Behavior of Cd during Coal Combustion: An Overview
Abstract
:1. Introduction
2. Cd (and Cl) in Coal
2.1. Concentrations of Cd
2.2. Associations of Cd
2.3. Cl in Coal (and Wastes)
3. Melting/Boiling Points of Cd Compounds
4. Combustion/Retention Experiments without Extra Cl Added
4.1. In-Furnace Adsorbents
4.1.1. Bauxite
4.1.2. Kaolinite
4.1.3. Silica Sand
4.1.4. Calcareous Adsorbents
4.2. Other Approaches
5. Effect of Cl
- (i)
- Due to enhanced emissions of Cd (and other HMs) during combustion/incineration processes (high volatility of CdCl2 favors Cd occurrence in gaseous form that might easily pass through the air-pollution control device).
- (ii)
- Due to removal of HMs from combustion (incineration) ashes which facilitates their further technological utilization. High volatility of CdCl2 facilitates Cd release from bottom ash leading to lower Cd concentrations and better ash utilization perspectives. In contrast, due to volatilization/condensation mechanism, certain fraction of Cd might condense/adsorb on fly ash particles increasing Cd levels there (Figure 1). Moreover, these fractions often exhibit increased leachability.
5.1. Direct Chlorination (Effect of NaCl)
5.2. Indirect Chlorination
5.2.1. Indirect Chlorination by PVC and Interactions with Calcareous Minerals
6. Effect of Moisture
6.1. Effect of Moisture (No Extra Cl Added)
6.2. Effect of Moisture in the Presence of Cl
7. Effect of Atmosphere
7.1. Effect of O2 Level
7.2. Effect of “the Rest” of the Atmosphere
8. Effect of S
9. Effect of P
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Parzentny, H.R.; Róg, L. The Role of Mineral Matter in Concentrating Uranium and Thorium in Coal and Combustion Residues from Power Plants in Poland. Minerals 2019, 9, 312. [Google Scholar] [CrossRef] [Green Version]
- Wagner, N.; Matiane, A. Rare earth elements in select Main Karoo Basin (South Africa) coal and coal ash samples. Int. J. Coal Geol. 2018, 196, 82–92. [Google Scholar] [CrossRef]
- Hower, J.C.; Granite, E.J.; Mayfield, D.B.; Lewis, A.S.; Finkelman, R.B. Notes on Contributions to the Science of Rare Earth Element Enrichment in Coal and Coal Combustion Byproducts. Minerals 2016, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Bartoňová, L.; Serenčíšová, J.; Čech, B. Yttrium partitioning and associations in coal-combustion ashes prior to and after their leaching in HCl. Fuel Process. Technol. 2018, 173, 205–215. [Google Scholar] [CrossRef]
- Klika, Z.; Ambružová, L.; Sýkorová, I.; Seidlerová, J.; Kolomazník, I. Critical evaluation of sequential extraction and sink-float methods used for the determination of Ga and Ge affinity in lignite. Fuel 2009, 88, 1834–1841. [Google Scholar] [CrossRef]
- Raclavská, H.; Matýsek, D.; Raclavský, K.; Juchelková, D. Geochemistry of fly ash from desulphurisation process performed by sodium bicarbonate. Fuel Process. Technol. 2010, 91, 150–157. [Google Scholar] [CrossRef]
- Scala, F.; Chirone, R.; Meloni, P.; Carcangiu, G.; Manca, M.; Mulas, G.; Mulas, A. Fluidized bed desulfurization using lime obtained after slow calcination of limestone particles. Fuel 2013, 114, 99–105. [Google Scholar] [CrossRef]
- Bartoňová, L.; Klika, Z. Effect of CaO on retention of S, Cl, Br, As, Mn, V, Cr, Ni, Cu, Zn, W and Pb in bottom ashes from fluidized-bed coal combustion power station. J. Environ. Sci. 2014, 26, 1429–1436. [Google Scholar] [CrossRef]
- Scala, F.; Cimino, S. Elemental mercury capture and oxidation by a regenerable manganese-based sorbent: The effect of gas composition. Chem. Eng. J. 2015, 278, 134–139. [Google Scholar] [CrossRef]
