Biocarbon Derived from Opuntia ficus indica for p-Nitrophenol Retention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Adsorbent Preparation
2.3. Characterization
2.4. Adsorption of P-Nitrophenol
2.5. The Measurements of the Kinetics of P-Nitrophenol Adsorption
2.6. Modeling Isotherms
2.7. Errors
2.8. Regeneration and Reuse
3. Results and Discussion
3.1. Caracterization of Activated Carbon
3.2. Adsorption in Batch Mode
3.2.1. pH Effect
3.2.2. Effect of Mass of Adsorbent
3.2.3. Effect of Contact Time
3.2.4. Kinetics of Adsorption
3.2.5. Adsorption Isotherms
3.2.6. Thermodynamic Study
3.2.7. Regeneration and Reuse of Activated Carbon
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hamidouche, S.; Bouras, O.; Zermane, F.; Cheknane, B.; Houari, M.; Debord, J.; Harel, M.; Bollinger, J.C.; Baudu, M. Removal of aromatic hydrocarbons from water by activated carbon from apricot stones. Chem. Eng. J. 2015, 279, 964–972. [Google Scholar] [CrossRef]
- Ahsan, M.A.; Islam, M.T.; Hernandez, C.; Castro, E.; Katla, S.K.; Kim, H.; Lin, Y.; Curry, M.L.; Torresdey, J.G.; Noveron, J.C. Biomass conversion of saw dust to a functionalized carbonaceous materials for the removal of Tetracycline, Sulfamethoxazole and Bisphenol A from water. J. Environ. Chem. Eng. 2018, 6, 4329–4338. [Google Scholar] [CrossRef]
- Rabti, A.; Hannachi, A.; Maghraoui-Meherzi, H.; Raouafi, N. Ferrocene–Functionalized Carbon Nanotubes: An Adsorbent for Rhodamine B. Chem. Afr. 2019, 2, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Petrova, B.; Budinova, T.; Tsyntsarski, B.; Kochkodan, V.; Shkavro, Z.; Petrov, N. Removal of aromatic hydrocarbons from water by activated carbon from apricot stones. Chem. Eng. J. 2010, 165, 258–264. [Google Scholar] [CrossRef]
- Kumar, A.; Jena, H.M. Removal of methylene blue and phenol onto prepared activated carbon from Fox nutshell by chemical activation in batch and fixed-bed column. J. Clean. Prod. 2016, 137, 1246–1259. [Google Scholar] [CrossRef]
- Guo, P.; Tang, L.; Tang, J.; Zeng, G.; Huang, B.; Dong, H.; Zhang, Y.; Zhou, Y.; Deng, Y.; Ma, L.; et al. Catalytic reduction–adsorption for removal of p-nitrophenol and its conversion p-aminophenol from water by gold nanoparticles supported on oxidized mesoporous carbon. J. Colloid Interf. Sci. 2016, 469, 78–85. [Google Scholar] [CrossRef]
- Kusçu, O.S.; Sponza, D.T. Performance of anaerobic baffled reactor (ABR) treating synthetic wastewater containing p-nitrophenol. Enzym. Microb. Tech. 2005, 36, 888–895. [Google Scholar] [CrossRef]
- Dhorabe, P.T.; Lataye, D.H.; Ingole, R.S. Removal of 4-nitrophenol from aqueous solution by adsorption onto activated carbon prepared from Acacia glauca sawdust. Water Sci. Technol. 2016, 73, 955–966. [Google Scholar] [CrossRef]
- Lin, J.; Reddy, M.; Moorthi, V.; Qoma, B.E. Bacterial removal of toxic phenols from an industrial effluent. Afr. J. Biotechnol. 2008, 7, 2232–2238. [Google Scholar]
