PEMFC Transient Response Characteristics Analysis in Case of Temperature Sensor Failure
Abstract
:1. Introduction
2. Dynamic Model for the PEMFC
- (1)
- The lumped model approach was used in this study for reducing computation load.
- (2)
- All gases were assumed to be ideal.
- (3)
- Operating stack temperature and coolant inlet is controlled at 70 °C.
- (4)
- The heat generated in the gas on the anode and the cathode sides was much smaller than the stack heat.
- (5)
- The water injected by the humidifier was in the form of vapor of latent heat.
- (6)
- Flow in the gas channel was fully developed laminar flow.
- (7)
- Liquid water transport along the stack channel is neglected.
2.1. Lumped Stack Model
2.1.1. Anode Channel System
2.1.2. Cathode Channel System
2.1.3. Hydrogen & Oxygen Utilization Factor
2.1.4. Cell Voltage Model
Open Circuit Voltage (OCV)
Activation Overvoltage
Ohmic Overvoltage
Concentration Overvoltage
2.1.5. Water Transport Model in the Membrane
2.1.6. Heat Transfer and Energy Balance
2.1.7. Cooling Compartments
3. Controller Design
4. Results and Discussion
4.1. Fault Scenarios
4.2. Fault Free PEMFC Dynamic Simulation
4.3. Stack Sensor Stuck
4.4. Stack Sensor Scaling
4.5. Stack Sensor Offset
4.6. Coolant Inlet Sensor Stuck
4.7. Coolant Inlet Sensor Scaling
4.8. Coolant Inlet Sensor Offset
4.9. Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
A | Area (m2) |
C | Concentration (mol/m3) |
cp | Specific heat (J/kg·K) |
D | Hydraulic diameter (m) |
E | Electric potential (V) |
F | Faraday constant (coulombs/electron-mol) |
f | Friction loss (-) |
H | Enthalpy (J/mol) |
h | Heat transfer coefficient (W/m2·k) |
I | Current (A) |
j | Current density (A/cm2) |
k | Heat conductivity (W/mK) |
M | Molecular weight of gas (g/mol) |
m | Mass flow rate (kg/s) |
N | Motor rpm (rpm) |
Nu | Nusselt number (-) |
n | Number of cells (-) |
P | Power (kW) |
p | Pressure (Pa) |
Pr | Prandtl number (-) |
Q | Heat transfer rate (J/s) |
R | Resistance (Ω·cm2) |
Re | Reynolds number (-) |
s | Stoichiometric (-) |
T | Temperature (K) |
V | Volume (m3) |
z | Thickness (m) |
Subscripts and Superscripts
act | Activation Loss |
air | Air |
an | Anode |
amb | Ambient |
bip | Bipolar |
blo | Blower |
ca | Cathode |
cell | Cell |
ch | Channel |
con | Concentration loss |
cool | Coolant |
ele | Electricity |
fan | Radiator fan |
gen | Generation |
gas | Gas |
gross | Gross power |
grp | Graphite |
H2 | Hydrogen |
H2O | Water |
in | Inlet |
L | Limit |
l | Liquid |
mem | Membrane |
Nern | Nernst equation |
N2 | Nitrogen |
ohm | Ohmic loss |
out | Outlet |
O2 | Oxygen |
pump | Water pump |
react | Reaction |
rev | Reservoir |
st | Storage |
sto | Stoichiometric |
sur | Surrounding |
v | Vapor |
Greek
γ | Ratio of Specific Heat |
η | Efficiency |
λ | Water content |
ρ | Density |
σ | Bulk electronic conductivity |
φ | Tuning factor |
References
- Wang, T.; Chen, K.S.; Mishler, J.; Cho, S.C.; Adroher, X.C. A review of polymer electrolyte membrane fuel cells: Technology, Application, and needs on fundamental research. Appl. Energy 2011, 88, 981–1007. [Google Scholar] [CrossRef] [Green Version]
- Song, G.H.; Meng, H. Numerical modeling and simulation of PEM fuel cells: Progress and perspective. Acta Mech. Sin. 2013, 29, 318–334. [Google Scholar] [CrossRef]