- Bartoňová, L. Unburned carbon from coal combustion ash: An overview. Fuel Process. Technol. 2015, 134, 136–158. [Google Scholar] [CrossRef]
- Hower, J.C.; Groppo, J.G.; Graham, U.M.; Ward, C.R.; Kostova, I.J.; Maroto-Valer, M.M.; Dai, S. Coal-derived unburned carbons in fly ash: A review. Int. J. Coal Geol. 2017, 179, 11–27. [Google Scholar] [CrossRef]
- Wagner, N.; Hlatshwayo, B. The occurrence of potentially hazardous trace elements in five Highveld coals, South Africa. Int. J. Coal Geol. 2005, 63, 228–246. [Google Scholar] [CrossRef]
- Scala, F.; Chirone, R.; Lancia, A. Elemental mercury vapor capture by powdered activated carbon in a fluidized bed reactor. Fuel 2011, 90, 2077–2082. [Google Scholar] [CrossRef]
- Hower, J.C.; Robl, T.; Anderson, C.; Thomas, G.; Sakulpitakphon, T.; Mardon, S.; Clark, W. Characteristics of coal combustion products (CCP’s) from Kentucky power plants, with emphasis on mercury content. Fuel 2005, 84, 1338–1350. [Google Scholar] [CrossRef]
- Senior, C.L.; Johnson, S.A. Impact of Carbon-in-Ash on Mercury Removal across Particulate Control Devices in Coal-Fired Power Plants. Energy Fuels 2005, 19, 859–863. [Google Scholar] [CrossRef]
- Antón, M.A.L.; Diaz-Somoano, M.; Fierro, J.; Martinez-Tarazona, M.R. Retention of arsenic and selenium compounds present in coal combustion and gasification flue gases using activated carbons. Fuel Process. Technol. 2007, 88, 799–805. [Google Scholar] [CrossRef] [Green Version]
- Seames, W.S.; Wendt, J.O. Partitioning of arsenic, selenium, and cadmium during the combustion of Pittsburgh and Illinois #6 coals in a self-sustained combustor. Fuel Process. Technol. 2000, 63, 179–196. [Google Scholar] [CrossRef]
- Bartoňová, L.; Raclavská, H.; Čech, B.; Kucbel, M. Behavior of Pb During Coal Combustion: An Overview. Sustainability 2019, 11, 6061. [Google Scholar] [CrossRef] [Green Version]
- Tun, M.M.; Juchelková, D.; Raclavská, H.; Sassmanová, V. Utilization of Biodegradable Wastes as a Clean Energy Source in the Developing Countries: A Case Study in Myanmar. Energies 2018, 11, 3183. [Google Scholar] [CrossRef] [Green Version]
- Hoornweg, D.; Bhada-Tata, P. What a Waste: A Global Review of Solid Waste Management; Urban Development Series Knowledge Papers; The World Bank Group: Washington, DC, USA, 2012; pp. 1–98. [Google Scholar]
- Tun, M.M.; Juchelková, D. Assessment of solid waste generation and greenhouse gas emission potential in Yangon city, Myanmar. J. Mater. Cycles Waste Manag. 2018, 20, 1397–1408. [Google Scholar] [CrossRef]
- Ketris, M.; Yudovich, Y. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Biswas, P.; Wu, C.Y. Control of toxic metal emissions from combustors using sorbents: A review. J. Air Waste Manag. Assoc. 1998, 48, 113–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowak, B.; Aschenbrenner, P.; Winter, F. Heavy metal removal from sewage sludge ash and municipal solid waste fly ash—A comparison. Fuel Process. Technol. 2013, 105, 195–201. [Google Scholar] [CrossRef]
- Fu, B.; Liu, G.; Sun, M.; Hower, J.C.; Mian, M.; Wu, D.; Wang, R.; Hu, G. Emission and transformation behavior of minerals and hazardous trace elements (HTEs) during coal combustion in a circulating fluidized bed boiler. Environ. Pollut. 2018, 242, 1950–1960. [Google Scholar] [CrossRef]
- Fu, B.; Liu, G.; Sun, M.; Hower, J.C.; Hu, G.; Wu, D. A comparative study on the mineralogy, chemical speciation, and combustion behavior of toxic elements of coal beneficiation products. Fuel 2018, 228, 297–308. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Y.; Liu, S.; Wang, Y.; Finkelman, R.B.; Wang, B.; Guo, X. Behavior of trace elements and mineral transformations in the super-high organic sulfur Ganhe coal during gasification. Fuel Process. Technol. 2018, 177, 140–151. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Palmer, C.A.; Wang, P. Quantification of the modes of occurrence occurrence of 42 elements in coal. Int. J. Coal Geol. 2018, 185, 138–160. [Google Scholar] [CrossRef]
