Bacterial Toxicity Testing: Modification and Evaluation of the Luminescent Bacteria Test and the Respiration Inhibition Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Luminescent Bacteria Tests
2.1.1. ISO 11348-1 Medium
2.1.2. Precultures, Main Cultures and Fermenter Cultivation
2.1.3. Protective Medium
2.1.4. Reactivation Medium and Reactivation Process
2.1.5. Performance of the Luminescence Bacteria Test
2.1.6. Calculation of Inhibition Data
2.2. Respiration Inhibition Tests
2.2.1. OECD 209 Nutrient Solution
2.2.2. Microbial Biomass
2.2.3. Test Conditions and Performance of the Tests
2.2.4. Calculation of Inhibition Data and Statistical Analysis
3. Results
3.1. Modification of the Luminescent Bacteria Test
3.1.1. Determination of Cell Numbers
3.1.2. Yeast Extract Addition to the Growth Medium
3.1.3. Optimization of the Magnesium, Calcium and Potassium Concentration in the Growth Medium
3.1.4. Growth Patterns of Vibrio fischeri in Shaking Flasks and in an Aerated Fermenter
3.1.5. Influence of a Precooling Process on Cell Viability
3.1.6. Storage of Luminescent Bacteria and the Influence of the Reactivation Medium
3.1.7. Sensitivity of Vibrio fischeri to 3.5-Dichlorophenol
3.1.8. Estimation of Toxicity of ZnSO4 and Chromium (VI) Ions
3.2. Optimization of the Activated Sludge Respiration Inhibition Test
3.2.1. Blank Values
3.2.2. Advantages of Different Statistical Exploitations
3.2.3. Comparative Toxicity of Different Dichlorophenols and 3.4-Dichloroaniline after Long-Term Incubation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gendig, C.; Domogala, G.; Agnoli, F.; Pagga, U.; Strotmann, U.J. Evaluation and further development of the activated sludge respiration inhibition test. Chemosphere 2003, 52, 143–149. [Google Scholar] [CrossRef]
- Pagga, U.; Bachner, J.; Strotmann, U. Inhibition of nitrification in laboratory tests and model wastewater treatment plants. Chemosphere 2006, 65, 1–8. [Google Scholar] [CrossRef]
- Strotmann, U.J.; Eglsäer, H. The toxicity of substituted phenols in the nitrification inhibition test and the luminescent bacteria test. Ecotoxicol. Environ. Saf. 1995, 30, 269–273. [Google Scholar] [CrossRef]
- Mamais, D.; Noutsopulos, C.; Stasinakis, A.S.; Kouris, N.; Andreadakis, A.D. Comparison of bioluminescence and nitrification inhibition methods for assessing toxicity to municipal activated sludge. Water Environ. Res. 2008, 80, 484–489. [Google Scholar] [CrossRef]
- Stasinakis, A.S.; Mamais, D.; Thomaidis, N.S.; Danika, E.; Gatidou, G.; Lekkas, T. Inhibitory effect of triclosan and nonylphenol on respiration rates and ammonia removal in activated sludge systems. Ecotoxicol. Environ. Saf. 2008, 70, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.A.; Araujo, C.V.M.; Nascimento, R.B.; Strotmann, U.J.; da Silva, E.M. Utilization of respirometry to assess organic matter reduction of effluents from the Camacari industrial complex (BA, Bahia). Braz. Arch. Biol. Technol. 2007, 50, 311–319. [Google Scholar] [CrossRef] [Green Version]
- ISO 8192. Water Quality—Test for Inhibition of Oxygen Consumption by Activated Sludge for Carbonaceous and Ammonium Oxidation; International Organisation for Standardization: Geneva, Switzerland, 2007. [Google Scholar]