- Gupta, V.K.; Ali, I.; Saleh, T.A.; Nayak, A.; Agarwal, S. Chemical treatment technologies for waste-water recycling—An overview. RSC Adv. 2012, 2, 6380–6388. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, F.; Huang, Z.; Chen, H.; Zhuang, Z.; Pan, Z.; Long, J.; Gu, F. Photochemical fabrication of SnO2 dense layers on reduced graphene oxide sheets for application in photocatalytic degradation of p-Nitrophenol. Appl. Catal. B Environ. 2017, 215, 8–17. [Google Scholar] [CrossRef]
- Rabaaoui, N.; Saad, M.K.; Moussaoui, Y.; Allagui, M.S.; Bedoui, A.; Elaloui, E. Anodic oxidation of o-nitrophenol on BDD electrode: Variable effects and mechanisms of degradation. J. Hazard. Mater. 2013, 250–251, 447–453. [Google Scholar] [CrossRef]
- Shang, K.; Li, W.; Wang, X.; Lu, N.; Jiang, N.; Li, J.; Wu, Y. Degradation of p-nitrophenol by DBD plasma/Fe2+/persulfate oxidation process. Sep. Purif. Technol. 2019, 218, 106–112. [Google Scholar] [CrossRef]
- Xiong, Z.; Cao, J.; Lai, B.; Yang, P. Comparative study on degradation of p-nitrophenol in aqueous solution by mFe/Cu/O3 and mFe0/O3 processes. J. Ind. Eng. Chem. 2018, 59, 196–207. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T.; Zhang, J.; Yan, S.; Qin, C. Degradation of p-nitrophenol using a ferrous-tripolyphosphate complex in the presence of oxygen: The key role of superoxide radicals. Appl. Catal. B Environ. 2019, 259, 118030. [Google Scholar] [CrossRef]
- Bastami, T.R.; Entezari, M.H. Activated carbon from carrot dross combined with magnetite nanoparticles for the efficient removal of p-nitrophenol from aqueous solution. Chem. Eng. J. 2012, 210, 510–519. [Google Scholar] [CrossRef]
- Luo, Z.; Gao, M.; Yang, S.; Yang, Q. Adsorption of phenols on reduced-charge montmorillonites modified by bispyridinium dibromides: Mechanism, kinetics and thermodynamics studies. Colloid. Surface. A 2015, 482, 222–230. [Google Scholar] [CrossRef]
- Obeid, L.; El Kolli, N.; Talbot, D.; Welschbillig, M.; Bée, A. Influence of a cationic surfactant on adsorption of p-nitrophenol by a magsorbent based on magnetic alginate beads. J. Colloid Interf. Sci. 2015, 457, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Rehman, R.; Manzoor, I.; Mitu, L. Isothermal study of congo red dye biosorptive removal from water by SolanumTuberosum and PisumSativum peels in economical way. Bull. Chem. Soc. Ethiop. 2018, 32, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Okeola, O.F.; Odebunmi, E.O.; Ameen, O.M. Comparison of sorption capacity and surface area of activated carbon prepared from jatrophacurcas fruit pericarp and seed coat. Bull. Chem. Soc. Ethiop. 2012, 26, 171–180. [Google Scholar]
- Ao, W.; Fu, J.; Mao, X.; Kang, Q.; Ran, C.; Liu, Y.; Zhang, H.; Gao, Z.; Li, J.; Liu, G.; et al. Microwave assisted preparation of activated carbon from biomass: A review. Renew. Sust. Energ. Rev. 2018, 92, 958–979. [Google Scholar] [CrossRef]