- Wu, H.W. Areview of recent development: Transport and performance modeling of PEM fuel cells. Appl. Energy 2016, 165, 81–106. [Google Scholar] [CrossRef]
- Kim, Y.B.; Kang, S.J. Time delay control for fuel cells with bidirectional DC/DC converter and battery. Int. J. Hydrog. Energy 2010, 35, 8792–8803. [Google Scholar] [CrossRef]
- Xu, L.; Hong, P.; Fang, C.; Li, J.; Ouyang, M.; Lehnert, W. Interactions between a polymer electrolyte membrane fuel cell and boost converter utilizing a multiscale model. J. Power Sources 2018, 395, 237–250. [Google Scholar] [CrossRef]
- Amiri, A.; Tang, S.; Steinberger-Wilckens, R.; Tadé, M.O. Evaluation of fuel diversity in solid oxide fuel cell system. Int. J. Hydrog. Energy 2018, 43, 23475–23487. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Yang, Y.; Lin, W.; Yang, Y.; Jia, W.; Zhang, J. Design of a novel high-efficiency water separator for proton exchange membrane fuel cell system. Int. J. Hydrog. Energy 2019, 44, 5462–5469. [Google Scholar] [CrossRef]
- Zhang, B.; Lin, F.; Zhang, C.; Liao, R.; Wang, Y.X. Design and implementation predictive control for an open cathode fuel cell thermal management system. Renew. Energy 2020, 154, 1014–1024. [Google Scholar] [CrossRef]
- Zhou, Z.; Qiu, D.; Zhai, S.; Peng, L.; Lai, X. Investigation of the assembly for high-power proton exchange membrane fuel cell stack through an efficient equivalent model. Appl. Energy 2020, 277, 115532. [Google Scholar] [CrossRef]
- Liese, E.; Albright, J.; Zitney, S.A. Startup, shutdown, and load-following simulations of a 10 MWe supercritical CO2 recompression closed Brayton cycle. Appl. Energy 2020, 227, 115628. [Google Scholar] [CrossRef]
- Gallo, M.; Costabile, C.; Sorrentino, M.; Polverino, P.; Pianese, C. Development and application of a comprehensive model-based methodology for fault mitigation of fuel cell powerd systems. Appl. Energy 2020, 279, 115698. [Google Scholar] [CrossRef]
- Batet, D.; Zohra, F.T.; Kristensen, S.B.; Andreasen, S.J. Continuous durability study of a high temperature polymer electrolyte membrane fuel cell stack. Appl. Energy 2020, 277, 115588. [Google Scholar] [CrossRef]
- Shahgaldi, S.; Alaefour, I.; Li, X. The impact of short side chain ionomer on polymer electrolyte membrane fuel cell performance and durability. Appl. Energy 2018, 217, 295–302. [Google Scholar] [CrossRef]
- Lan, T.; Strunz, K. Modeling of multi-physics transients in PEM fuel cells using equivalent circuits for consistent representation of electric, pneumatic, and thermal quantities. Electr. Power Energy Syst. 2020, 119, 105803. [Google Scholar] [CrossRef]
- He, P.; Mu, Y.U.; Park, J.W.; Tao, W.Q. Modeling of the effects of cathode catalyst layer design parameters on performance of polymer electrolyte membrane. Appl. Energy 2020, 277, 115555. [Google Scholar] [CrossRef]
- Liu, B.; Chen, H.; Zhang, T.; Pei, P. A vehicular proton exchange membrane fuel cell system co-simulation modeling method based on the stack internal distribution parameters monitoring. Energy Convers. Manag. 2019, 197, 111898. [Google Scholar] [CrossRef]
- Messing, M.; Kjeang, E. Empirical modeling of cathode electrode durability in polymer electrolyte fuel cells. J. Power Sources 2020, 451, 227750. [Google Scholar] [CrossRef]