- ISO 9509. Water Quality—Toxicity Test for Assessing the Inhibition of Nitrification of Activated Sludge Microorganisms; International Organisation for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Lee, S.; Sode, K.; Nakanishi KMarty, J.L.; Tamiya, E.; Karube, I. A novel microbial sensor using luminous bacteria. Biosens. Bioelectron. 1992, 7, 273–277. [Google Scholar] [CrossRef]
- Zhou, X.; Sang, W.; Liu, S.; Zhang, Y.; Ge, H. Modeling and prediction for the acute toxicity of pesticide mixtures to the freshwater luminescent bacterium Vibrio qinghaiensis sp-Q67. J. Environ. Sci. 2010, 22, 433–440. [Google Scholar] [CrossRef]
- ISO 11348. Water Quality—Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio fischeri (Luminescent Bacteria Test); Part 1: Method Using Freshly Prepared Bacteria; Part 2: Method Using Liquid-Dried Bacteria; Part 3: Method Using Freeze-Dried Bacteria; International Organisation for Standardization: Geneva, Switzerland, 2007. [Google Scholar]
- Anderson, K.; Koopman, B.; Britton, G. Evaluation of the INT-dehydrogenase assay for heavy-metal inhibition of activated sludge. Water Res. 1988, 22, 349–353. [Google Scholar] [CrossRef]
- Strotmann, U.; Butz, B.; Bias, W.R. The dehydrogenase assay with resazurin: Practical performance as a monitoring system and pH-dependent toxicity of phenolic compounds. Ecotoxicol. Environ. Saf. 1993, 25, 79–89. [Google Scholar] [CrossRef]
- Strotmann, U.J.; Eglsäer, H.; Pagga, U. Development and evaluation of a growth inhibition test with sewage bacteria for assessing bacterial toxicity of chemical compounds. Chemosphere 1994, 28, 755–766. [Google Scholar] [CrossRef]
- Strotmann, U.J.; Pagga, U. A growth inhibition test with sewage bacteria–Results of an international ring test 1995. Chemosphere 1996, 32, 921–933. [Google Scholar] [CrossRef]
- Alsop, G.M.; Waggy, G.T.; Conway, R.A. Bacterial growth inhibition test. J. Water Pollut. Control Fed. 1980, 52, 2452–2456. [Google Scholar]
- ISO 15522. Water Quality—Determination of the Inhibitory Effect of Water Constituents on the Growth of Activated Sludge Microorganisms; International Organisation for Standardization: Geneva, Switzerland, 1999. [Google Scholar]
- Kasai, F.; Hatakeyama, S. Herbicide susceptibility in 2 green algae, Chlorella vulgaris and Selenastrum capricornutum. Chemosphere 1993, 27, 899–904. [Google Scholar] [CrossRef]
- Pardos, M.; Bennnghoff, C.; Thomas, R.J. Photosynthetic and population growth response of the test alga Selenastrum capricornutum Printz to zinc, cadmium and suspended sediment elutriates. J. Appl. Phycol. 1998, 10, 145–151. [Google Scholar] [CrossRef]
- Oliveira, C.A.; Araujo, C.V.M.; Nascimento, R.B.; Strotmann, U.J.; da Silva, E.M. The use of Microtox™. to assess toxicity removal of industrial effluents from the industrial district of Camacari (BA, Bahia). Chemosphere 2005, 58, 1277–1281. [Google Scholar]
- Abbas, M.; Adil, M.; Ehtisham-ul-Haque, S.; Munir, B.; Yameen, M.; Ghaffar, A.; Abbas Shar, G.; Tahir, M.A.; Iqbal, M. Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review. Sci. Total Environ. 2018, 626, 1295–1309. [Google Scholar] [CrossRef]