- Wagner, N.; Tlotleng, M. Distribution of selected trace elements in density fractionated Waterberg coals from South Africa. Int. J. Coal Geol. 2012, 94, 225–237. [Google Scholar] [CrossRef]
- Parzentny, H.R.; Róg, L. Distribution of Some Ecotoxic Elements in Fuel and Solid Combustion Residues in Poland. Energies 2020, 13, 1131. [Google Scholar] [CrossRef] [Green Version]
- Yudovich, Y.; Ketris, M. Chlorine in coal: A review. Int. J. Coal Geol. 2006, 67, 127–144. [Google Scholar] [CrossRef]
- Vassilev, S. Contents, modes of occurrence and origin of chlorine and bromine in coal. Fuel 2000, 79, 903–921. [Google Scholar] [CrossRef]
- Ohenoja, K.; Pesonen, J.; Yliniemi, J.; Illikainen, M. Utilization of Fly Ashes from Fluidized Bed Combustion: A Review. Sustainability 2020, 12, 2988. [Google Scholar] [CrossRef] [Green Version]
- Vassilev, S.V.; Vassileva, C.G.; Vassilev, V.S. Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel 2015, 158, 330–350. [Google Scholar] [CrossRef]
- Růžičková, J.; Raclavská, H.; Kucbel, M.; Grobelak, A.; Šafář, M.; Raclavský, K.; Švédová, B.; Juchelková, D.; Moustakas, K. The potential environmental risks of the utilization of composts from household food waste. Environ. Sci. Pollut. Res. 2020, 1–17. [Google Scholar] [CrossRef]
- Corsaro, A.; Raclavská, H.; Hlavsová, A.; Frydrych, J.; Juchelková, D. Perennial grasses as prospective energy sources. Energy Sources Part A Recover. Util. Environ. Eff. 2016, 38, 1206–1211. [Google Scholar] [CrossRef]
- Diaz-Somoano, M.; Unterberger, S.; Hein, K. Prediction of trace element volatility during co-combustion processes. Fuel 2006, 85, 1087–1093. [Google Scholar] [CrossRef]
- Youcai, Z.; Stucki, S.; Ludwig, C.; Wochele, J. Impact of moisture on volatility of heavy metals in municipal solid waste incinerated in a laboratory scale simulated incinerator. Waste Manag. 2004, 24, 581–587. [Google Scholar] [CrossRef]
- Kovacs, H.; Szemmelveisz, K.; Koós, T. Theoretical and experimental metals flow calculations during biomass combustion. Fuel 2016, 185, 524–531. [Google Scholar] [CrossRef]
- Perry, D.L. Handbook of Inorganic Compounds, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011; p. 581. ISBN 9781439814611. [Google Scholar]
- Chan, C.; Jia, C.Q.; Graydon, J.W.; Kirk, D.W. The behaviour of selected heavy metals in MSW incineration electrostatic precipitator ash during roasting with chlorination agents. J. Hazard. Mater. 1996, 50, 1–13. [Google Scholar] [CrossRef]
- Yu, J.; Qiao, Y.; Jin, L.; Ma, C.; Paterson, N.; Sun, L. Removal of toxic and alkali/alkaline earth metals during co-thermal treatment of two types of MSWI fly ashes in China. Waste Manag. 2015, 46, 287–297. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, J.; Sun, S.; Huang, S.; Kuo, J.; Chen, N. Combined effects of FeCl3 and CaO conditioning on SO2, HCl and heavy metals emissions during the DDSS incineration. Chem. Eng. J. 2016, 299, 449–458. [Google Scholar] [CrossRef]
- Linak, W.P.; Wendt, J.O. Toxic metal emissions from incineration: Mechanisms and control. Prog. Energy Combust. Sci. 1993, 19, 145–185. [Google Scholar] [CrossRef]
- Scotto, M.V.; Uberoi, M.; Peterson, T.W.; Shadman, F.; Wendt, J.O. Metal capture by sorbents in combustion processes. Fuel Process. Technol. 1994, 39, 357–372. [Google Scholar] [CrossRef]