- Bibaj, E.; Lysigaki, K.; Nolan, J.W.; Seyedsalehi, M.; Deliyanni, E.A.; Mitropoulos, A.C.; Kyzas, G.Z. Activated carbons from banana peels for the removal of nickel ions. Int. J. Environ. Sci. Technol. 2019, 16, 667–680. [Google Scholar] [CrossRef]
- Kazmierczak, J.; Nowicki, P.; Pietrzak, R. Sorption properties of activated carbons obtained from corn cobs by chemical and physical activation. Adsorption 2013, 19, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresour. Technol. 2014, 160, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Darweesh, T.M.; Ahmed, M.J. Batch and fixed bed adsorption of levofloxacin on granular activated carbon from date (Phoenix dactylifera L.) stones by KOH chemical activation. Environ. Toxicol. Phar. 2017, 50, 159–166. [Google Scholar] [CrossRef] [PubMed]
- El-Nahas, S.; Salman, H.M.; Seleeme, W.A. Aluminum Building Scrap Wire, Take-Out Food Container, Potato Peels and Bagasse as Valueless Waste Materials for Nitrate Removal from Water supplies. Chem. Afr. 2019, 2, 143–162. [Google Scholar] [CrossRef] [Green Version]
- Khadhri, N.; Saad, M.K.; ben Mosbah, M.; Moussaoui, Y. Batch and continuous column adsorption of indigo carmine onto activated carbon derived from date palm petiole. J. Environ. Chem. Eng. 2019, 7, 102775. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Deliyanni, E.A.; Matis, K.A. Activated carbons produced by pyrolysis of waste potato peels: Cobalt ions removal by adsorption. Colloid Surf. A 2016, 490, 74–83. [Google Scholar] [CrossRef]
- Vu, M.T.; Chao, H.P.; Trinh, T.V.; Le, T.T.; Lin, C.C.; Tran, H.N. Removal of ammonium from groundwater using NaOH-treated activated carbon derived from corncob wastes: Batch and column experiments. J. Clean. Prod. 2018, 180, 560–570. [Google Scholar] [CrossRef]
- Talat, M.; Mohan, S.; Dixit, V.; Singh, D.K.; Hasan, S.H.; Srivastava, O.N. Effective removal of fluoride from water by coconut husk activated carbon in fixed bed column: Experimental and breakthrough curves analysis. Groundw. Sustain. Dev. 2018, 7, 48–55. [Google Scholar] [CrossRef]
- Zhu, Y.; Kolar, P.; Shah, S.B.; Cheng, J.J.; Lim, P.K. Avocado seed-derived activated carbon for mitigation of aqueous ammonium. Ind. Crop. Prod. 2016, 92, 34–41. [Google Scholar] [CrossRef]
- Giuliano, A.; De Bari, I.; Motola, V.; Pierro, N.; Giocoli, A.; Barletta, D. Techno-environmental Assessment of Two Biorefinery Systems to Valorize the Residual Lignocellulosic Biomass of the Basilicata Region. Appl. Math. Eng. Prob. 2019, 6, 317–323. [Google Scholar] [CrossRef]
- Giuliano, A.; Catizzone, E.; Barisano, D.; Nanna, F.; Villone, A.; De Bari, I.; Cornacchia, G.; Braccio, G. Towards Methanol Economy: A Techno-environmental Assessment for a Bio-methanol OFMSW/Biomass/Carbon Capture-based Integrated Plant. Int. J. Heat Technol. 2019, 37, 665–674. [Google Scholar] [CrossRef]