- Komori, K.; Miyajima, S.; Tsuru, T.; Fujii, T.; Mohri, S.; Ono, Y.; Sakai, Y. A rapid and simple evaluation system for gas toxicity using luminous bacteria entrapped by a polyion complex membrane. Chemosphere 2009, 77, 1106–1112. [Google Scholar] [CrossRef]
- Arbuckle, W.B.; Alleman, J.E. Effluent toxicity using nitrifiers and Microtox™. Water Environ. Res. 1992, 64, 263–267. [Google Scholar] [CrossRef]
- Toussaint, M.W.; Shedd, T.R.; van der Schaile, W.H.; Leather, G.R. A comparison of standard acute toxicity tests with rapid screening toxicity tests. Environ. Toxicol. Chem. 1995, 14, 907–915. [Google Scholar] [CrossRef]
- Salizzato, M.; Bertato, V.; Pavoni, B.; Volpi Giardini, A.; Ghetti, P.F. Sensitivity limits and EC50 values of the Vibrio fischeri test for organic micropollutants in natural and spiked extracts from sediments. Environ. Toxicol. Chem. 1998, 17, 655–661. [Google Scholar] [CrossRef]
- Rubinos, D.A.; Calvo, V.; Iglesias, L.; Barral, M.T. Acute toxicity of arsenic to Aliivibrio fischeri (Microtox™ bioassay) as influenced by potential competitive–protective agents. Environ. Sci. Pollut. Res. 2014, 21, 8631–8644. [Google Scholar] [CrossRef] [PubMed]
- Ribo, J.M.; Kaiser, K.L.E. Photobacterium phosphoreum bioassay. I. Test procedures and Applications. Toxic. Assess. 1987, 2, 305–322. [Google Scholar] [CrossRef]
- Kungolos, A.; Tsiridis, V.P.; Samaras, P.; Tsiropoulos, N. Toxic and interactive toxic effects of agrochemical substances and copper on Vibrio fischeri. WIT Trans. Ecol. Environ. 2006, 99. [Google Scholar] [CrossRef] [Green Version]
- Townend, J. Practical Statistics for Environmental and Biological Scientists; John Wiley & Sons Ltd.: New York, NY, USA, 2001. [Google Scholar]
- Mann, P.S. Introductory Statistics, 4th ed.; John Wiley & Sons Inc.: New York, NY, USA, 2001. [Google Scholar]
- OECD. Test No. 209: Activated Sludge, Respiration Inhibition Test (Carbon and Ammonium Oxidation), OECD Guidelines for the Testing of Chemicals, Section 2; OECD Publishing: Paris, France, 2010. [Google Scholar] [CrossRef]
- APHA. Standard Methods for Examination of Water and Wastewater, 20th ed.; American Public Health Association, Port City Press: Baltimore, MD, USA, 1998. [Google Scholar]
- Tarkpea, M.; Hansson, M.; Samuelsson, B. Comparison of the Microtox™ test with the 96-h LC50 test for the harpactioid Nitocra spinipe. Ecotoxicol. Environ. Saf. 1986, 11, 755–766. [Google Scholar] [CrossRef]
- Backhaus, T.; Froehner, K.; Altenburger, R.; Grimme, L.H. Toxicity testing with Vibrio fischeri: A comparison between the long term (24 h) and the short term (30 min) bioassay. Chemosphere 1997, 35, 2925–2938. [Google Scholar] [CrossRef]
- Weber, E. Grundriß der Biologischen Statistik, 8. Aufl; Gustav Fischer Verlag: Stuttgart, Germany, 1980; pp. 534–543. [Google Scholar]
- ISO 7027. Water Quality. Determination of Turbidity, Part 1: Quantitative Methods; International Organisation for Standardization: Geneva, Switzerland, 2016. [Google Scholar]
- Strotmann, U.J.; Gendig, C.; Geldern, A.; Kuhn, A.; Klein, S. Optimization of a respirometric method for the determination of the heterotrophic yield of activated sludge bacteria. Chemosphere 1999, 38, 3555–3570. [Google Scholar] [CrossRef]
