama, N.; Aoki, H. Thermal-conductivity properties of liquid-crystalline epoxy resin cured under a magnetic field. J. Polym. Sci. Part B Polym. Phys. 2003, 41, 1739–1743. [Google Scholar] [CrossRef]
- Miller, M.G.; Keith, J.M.; King, J.A.; Edwards, B.J.; Klinkenberg, N.; Schiraldi, D.A. Measuring thermal conductivities of anisotropic synthetic graphite–liquid crystal polymer composites. Polym. Compos. 2006, 27, 388–394. [Google Scholar] [CrossRef]
- Wang, X.; Gu, X.; Murad, S. Molecular dynamics simulations of liquid-liquid phase equilibrium of ternary methanol/water/hydrocarbon mixtures. Fluid Phase Equilib. 2018, 470, 109–119. [Google Scholar] [CrossRef]
- Wang, R.H.; Knudsen, J.G. Thermal conductivity of liquid-liquid emulsions. Ind. Eng. Chem. 1958, 50, 1667–1670. [Google Scholar] [CrossRef]
- Zhao, B.; Oroskar, P.A.; Wang, X.; House, D.; Oroskar, A.; Oroskar, A.; Jameson, C.; Murad, S. The composition of the mobile phase affects the dynamic chiral recognition of drug molecules by the chiral stationary phase. Langmuir 2017, 33, 11246–11256. [Google Scholar] [CrossRef]
- Wang, X.; House, D.; Oroskar, P.; Oroskar, A.; Oroskar, A.; Jameson, C.; Murad, S. Molecular dynamics simulations of the chiral recognition mechanism for a polysaccharide chiral stationary phase in enantiomeric chromatographic separations. Mol. Phys. 2019, 117, 3569–3588. [Google Scholar] [CrossRef]
- Sofos, F.; Karakasidis, T.; Liakopoulos, A. Transport properties of liquid argon in krypton nanochannels: Anisotropy and non-homogeneity introduced by the solid walls. Int. J. Heat Mass Transf. 2009, 52, 735–743. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q. Transport behavior of water confined in carbon nanotubes. Phys. Rev. B 2005, 72. [Google Scholar] [CrossRef]
- Ikeshoji, T.; Hafskjold, B. Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface. Mol. Phys. 1994, 81, 251–261. [Google Scholar] [CrossRef]
- Müller-Plathe, F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 1997, 106, 6082–6085. [Google Scholar] [CrossRef]
- Green, M.S. Markoff random processes and the statistical mechanics of time-dependent phenomena. Ii. Irreversible processes in fluids. J. Chem. Phys. 1954, 22, 398–413. [Google Scholar] [CrossRef]
- Kubo, R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 1957, 12, 570–586. [Google Scholar] [CrossRef]
- Qu, F.; Shi, R.; Peng, L.; Zhang, Y.; Gu, X.; Wang, X.; Murad, S. Understanding the effect of zeolite crystal expansion/contraction on separation performance of naa zeolite membrane: A combined experimental and molecular simulation study. J. Membr. Sci. 2017, 539, 14–23. [Google Scholar] [CrossRef]
- Chen, C.; Cheng, Y.; Peng, L.; Zhang, C.; Wu, Z.; Gu, X.; Wang, X.; Murad, S. Fabrication and stability exploration of hollow fiber mordenite zeolite membranes for isopropanol/water mixture separation. Microporous Mesoporous Mater. 2019, 274, 347–355. [Google Scholar] [CrossRef]