- Chen, J.-C.; Wey, M.-Y.; Lin, Y.-C. The adsorption of heavy metals by different sorbents under various incineration conditions. Chemosphere 1998, 37, 2617–2625. [Google Scholar] [CrossRef]
- Ho, T.C.; Chuang, T.C.; Chelluri, S.; Lee, Y.; Hopper, J.R. Simultaneous capture of metal, sulfur and chlorine by sorbents during fluidized bed incineration. Waste Manag. 2001, 21, 435–441. [Google Scholar] [CrossRef]
- Yao, H.; Naruse, I. Using sorbents to control heavy metals and particulate matter emission during solid fuel combustion. Particuology 2009, 7, 477–482. [Google Scholar] [CrossRef]
- Yao, H.; Mkilaha, I.S.; Naruse, I. Screening of sorbents and capture of lead and cadmium compounds during sewage sludge combustion. Fuel 2004, 83, 1001–1007. [Google Scholar] [CrossRef]
- Cheng, J.F.; Zeng, H.C.; Zhang, Z.H.; Xu, M.H. The effects of solid absorbents on the emission of trace elements, SO2, and NOx during coal combustion. Int. J. Energy Res. 2001, 25, 1043–1052. [Google Scholar] [CrossRef]
- Chen, J.; Sun, Y.; Shao, N.; Zhang, Z. Environmental mitigation of sludge combustion via two opposite modifying strategies: Kinetics and stabilization effect. Fuel 2018, 227, 346–354. [Google Scholar] [CrossRef]
- Li, S.; Guo, S.; Huang, X.; Huang, T.; Niazi, N.K.; Muhammad, F.; Xu, G.; Zhao, Z.; Yu, L.; Yan, Y.; et al. Research on characteristics of heavy metals (As, Cd, Zn) in coal from Southwest China and prevention method by using modified calcium-based materials. Fuel 2016, 186, 714–725. [Google Scholar] [CrossRef]
- Kuo, J.-H.; Lin, C.-L.; Wey, M.-Y. Effect of particle agglomeration on heavy metals adsorption by Al- and Ca-based sorbents during fluidized bed incineration. Fuel Process. Technol. 2011, 92, 2089–2098. [Google Scholar] [CrossRef]
- Wendt, J.O.L.; Lee, S.J. High-temperature sorbents for Hg, Cd, Pb, and other trace metals: Mechanisms and applications. Fuel 2010, 89, 894–903. [Google Scholar] [CrossRef]
- Peng, T.-H.; Lin, C.-L. Influence of various chlorine additives on the partitioning of heavy metals during low-temperature two-stage fluidized bed incineration. J. Environ. Manag. 2014, 146, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-C.; Wey, M.-Y.; Yan, M.-H. Theoretical and Experimental Study of Metal Capture during Incineration Process. J. Environ. Eng. 1997, 123, 1100–1106. [Google Scholar] [CrossRef]
- Chen, J.-C.; Wey, M.-Y.; Ou, W.-Y. Capture of heavy metals by sorbents in incineration flue gas. Sci. Total Environ. 1999, 228, 67–77. [Google Scholar] [CrossRef]
- Chiang, B.-C.; Wey, M.-Y.; Yeh, C.-L. Control of acid gases using a fluidized bed adsorber. J. Hazard. Mater. 2003, 101, 259–272. [Google Scholar] [CrossRef]
- Wey, M.-Y.; Chen, K.-H.; Liu, K.-Y. The effect of ash and filter media characteristics on particle filtration efficiency in fluidized bed. J. Hazard. Mater. 2005, 121, 175–181. [Google Scholar] [CrossRef]
- Folgueras, M.B.; Folgueras-Díaz, M.; Xiberta, A.J.; Alonso, M. Effect of Inorganic Matter on Trace Element Behavior during Combustion of Coal−Sewage Sludge Blends. Energy Fuels 2007, 21, 744–755. [Google Scholar] [CrossRef]
- Danihelka, P.; Volna, Z.; Jones, J.; Williams, A. Emission of trace toxic metals during pulverized fuel combustion of Czech coals. Int. J. Energy Res. 2003, 27, 1181–1203. [Google Scholar] [CrossRef]
- Yan, R.; Gauthier, D.; Flamant, G. Volatility and chemistry of trace elements in a coal combustor. Fuel 2001, 80, 2217–2226. [Google Scholar] [CrossRef]