- Peters, C.; Ahlf, W. Validation, Harmonization and Implementation of a Base-Set of Bioassays for the Assessment of Brackish and Marine Sediment Samples; Environmental Research of the Federal Ministry of the Environment, Nature, Conservation and Nuclear Safety: Berlin, Germany, 2003; Research Report 299 25 261 UBA FB 000508. [Google Scholar]
- Fulladosa, E.; Murat, J.C.; Martínez, M.; Villaescusa, I. Patterns of metals and arsenic poisoning in Vibrio fischeri bacteria. Chemosphere 2005, 60, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Fulladosa, E.; Desjardin, V.; Murat, J.C.; Gourdon, R.; Villaescusa, I. Cr(VI) reduction into Cr(III) as a mechanism to explain the low sensitivity of Vibrio fischeri bioassay to detect chromium pollution. Chemosphere 2006, 65, 644–650. [Google Scholar] [CrossRef]
- Fulladosa, E.; Murat, J.C.; Villaescusa, I. Effect of Cadmium (II), Chromium (VI), and Arsenic (V) on long-term viability and growth inhibition assays using Vibrio fischeri bacteria. Arch. Environ. Contamin. Toxicol. 2005, 49, 299–306. [Google Scholar] [CrossRef]
- Ishaque, A.B.; Johnson, L.; Gerald, T.; Boucaud, D.; Okoh, J.; Tchounwou, P.B. Assessment of individual and combined toxicities of four non-essential metals (As, Cd, Hg and Pb) in the Microtox™ assay. Int. J. Environ. Res. Public Health 2006, 3, 118–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broecker, B.; Zahn, R. The performance of activated sludge plants compared with the results of various bacterial toxicity tests–A study with 3.5-dichlorophenol. Water Res. 1977, 11, 165–172. [Google Scholar] [CrossRef]
- Klecka, G.M.; Landi, L.P.; Bodner, K.M. Evaluation of the OECD activated sludge respiration inhibition test. Chemosphere 1985, 14, 1239–1251. [Google Scholar] [CrossRef]
- Elnabrarawy, M.T.; Robideau, R.R.; Beach, S.A. Comparison of three rapid toxicity test procedures: Microtox™, Polytox™ and activated sludge respiration inhibition. Toxicol. Assess. 1988, 3, 361–370. [Google Scholar] [CrossRef]
- Gutierrez, M.; Extebarria, J.; de las Fuentes, L. Evaluation of wastewater toxicity: Comparative study between Microtox™ and activated sludge oxygen uptake inhibition. Water Res. 2002, 36, 919–924. [Google Scholar] [CrossRef]
- Yoshioka, Y.; Nagase, H.; Ose, Y.; Sato, T. Evaluation of the test method “activated sludge respiration inhibition test” proposed by the OECD. Ecotoxicol. Environ. Saf. 1986, 12, 206–212. [Google Scholar] [CrossRef]
- Strotmann, U.J.; Weberruß, U.; Bias, W.R. Degradation of morpholine in several biodegradation tests and in wastewater treatment plants. Chemopshere 1993, 26, 1729–1742. [Google Scholar] [CrossRef]
Compound | Conc. in gL−1 (mM) in the ISO 11348 Part 1 Growth Medium | Conc. in gL−1 (mM) in the Modified Growth Medium |
---|---|---|
NaCl | 30 (513) | 30 (513) |
Na2PO4·H2O | 6.10 (38.38) | 6.10 (38.38) |
K2HPO4·3 H2O | 2.75 (12.05) | 2.75 (12.05) * |
MgSO4·7 H2O | 0.204 (0.83) | 0.204 (0.83) |
CaCl2·2 H2O | 0.0 (0.0) | 0.176 (1.2) |
(NH4)2HPO4 | 0.5 (3.79) | 0.5 (3.79) |
Glycerol (87%, w/w) *** | 3 mL (34.9) ** | 3 mL (34.9) ** |
Peptone (from casein) | 5.0 | 5.0 |
Yeast extract | 0.5 | 5.0 |
Parameter | Mean (mgL−1) | s (mg L−1) | CV (%) | 95% CI (mg L−1) |
---|---|---|---|---|
5 min incubation time | ||||
EC20 | 1.60 | 0.41 | 25.4 | 1.10–2.10 |
EC50 | 3.52 | 0.23 | 6.5 | 3.24–3.80 |
EC80 | 6.64 | 0.26 | 3.9 | 6.32–6.96 |