- Hinkle, K.; Wang, X.; Gu, X.; Jameson, C.; Murad, S. Computational molecular modeling of transport processes in nanoporous membranes. Processes 2018, 6, 124. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, Y.; Wang, X.; Andres-Garcia, E.; Du, P.; Giordano, L.; Wang, L.; Hong, Z.; Gu, X.; Murad, S.; et al. Xenon recovery by dd3r zeolite membranes: Application in anaesthetics. Angew. Chem. Int. Ed. 2019, 58, 15518–15525. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Foiles, S.; Baskes, M.; Daw, M.S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 1986, 33, 7983. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L.; Madura, J.D.; Swenson, C.J. Optimized intermolecular potential functions for liquid hydrocarbons. J. Am. Chem. Soc. 1984, 106, 6638–6646. [Google Scholar] [CrossRef]
- Jorgensen, W.L. Optimized intermolecular potential functions for liquid alcohols. J. Phys. Chem. 1986, 90, 1276–1284. [Google Scholar] [CrossRef]
- Heinz, H.; Vaia, R.; Farmer, B.; Naik, R. Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12–6 and 9–6 lennard-jones potentials. J. Phys. Chem. C 2008, 112, 17281–17290. [Google Scholar] [CrossRef]
- Hockney, R.W.; Eastwood, J.W. Computer Simulation Using Particles; Taylor & Francis Inc: Bristol, PA, USA, 1988. [Google Scholar]
- Martínez, L.; Andrade, R.; Birgin, E.G.; Martínez, J.M. Packmol: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Schneider, T.; Stoll, E. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B 1978, 17, 1302. [Google Scholar] [CrossRef]
- Murad, S.; Puri, I.K. Communication: Thermal rectification in liquids by manipulating the solid-liquid interface. J. Chem. Phys. 2012, 137. [Google Scholar] [CrossRef]
- Murad, S.; Puri, I.K. Molecular simulations of thermal transport across interfaces: Solid-vapour and solid-solid. Mol. Simul. 2012, 38, 642–652. [Google Scholar] [CrossRef]
- Murad, S.; Puri, I.K. Dynamic rectification in a thermal diode based on fluid-solid interfaces: Contrasting behavior of soft materials and fluids. Appl. Phys. Lett. 2014, 104, 211601. [Google Scholar] [CrossRef]
- Murad, S.; Puri, I.K. Achieving thermal rectification in designed liquid-liquid systems. Appl. Phys. Lett. 2016, 108, 134101. [Google Scholar] [CrossRef] [Green Version]
- Murad, S.; Puri, I.K. Understanding the liquid–Liquid (water-hexane) interface. Chem. Phys. Lett. 2017, 685, 422–426. [Google Scholar] [CrossRef]
- Murad, S.; Puri, I.K. Thermal transport through superlattice solid-solid interfaces. Appl. Phys. Lett. 2009, 95, 051907. [Google Scholar] [CrossRef] [Green Version]
- Hasselman, D.P.H.; Johnson, L.F. Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater. 1987, 21, 508–515. [Google Scholar] [CrossRef]
Series ID | Temperature Range (K) | ∇T (K/Å) | ∇T* | ⟨T⟩ (K) | ⟨T⟩* | κ||/κ⊥ | Predicted κ||/κ⊥ | Error (%) |
---|---|---|---|---|---|---|---|---|
A1 | 525–275 | 5.763 | 0.916 | 400 | 1.465 | 6.308 | 6.685 | 5.97 |
A2 | 500–300 | 4.610 | 0.733 | 400 | 1.465 | 5.999 | 6.323 | 5.39 |
A3 | 475–325 | 3.458 | 0.549 | 400 | 1.465 | 5.737 | 5.960 | 3.89 |
A4 | 450–350 | 2.305 | 0.366 | 400 | 1.465 | 5.736 | 5.598 | 2.40 |
A5 | 425–375 | 1.153 | 0.183 | 400 | 1.465 | 4.629 | 5.236 | 13.12 |
B1 | 600–500 | 2.305 | 0.366 | 550 | 2.015 | 5.120 | 4.836 | 5.55 |
B2 | 550–450 | 2.305 | 0.366 | 500 | 1.832 | 5.383 | 5.090 | 5.44 |
B3 | 500–400 | 2.305 | 0.366 | 450 | 1.649 | 5.661 | 5.344 | 5.60 |