- Raclavská, H.; Corsaro, A.; Hartmann-Koval, S.; Juchelková, D. Enrichment and distribution of 24 elements within the sub-sieve particle size distribution ranges of fly ash from wastes incinerator plants. J. Environ. Manag. 2017, 203, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Chiang, K.-Y.; Wang, K.-S.; Lin, F.-L.; Chu, W.-T. Chloride effects on the speciation and partitioning of heavy metal during the municipal solid waste incineration process. Sci. Total Environ. 1997, 203, 129–140. [Google Scholar] [CrossRef]
- Huang, Y.J.; Jin, B.S.; Zhong, Z.P.; Xiao, R.; Tang, Z.Y.; Ren, H.F. Emission features of several trace elements in pulverized coal boiler. In Proceedings of the International Conference on Energy and the Environment, Shanghai, China, 11–13 December 2003; Volume 1–2, pp. 562–568, ISBN 7-5323-7335-5. [Google Scholar]
- Wu, H.; Glarborg, P.; Frandsen, F.J.; Dam-Johansen, K.; Jensen, P.A.; Sander, B. Trace elements in co-combustion of solid recovered fuel and coal. Fuel Process. Technol. 2013, 105, 212–221. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Song, G.; Yang, S.; Yang, Z.; Lyu, Q. Migration and transformation of sodium and chlorine in high-sodium high-chlorine Xinjiang lignite during circulating fluidized bed combustion. J. Energy Inst. 2019, 92, 673–681. [Google Scholar] [CrossRef]
- Wang, X.; Huang, Y.; Liu, C.; Zhang, S.; Wang, Y.; Piao, G. Dynamic volatilization behavior of Pb and Cd during fixed bed waste incineration: Effect of chlorine and calcium oxide. Fuel 2017, 192, 1–9. [Google Scholar] [CrossRef]
- Luan, J.; Li, R.; Zhang, Z.; Li, Y.; Zhao, Y. Influence of chlorine, sulfur and phosphorus on the volatilization behavior of heavy metals during sewage sludge thermal treatment. Waste Manag. Res. 2013, 31, 1012–1018. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-S.; Chiang, K.-Y.; Tsai, C.C.; Sun, C.-J.; Lin, K.-L.; Tsai, C.-C.; Tsai, C.-C. The effects of FeCl3 on the distribution of the heavy metals Cd, Cu, Cr, and Zn in a simulated multimetal incineration system. Environ. Int. 2001, 26, 257–263. [Google Scholar] [CrossRef]
- Nowak, B.; Rocha, S.F.; Aschenbrenner, P.; Rechberger, H.; Winter, F. Heavy metal removal from MSW fly ash by means of chlorination and thermal treatment: Influence of the chloride type. Chem. Eng. J. 2012, 179, 178–185. [Google Scholar] [CrossRef]
- Yan, R.; Gauthier, D.; Flamant, G. Partitioning of trace elements in the flue gas from coal combustion. Combust. Flame 2001, 125, 942–954. [Google Scholar] [CrossRef]
- Yu, J.; Sun, L.; Ma, C.; Qiao, Y.; Yao, H. Thermal degradation of PVC: A review. Waste Manag. 2016, 48, 300–314. [Google Scholar] [CrossRef]
- Saeed, L.; Tohka, A.; Haapala, M.; Zevenhoven, R. Pyrolysis and combustion of PVC, PVC-wood and PVC-coal mixtures in a two-stage fluidized bed process. Fuel Process. Technol. 2004, 85, 1565–1583. [Google Scholar] [CrossRef]
- Chyang, C.-S.; Han, Y.-L.; Zhong, Z.-C. Study of HCl Absorption by CaO at High Temperature. Energy Fuels 2009, 23, 3948–3953. [Google Scholar] [CrossRef]
- Bie, R.; Li, S.; Yang, L. Reaction mechanism of CaO with HCl in incineration of wastewater in fluidized bed. Chem. Eng. Sci. 2005, 60, 609–616. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, X.; Yan, J.; Chi, Y.; Cen, K. TG-FTIR analysis of PVC thermal degradation and HCl removal. J. Anal. Appl. Pyrolysis 2008, 82, 1–9. [Google Scholar] [CrossRef]
- Tang, X.; Chen, F.; Shao, D.; Qin, P. Effects of CaO and CaCO3 on Heavy Metal Capture in Bottom Ash during Municipal Solid Waste Combustion under a CO2/O2 Atmosphere. Energy Fuels 2017, 31, 10998–11006. [Google Scholar] [CrossRef]
- Font, O.; Querol, X.; Izquierdo, M.; Alvarez, E.; Moreno, N.; Díez, S.; Álvarez-Rodríguez, R.; Clemente-Jul, C.; Coca, P.; Garcia-Peña, F. Partitioning of elements in a entrained flow IGCC plant: Influence of selected operational conditions. Fuel 2010, 89, 3250–3261. [Google Scholar] [CrossRef]