30 min incubation time | ||||
EC20 | 1.42 | 0.46 | 32.0 | 0.86–1.99 |
EC50 | 3.60 | 0.24 | 6.5 | 3.31–3.89 |
EC80 | 6.28 | 0.30 | 4.8 | 5.90–6.66 |
60 min incubation time | ||||
EC20 | 1.52 | 0.36 | 23.4 | 1.08–1.96 |
EC50 | 3.58 | 0.23 | 6.4 | 3.30–3.86 |
EC80 | 6.80 | 0.22 | 3.3 | 6.52–7.08 |
Parameter | Mean (mg L−1) | s (mg L−1) | CV (%) | 95% CI (mg L−1) |
---|---|---|---|---|
5 min incubation time | ||||
EC20 | 15.54 | 2.08 | 13.35 | 13.62–17.46 |
EC50 | 46.56 | 5.65 | 12.13 | 41.34–51.79 |
EC80 | >60 | n.d. | n.d. | n.d. |
30 min incubation time | ||||
EC20 | 5.39 | 1.20 | 22.27 | 4.28–6.50 |
EC50 | 22.74 | 3.00 | 13.19 | 19.96–25.51 |
EC80 | 57.09 | 10.25 | 17.95 | 47.61–66.57 |
60 min incubation time | ||||
EC20 | 8.66 | 1.89 | 21.79 | 6.92–10.41 |
EC50 | 20.93 | 4.05 | 19.35 | 17.18–24.67 |
EC80 | 46.96 | 7.88 | 16.77 | 39.68–54.25 |
Parameter | Mean (mg L−1) | s (mg L−1) | CV (%) | 95 % CI (mg L−1) |
---|---|---|---|---|
EC20 | 0.75 | 0.19 | 25.03 | 0.57–0.92 |
EC50 | 2.65 | 0.61 | 23.04 | 2.08–3.21 |
EC80 | 4.63 | 0.55 | 11.76 | 4.13–5.14 |
Parameter | Test Compound | |||
---|---|---|---|---|
2.3-DCP | 3.4-DCP | 3.5-DCP | 3.4-DCA | |
Mean EC20 (mg L−1) | 0.40 | 0.42 | 0.62 | 0.54 |
95% CI (mg L−1) | 0.37–0.43 | 0.32–0.53 | 0.53–0.71 | 0.48–0.60 |
s (mg L−1) | 0.02 | 0.08 | 0.07 | 0.05 |
CV (%) | 5.8 | 11.8 | 11.4 | 8.6 |
Mean EC50 (mg L−1) | 5.50 | 3.38 | 6.35 | 6.82 |
95% CI (mg L−1) | 4.98–7.38 | 2.11–4.65 | 5.68–7.02 | 5.69–7.95 |
s (mg L−1) | 0.42 | 1.02 | 0.54 | 0.91 |
CV (%) | 7.63 | 30.3 | 8.5 | 13.3 |
Mean EC80 (mg L−1) | 52.20 | 21.40 | 27.22 | 83.25 |
95% CI (mg L−1) | 43.70–60.43 | 12.51–30.29 | 21.22–33.32 | 64.72–101.78 |
s (mg L−1) | 6.63 | 7.16 | 4.87 | 11.64 |
CV (%) | 12.70 | 33.5 | 17.9 | 14.0 |
Compound | Respiration Inhibition Test ISO 8192, OECD 209 EC50 (mg L−1) | Luminescent Bacteria Test ISO 11348 EC50 (mg L−1) | Nitrification Inhibition Test ISO 9509 EC50 (mg L−1) | Sewage Bacteria Growth Inhibition Test ISO 15522 EC50 (mg L−1) |
---|---|---|---|---|
2.3-dichlorophenol | 5.5–47 | 4 | 0.09 | 40–60 |
3.4-dichlorophenol | 4–13 | 1 | 0.8 | 19–26 |
3.5-dichlorophenol | 6–60 | 5 | 0.5 | 5–10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strotmann, U.; Pastor Flores, D.; Konrad, O.; Gendig, C. Bacterial Toxicity Testing: Modification and Evaluation of the Luminescent Bacteria Test and the Respiration Inhibition Test. Processes 2020, 8, 1349. https://doi.org/10.3390/pr8111349
Strotmann U, Pastor Flores D, Konrad O, Gendig C. Bacterial Toxicity Testing: Modification and Evaluation of the Luminescent Bacteria Test and the Respiration Inhibition Test. Processes. 2020; 8(11):1349. https://doi.org/10.3390/pr8111349
Chicago/Turabian StyleStrotmann, Uwe, Daniel Pastor Flores, Odorico Konrad, and Cornelia Gendig. 2020. "Bacterial Toxicity Testing: Modification and Evaluation of the Luminescent Bacteria Test and the Respiration Inhibition Test" Processes 8, no. 11: 1349. https://doi.org/10.3390/pr8111349
APA StyleStrotmann, U., Pastor Flores, D., Konrad, O., & Gendig, C. (2020). Bacterial Toxicity Testing: Modification and Evaluation of the Luminescent Bacteria Test and the Respiration Inhibition Test. Processes, 8(11), 1349. https://doi.org/10.3390/pr8111349