- Mannai, F.; Ammar, M.; Yanez, J.G.; Elaloui, E.; Moussaoui, Y. Alkaline delignification of cactus fibres for pulp and papermaking applications. J. Polym. Environ. 2018, 26, 798–806. [Google Scholar] [CrossRef]
- Mannai, F.; Ammar, M.; Yanez, J.G.; Elaloui, E.; Moussaoui, Y. Cellulose fiber from Tunisian Barbary Fig “Opuntiaficusindica” for papermaking. Cellulose 2016, 23, 2061–2072. [Google Scholar] [CrossRef]
- Lagergren, S. Zurtheorie der sogenannten adsorption geloesterstoffe. K. Sven. Vetensk. Handl. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second-order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plan surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.F. Uber die adsorption in losungen. Z. Phys. Chem. 1906, 57, 385–470. [Google Scholar] [CrossRef]
- Temkin, M.J.; Pyzhev, V. Recent Modifications to Langmuir Isotherms. ActaPhysiochimca URSS 1940, 12, 217–225. [Google Scholar]
- Dubinin, M.M.; Radushkevich, L.V. Equation of the Characteristic Curve of Activated Charcoal. Proc. USSR Phys. Chem. 1947, 55, 331–333. [Google Scholar]
- Ofomaja, A.E. Kinetics and pseudo-isotherm studies of 4-nitrophenol adsorption onto mansonia wood sawdust. Ind. Crops Prod. 2011, 33, 418–428. [Google Scholar] [CrossRef]
- Cotoruelo, L.M.; Marques, M.D.; Diaz, F.J.; Rodriguez-Mirasol, J.; Rodriguez, J.J.; Cordero, T. Adsorbent ability of lignin-based activated carbons for the removal of p-nitrophenol from aqueous solutions. Chem. Eng. J. 2012, 184, 176–183. [Google Scholar] [CrossRef]
- Giles, C.H.; Smith, D.; Huitson, A. A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J. Colloid Interf. Sci. 1974, 47, 755–765. [Google Scholar] [CrossRef]
- Fan, S.; Wang, Y.; Wang, Z.; Tang, J.; Tang, J.; Li, X. Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism. J. Environ. Chem. Eng. 2017, 5, 601–611. [Google Scholar] [CrossRef]
- Kula, I.; Ugurlu, M.; Karaoglu, H.; Celik, A. Adsorption of Cd (II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation. Bioresour. Technol. 2008, 99, 492–501. [Google Scholar] [CrossRef]
Isotherm | Non-Linear Form | Linear Form | Plot |
---|---|---|---|
Langmuir [38] | |||
Freundlich [39] | |||
Temkin [40] | |||
Dubinin–Radushkevich [41] |
Total pore volume (cm3/g) | 0.017 |
Pore diameter (Å) | 55.35 |
Specific surface SBET (m2/g) | 332 |
Carboxylic groups (mmol/g) | 0.243 |
Lactonic groups (mmol/g) | 0.073 |
Phenolic groups (mmol/g) | 0.294 |
Total basic groups (mmol/g) | 0.756 |
pHZCP | 9.1 |
Concentration (mg/L) | 10 | 50 | 80 | 100 | 150 | |
---|---|---|---|---|---|---|
Qe-exp (mg/g) | 1.647 | 8.147 | 12.453 | 14.467 | 14.901 | |
Pseudo-first order | Qe-cal (mg/g) | 0.091 | 0.067 | 0.040 | 1.723 | 2.415 |
k1 (min−1) | 0.005 | 0.004 | 0.003 | 0.006 | 0.005 | |
R2 | 0.726 | 0.894 | 0.440 | 0.761 | 0.881 | |
χ2 | 190.43 | 8730.40 | 34211.28 | 839.93 | 609.88 | |
∆Q | 0.9821 | 1.1065 | 1.1177 | 0.8715 | 0.7947 | |
EQRM | 1.4795 | 8.0681 | 12.3758 | 12.6809 | 12.7932 | |