- Rio, S.; Verwilghen, C.; Ramaroson, J.; Ange, N.; Sharrock, P. Heavy metal vaporization and abatement during thermal treatment of modified wastes. J. Hazard. Mater. 2007, 148, 521–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raclavská, H.; Juchelková, D.; Roubíček, V.; Matýsek, D. Energy utilisation of biowaste—Sunflower-seed hulls for co-firing with coal. Fuel Process. Technol. 2011, 92, 13–20. [Google Scholar] [CrossRef]
- Raclavská, H.; Juchelková, D.; Škrobánková, H.; Wiltowski, T.; Campen, A. Conditions for energy generation as an alternative approach to compost utilization. Environ. Technol. 2011, 32, 407–417. [Google Scholar] [CrossRef]
- Roy, B.; Choo, W.L.; Bhattacharya, S. Prediction of distribution of trace elements under Oxy-fuel combustion condition using Victorian brown coals. Fuel 2013, 114, 135–142. [Google Scholar] [CrossRef]
- Vershinina, K.Y.; Egorov, R.I.; Strizhak, P.A. The ignition parameters of the coal-water slurry droplets at the different methods of injection into the hot oxidant flow. Appl. Therm. Eng. 2016, 107, 10–20. [Google Scholar] [CrossRef]
- Glushkov, D.O.; Shabardin, D.P.; Strizhak, P.A.; Vershinina, K.Y. Influence of organic coal-water fuel composition on the characteristics of sustainable droplet ignition. Fuel Process. Technol. 2016, 143, 60–68. [Google Scholar] [CrossRef]
- Tun, M.M.; Juchelková, D. Drying methods for municipal solid waste quality improvement in the developed and developing countries: A review. Environ. Eng. Res. 2018, 24, 529–542. [Google Scholar] [CrossRef] [Green Version]
- Durlak, S.K.; Biswas, P.; Shi, J. Equilibrium analysis of the affect of temperature, moisture and sodium content on heavy metal emissions from municipal solid waste incinerators. J. Hazard. Mater. 1997, 56, 1–20. [Google Scholar] [CrossRef]
- Morf, L.S.; Brunner, P.H.; Spaun, S. Effect of operating conditions and input variations on the partitioning of metals in a municipal solid waste incinerator. Waste Manag. Res. 2000, 18, 4–15. [Google Scholar] [CrossRef]
- Meng, A.; Li, Q.; Jia, J.; Zhang, Y. Effect of Moisture on Partitioning of Heavy metals in Incineration of Municipal Solid Waste. Chinese J. Chem. Eng. 2012, 20(5), 1008–1015. [Google Scholar] [CrossRef]
- Raclavská, H.; Corsaro, A.; Hlavsová, A.; Juchelková, D.; Zajonc, O. The effect of moisture on the release and enrichment of heavy metals during pyrolysis of municipal solid waste. Waste Manag. Res. 2015, 33, 267–274. [Google Scholar] [CrossRef]
- Li, Q.; Meng, A.; Jia, J.; Zhang, Y. Investigation of heavy metal partitioning influenced by flue gas moisture and chlorine content during waste incineration. J. Environ. Sci. 2010, 22, 760–768. [Google Scholar] [CrossRef]
- Furimsky, E. Characterization of trace element emissions from coal combustion by equilibrium calculations. Fuel Process. Technol. 2000, 63, 29–44. [Google Scholar] [CrossRef]
- Yu, J.; Sun, L.; Xiang, J.; Hu, S.; Su, S.; Qiu, J. Vaporization of heavy metals during thermal treatment of model solid waste in a fluidized bed incinerator. Chemosphere 2012, 86, 1122–1126. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, Z.; Yin, Q.; Liu, J. Mineral transformation and emission behaviors of Cd, Cr, Ni, Pb and Zn during the co-combustion of dried waste activated sludge and lignite. Fuel 2017, 199, 578–586. [Google Scholar] [CrossRef]
- Zhang, J.; Han, C.-L.; Xu, Y.-Q. The release of the hazardous elements from coal in the initial stage of combustion process. Fuel Process. Technol. 2003, 84, 121–133. [Google Scholar] [CrossRef]