B4 | 450–350 | 2.305 | 0.366 | 400 | 1.465 | 5.736 | 5.598 | 2.40 |
B5 | 400–300 | 2.305 | 0.366 | 350 | 1.282 | 6.214 | 5.852 | 5.82 |
C1 | 475–425 | 1.152 | 0.183 | 450 | 1.648 | 5.604 | 4.982 | 11.09 |
C2 | 550–300 | 5.763 | 0.916 | 425 | 1.557 | 6.049 | 6.558 | 8.407 |
C3 | 500–300 | 4.610 | 0.732 | 400 | 1.465 | 5.999 | 6.323 | 5.39 |
C4 | 450–300 | 3.458 | 0.549 | 375 | 1.374 | 6.001 | 6.087 | 1.44 |
C5 | 400–300 | 2.305 | 0.366 | 350 | 1.282 | 6.214 | 5.852 | 5.82 |
Series ID | Temperature Range (K) | ∇T (K/Å) | ∇T* | ⟨T⟩ (K) | ⟨T⟩* | κ||/κ⊥ | Predicted κ||/κ⊥ | Error (%) |
---|---|---|---|---|---|---|---|---|
D1 | 525–275 | 5.763 | 0.916 | 400 | 1.465 | 3.822 | 4.180 | 9.36 |
D2 | 500–300 | 4.610 | 0.733 | 400 | 1.465 | 3.828 | 3.977 | 3.88 |
D3 | 475–325 | 3.458 | 0.549 | 400 | 1.465 | 3.711 | 3.774 | 1.70 |
D4 | 450–350 | 2.305 | 0.366 | 400 | 1.465 | 3.655 | 3.571 | 2.30 |
D5 | 425–375 | 1.153 | 0.183 | 400 | 1.465 | 2.894 | 3.368 | 16.39 |
E1 | 600–500 | 2.305 | 0.366 | 550 | 2.015 | 3.283 | 3.032 | 7.63 |
E2 | 550–450 | 2.305 | 0.366 | 500 | 1.832 | 3.434 | 3.212 | 6.462 |
E3 | 500–400 | 2.305 | 0.366 | 450 | 1.649 | 3.476 | 3.392 | 2.43 |
E4 | 450–350 | 2.305 | 0.366 | 400 | 1.465 | 3.655 | 3.571 | 2.30 |
E5 | 400–300 | 2.305 | 0.366 | 350 | 1.282 | 4.070 | 3.751 | 7.85 |
F1 | 475–425 | 1.152 | 0.183 | 450 | 1.648 | 2.807 | 3.189 | 13.60 |
F2 | 550–300 | 5.763 | 0.916 | 425 | 1.557 | 3.759 | 4.090 | 8.81 |
F3 | 500–300 | 4.610 | 0.732 | 400 | 1.465 | 3.828 | 3.977 | 3.90 |
F4 | 450–300 | 3.458 | 0.549 | 375 | 1.374 | 3.836 | 3.836 | 0.72 |
F5 | 400–300 | 2.305 | 0.366 | 350 | 1.282 | 4.070 | 3.751 | 7.85 |
Case | System (Cold/Hot) | Temperature Range | κ||/κ⊥ | κ|| a/κH2O b | κ|| a/κoil b | κ|| a/κeff c |
---|---|---|---|---|---|---|
1 | CHCl3/H2O | 275–325 K | 1.77 ± 0.53 | 0.52 ± 0.02 | 4.21 ± 0.78 | 2.63 ± 0.28 |
2 | CHCl3/H2O | 300–400 K | 4.43 ± 0.41 | 0.51 ± 0.02 | 3.97 ± 0.54 | 2.24 ± 0.22 |
3 | H2O/CHCl3 | 300–400 K | 5.96 ± 0.20 | 0.51 ± 0.02 | 3.97 ± 0.54 | 2.24 ± 0.22 |
4 | CCl4/H2O | 295–345 K | 2.73 ± 0.66 | 0.53 ± 0.08 | 4.38 ± 1.25 | 2.73 ± 0.08 |
5 | Cyclohexane/H2O | 300–350 K | 8.17 ± 0.96 | 0.64 ± 0.05 | 5.90 ± 1.90 | 3.64 ± 0.72 |
6 | n-Hexane/H2O | 275–325 K | 6.08 ± 1.03 | 0.57 ± 0.07 | 5.41 ± 0.96 | 3.34 ± 0.10 |
7 | n-Hexane/H2O | 300–400 K | 5.53 ± 1.02 | 0.52 ± 0.06 | 4.15 ± 0.86 | 2.34 ± 0.07 |
8 | H2O/n-Hexane | 300–400 K | 7.79 ± 1.11 | 0.52 ± 0.06 | 4.15 ± 0.86 | 2.34 ± 0.07 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Jameson, C.J.; Murad, S. Interfacial Thermal Conductivity and Its Anisotropy. Processes 2020, 8, 27. https://doi.org/10.3390/pr8010027
Wang X, Jameson CJ, Murad S. Interfacial Thermal Conductivity and Its Anisotropy. Processes. 2020; 8(1):27. https://doi.org/10.3390/pr8010027
Chicago/Turabian StyleWang, Xiaoyu, Cynthia J. Jameson, and Sohail Murad. 2020. "Interfacial Thermal Conductivity and Its Anisotropy" Processes 8, no. 1: 27. https://doi.org/10.3390/pr8010027
APA StyleWang, X., Jameson, C. J., & Murad, S. (2020). Interfacial Thermal Conductivity and Its Anisotropy. Processes, 8(1), 27. https://doi.org/10.3390/pr8010027