Pseudo-second order | Qe-cal (mg/g) | 1.666 | 8.176 | 12.453 | 15.174 | 16.420 |
k2 (g/mg min) | 0.157 | 0.278 | 0.337 | 0.011 | 0.007 | |
R2 | 1.000 | 1.00 | 1.000 | 0.999 | 0.999 | |
χ2 | 0.08394 | 0.00298 | 0.002835 | 0.5185 | 1.21162 | |
∆Q | 0.0082 | 0.000046 | 0.000029 | 0.0052 | 0.0119 | |
EQRM | 0.1246 | 0.05205 | 0.06263 | 0.93499 | 1.48680 |
Concentration (mg/L) | 10 | 50 | 80 | 100 | 150 |
---|---|---|---|---|---|
Qe-cal (mg/g) | 1.6522 | 8.154 | 12.453 | 14.438 | 2.415 |
kdi (mg/g min0.5) | 0.0004 | 0.0009 | 0.0002 | 0.0326 | 0.027 |
C | 1.6479 | 8.1442 | 12.451 | 14.080 | 15.467 |
R2 | 0.918 | 0.976 | 0.495 | 0.968 | 0.913 |
Temperature (°C) | 15 | 30 | 40 | |
---|---|---|---|---|
Langmuir | Qmax (mg/g) | 16.835 | 13.623 | 12.738 |
KL (L/mg) | 22 | 2.1524 | 0.4866 | |
RL | 0.0030–0.0045 | 0.0030–0.0443 | 0.0135–0.1704 | |
R2 | 0.9986 | 0.9981 | 0.9972 | |
χ2 | 0.2471 | 0.5748 | 0.1296 | |
ΔQ | 0.0023 | 0.0040 | 0.0019 | |
EQRM | 0.5482 | 0.8159 | 0.3301 | |
Freundlich | 1/nF | 0.2312 | 0.3111 | 0.3442 |
KF | 13.1615 | 6.7957 | 4.0551 | |
R2 | 0.6591 | 0.8420 | 0.8258 | |
χ2 | 16.0993 | 5.3508 | 4.6874 | |
ΔQ | 0.3277 | 0.1052 | 0.0929 | |
EQRM | 5.4382 | 2.7908 | 2.2914 | |
Temkin | B (J/mol) | 1.8330 | 2.2286 | 2.0725 |
AT(L/g) | 1731.49 | 41.4929 | 10.2229 | |
R2 | 0.8079 | 0.9712 | 0.9274 | |
χ2 | 5.2655 | 0.7642 | 1.2520 | |
ΔQ | 0.2602 | 0.0204 | 0.0338 | |
EQRM | 2.1942 | 0.7590 | 0.9398 | |
Dubinin-Radushkevich | Qmax (mg/g) | 17.1209 | 11.8012 | 9.5020 |
β (mol2/kJ2) | 0.0126 | 0.0431 | 0.1449 | |
R2 | 0.9924 | 0.9288 | 0.8720 | |
χ2 | 0.3163 | 3.2227 | 3.6093 | |
ΔQ | 0.0041 | 0.0351 | 0.0631 | |
EQRM | 0.5497 | 1.7442 | 1.6527 |
Temperature (K) | ΔG° (J/mol) | ΔH° (J/mol) | ΔS° (J/mol K) |
---|---|---|---|
288 | −35756.70 | ||
303 | −31762.92 | −114114.43 | −271.99 |
313 | −28939.15 |
Cycle | Adsorption (%) | Desorption (%) |
---|---|---|
1 | 99.3 | 99.1 |
2 | 99.0 | 99.0 |
3 | 98.5 | 99.0 |
4 | 96.2 | 98.3 |
5 | 94.0 | 98.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elhleli, H.; Mannai, F.; ben Mosbah, M.; Khiari, R.; Moussaoui, Y. Biocarbon Derived from Opuntia ficus indica for p-Nitrophenol Retention. Processes 2020, 8, 1242. https://doi.org/10.3390/pr8101242
Elhleli H, Mannai F, ben Mosbah M, Khiari R, Moussaoui Y. Biocarbon Derived from Opuntia ficus indica for p-Nitrophenol Retention. Processes. 2020; 8(10):1242. https://doi.org/10.3390/pr8101242
Chicago/Turabian StyleElhleli, Hanedi, Faten Mannai, Mongi ben Mosbah, Ramzi Khiari, and Younes Moussaoui. 2020. "Biocarbon Derived from Opuntia ficus indica for p-Nitrophenol Retention" Processes 8, no. 10: 1242. https://doi.org/10.3390/pr8101242
APA StyleElhleli, H., Mannai, F., ben Mosbah, M., Khiari, R., & Moussaoui, Y. (2020). Biocarbon Derived from Opuntia ficus indica for p-Nitrophenol Retention. Processes, 8(10), 1242. https://doi.org/10.3390/pr8101242