- Oboirien, B.O.; Thulari, V.; North, B. Enrichment of trace elements in bottom ash from coal oxy-combustion: Effect of coal types. Appl. Energy 2016, 177, 81–86. [Google Scholar] [CrossRef]
- Zheng, L.; Furimsky, E. Assessment of coal combustion in O2+CO2 by equilibrium calculations. Fuel Process. Technol. 2003, 81, 23–34. [Google Scholar] [CrossRef]
- Roy, B.; Bhattacharya, S. Oxy-fuel fluidized bed combustion using Victorian brown coal: An experimental investigation. Fuel Process. Technol. 2014, 117, 23–29. [Google Scholar] [CrossRef]
- Font, O.; Cordoba, P.; Leiva, C.; Romeo, L.; Bolea, I.; Guedea, I.; Moreno, N.; Querol, X.; Fernández, C.L.; Diez, L. Fate and abatement of mercury and other trace elements in a coal fluidised bed oxy combustion pilot plant. Fuel 2012, 95, 272–281. [Google Scholar] [CrossRef]
- Oboirien, B.O.; Thulari, V.; North, B. Major and trace elements in coal bottom ash at different oxy coal combustion conditions. Appl. Energy 2014, 129, 207–216. [Google Scholar] [CrossRef]
- Suriyawong, A.; Gamble, M.; Lee, M.-H.; Axelbaum, R.; Biswas, P. Submicrometer Particle Formation and Mercury Speciation Under O2−CO2Coal Combustion. Energy Fuels 2006, 20, 2357–2363. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Meng, A.; Li, Q.; Cheng, H. Experimental and thermodynamic investigation on transfer of cadmium influenced by sulfur and chlorine during municipal solid waste (MSW) incineration. J. Hazard. Mater. 2008, 153, 309–319. [Google Scholar] [CrossRef]
- Zhao, S.; Duan, Y.; Lu, J.; Liu, S.; Pudasainee, D.; Gupta, R.; Liu, M.; Lu, J. Enrichment characteristics, thermal stability and volatility of hazardous trace elements in fly ash from a coal-fired power plant. Fuel 2018, 225, 490–498. [Google Scholar] [CrossRef]
- Zhao, S.; Duan, Y.; Li, Y.; Liu, M.; Lu, J.; Ding, Y.; Gu, X.; Tao, J.; Du, M. Emission characteristic and transformation mechanism of hazardous trace elements in a coal-fired power plant. Fuel 2018, 214, 597–606. [Google Scholar] [CrossRef]
- Salgansky, E.A.; Podlesniy, D.N.; Tsvetkov, M.V.; Zaichenko, A.Y. Thermodynamic Estimating the Mass Transfer of Compounds of Rare Metals under Conditions of a Filtration Combustion Wave. Russ. J. Appl. Chem. 2020, 93, 1096–1101. [Google Scholar] [CrossRef]
- Liu, J.; Falcoz, Q.; Gauthier, D.; Flamant, G.; Zheng, C. Volatilization behavior of Cd and Zn based on continuous emission measurement of flue gas from laboratory-scale coal combustion. Chemosphere 2010, 80, 241–247. [Google Scholar] [CrossRef]
- Miller, B.B.; Kandiyoti, R.; Dugwell, D.R. Trace Element Emissions from Co-combustion of Secondary Fuels with Coal: A Comparison of Bench-Scale Experimental Data with Predictions of a Thermodynamic Equilibrium Model. Energy Fuels 2002, 16, 956–963. [Google Scholar] [CrossRef]
- Verhulst, A.D.; Buekens, A.; Spencer, P.J.; Eriksson, G. Thermodynamic Behavior of Metal Chlorides and Sulfates under the Conditions of Incineration Furnaces. Environ. Sci. Technol. 1996, 30, 50–56. [Google Scholar] [CrossRef]
Material | Cd Concentration (Range) | References |
---|---|---|
Coal | 0.033–0.64 ppm | [23] |
Low rank coal (ash) | 0.24 (1.1) ppm | [22] |
High rank coal (ash) | 0.20 (1.2) ppm | [22] |
Municipal solid waste | 0–90 ppm | [23] |
Municipal solid waste incineration fly ash | 50–450 ppm | [24] |
Municipal wastewater sludge | 100 ppm | [23] |
Sewage sludge ash | 2.3–94 ppm | [24] |
Limestone | 0.01 ppm | [25] |
Urea | 0.03 ppm | [25] |
Compound | m.p./b.p. | Temperature | References |
---|---|---|---|
Metal | Cd m.p. | 321 °C | [38,39] |
Cd b.p. | 767 °C | [38,39] | |
Oxide | CdO m.p. | 1540 °C (sublimation) | [39] |
CdO b.p. | Sublimation at 900 °C | [38] | |
Chloride | CdCl2 m.p. | 564 °C | [38,39,40] |
CdCl2 b.p. | 960 °C | [38,39,40,41] | |
Sulfate | CdSO4 m.p. | 1000 °C | [38,40] |
Experiment | Evaluated | Adsorbent | Results | References |
---|---|---|---|---|
CdCl2, thermogravimetric reactor, 800 °C | Metal adsorbed | Bauxite | 74% * | [45] |
Alumina | 55% * | |||
Limestone | 23% * | |||
Emathlite | 12% * | |||
Kaolinite | 11% * | |||
Silica | 4% * | |||
Synthetic solid waste (with Cd-nitrate), fluidized bed incinerator, 700 °C (900 °C) | Cd adsorption efficiency | Al2O3 | 9% (4%) * | [46] |
Bauxite | 14% (9%) * | |||
Kaolinite | 5% (5%) * | |||
Wood + Cd-acetate, fluidized-bed incinerator, 750 °C | Percent capture | Bauxite | 68% * | [47] |
Zeolite | 50% * | |||
Lime | 40% * | |||
Sorbent mixture | 75% * | |||
Dried sewage sludge + 5% adsorbent, drop-tube furnace, 800 °C | Captured fraction | Kaolin | 44% * | [48,49] |
Zeolite | 27% * | |||
Limestone | 22% * | |||
Scallop | 19% * | |||
Mullite | 15% * | |||
Apatite | 14% * | |||
Bauxite | 7% * | |||
Silica | 4% * | |||
Alumina | 2% * | |||
Coal + kaolinite, electrically heated combustor | Relative enrichment factor | 1100 °C | 0.4 * | [50] |
1200 °C | 2.1 * | |||
1300 °C | 0.75 * | |||
Coal + kaolinite, electrically heated combustor, 1100 °C | Concentration | Kaolinite | 0.38 ppm * | [50] |
Bauxite | 0.40 ppm * | |||
CaO | 0.39 ppm * | |||
Sewage sludge + additive (5:1), thermogravimetric analyzer, 1200 °C | Fixed ratio of Cd | No additive | 25% * | [51] |
CaO | 20% * | |||
Kaolin | 22% * | |||
Coal + CaCO3 modified by 3 different additives, muffle furnace, 900 °C | Cd-capturing rate | Na2CO3 | 22.83% | [52] |
K2CO3 | 57.37% | |||
Al2(SO4)3 | 47.55% | |||
Fluidized-bed incinerator, artificial solid waste (with Cd-nitrate), 900 °C | % retention (on silica sand) | no Na added | 5% * | [53] |
1.2% Na added | 46% * |
Experiment | Parameter Evaluated | Chlorine Added | Results | References |
---|---|---|---|---|
Bitum. coal + SRF *, ca. 1200 °C | Relative enrichment factor in filter ash vs. cyclone ash (related to Al) | - | 5–7 | [66] |
1 and 2% NaCl | 8 and 10 | |||
2 and 4% PVC | 6 and 23 | |||
Bitum. coal + SRF *, ca. 1200 °C | TEM-EDS analysis of filter ash aerosols from vaporization mode | - | <0.5%Cd/<0.5%Cl | [66] |
1% NaCl | 1.5%Cd/6%Cl | |||
2% PVC | 1%Cd/1.5%Cl | |||
Solid waste, 900 °C | Volatilized fraction of Cd | - | 47% | [68] |
1 and 3% Cl (NaCl) | 85 and 90% | |||
1 and 3% Cl (PVC) | 90 and 95% | |||
Wastewater sludge, 850 °C | Volatilization rate | No NH4Cl (0.1% Cl) | 40% | [69] |
With NH4Cl (0.5% Cl) | 85% | |||
Simulated MSW, 800 °C | Percentage in fly ash and flue gas ** | No FeCl3 | 20% in fly ash ***, 80% in flue gas *** | [70] |
With FeCl3 | 80% in fly ash ***, 20% in flue gas *** | |||
MSW fly ash, 800 °C | Removal percentage of Cd from fly ash | - | 50% *** | [71] |
100 g/kg Cl (NaCl) | 48% *** | |||
100 g/kg Cl (MgCl2) | 90% *** | |||
100 g/kg Cl (CaCl2) | 76% *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartoňová, L.; Raclavská, H.; Čech, B.; Kucbel, M. Behavior of Cd during Coal Combustion: An Overview. Processes 2020, 8, 1237. https://doi.org/10.3390/pr8101237
Bartoňová L, Raclavská H, Čech B, Kucbel M. Behavior of Cd during Coal Combustion: An Overview. Processes. 2020; 8(10):1237. https://doi.org/10.3390/pr8101237
Chicago/Turabian StyleBartoňová, Lucie, Helena Raclavská, Bohumír Čech, and Marek Kucbel. 2020. "Behavior of Cd during Coal Combustion: An Overview" Processes 8, no. 10: 1237. https://doi.org/10.3390/pr8101237
APA StyleBartoňová, L., Raclavská, H., Čech, B., & Kucbel, M. (2020). Behavior of Cd during Coal Combustion: An Overview. Processes, 8(10), 1237. https://doi.org/10.3390/pr8101237