- Pan, M.; Li, C.; Liao, J.; Lei, H.; Pan, C.; Meng, X.; Huang, H. Design and modeling of PEM fuel cell based on different flow fields. Energy 2020, 207, 118331. [Google Scholar] [CrossRef]
- Gwak, G.; Ju, H. A rapid start-up strategy for polymer electrolyte fuel cells at subzero temperature based on control of the operating current density. Int. J. Hydrog. Energy 2015, 40, 11989–11997. [Google Scholar] [CrossRef]
- Murugesan, K.; Senniappan, V. Investigation of water management dynamics on the performance of a Ballard-Mark-V proton exchange membrane fuel cell stack system. Int. J. Electrochem. Sci. 2013, 8, 7885–7904. [Google Scholar]
- Lee, C.H.; Yang, J.T. Modeling of the Ballard-Mark-V proton exchange membrane fuel cell with power converters for applications in autonomous underwater vehicles. J. Power Sources 2011, 196, 3810–3823. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, D.K. Parametric study on dynamic heat and mass transfer response in polymer electrolyte membrane fuel cell for automotive applications. Appl. Therm. Eng. 2020, 167, 114729. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, D.K. Operating strategy for successful start-up in self-humidified polymer electrolyte membrane fuel-cell system. Appl. Therm. Eng. 2019, 152, 370–376. [Google Scholar] [CrossRef]
- Pan, T.; Shen, J.; Sun, L.; Lee, K.Y. Thermodynamic modelling and intelligent control of fuel cell anode purge. Appl. Therm. Eng. 2019, 154, 196–207. [Google Scholar] [CrossRef]
- Chen, B.; Tu, Z.; Chan, S.H. Performance degradation and recovery characteristics during gas purging in a proton exchange membrane fuel cell with a dead-ended anode. Appl. Therm. Eng. 2018, 129, 968–978. [Google Scholar] [CrossRef]
- Mao, L.; Jackson, L.; Davies, B. Investigation of PEMFC fault diagnosis with consideration of sensor reliability. Int. J. Hydrog. Energy 2018, 43, 16941–16948. [Google Scholar] [CrossRef]
- Steiner, N.Y.; Hissel, D.; Mocoteguy, P.; Candusso, D. Diagnosis of polymer electrolyte fuel cells failure modes (flooding & drying out) by neural network modeling. Int. J. Hydrog. Energy 2011, 36, 3067–3075. [Google Scholar]
- Bougatef, Z.; Abdelkrim, N.; Aitouche, A.; Abdelkrim, M.N. Fault detection of a PEMFC system based on delayed LPV observer. Int. J. Hydrog. Energy 2020, 45, 11233–11241. [Google Scholar] [CrossRef]
- Han, J.Y.; Yu, S.S. Ram air compensation analysis of fuel cell vehicle cooling system under driving modes. Appl. Therm. Eng. 2018, 142, 530–542. [Google Scholar] [CrossRef]
- Han, J.Y.; Yu, S.S.; Yi, S. Advanced thermal management of automotive fuel cells using a model reference adaptive control algorithm. Int. J. Hydrog. Energy 2017, 42, 4328–4341. [Google Scholar] [CrossRef]
Specification | Value | Unit |
---|---|---|
Fuel cell length | 0.196 | m |
Fuel cell width | 0.196 | m |
Membrane thickness | 0.000108 | m |
Fuel cell temperature | 70 | °C |
Coolant inlet temperature | 60 | °C |
Number of cells in stack | 381 | NA |
Fault Description | Fault Type | Magnitude |
---|---|---|
Stack sensor | Stuck | −45 °C |
Offset | −25 °C | |
Scaling | 50% | |
Coolant inlet sensor | Stuck | −10 °C |
Offset | −25 °C | |
Scaling | 50% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Yu, S.; Yun, J. PEMFC Transient Response Characteristics Analysis in Case of Temperature Sensor Failure. Processes 2020, 8, 1353. https://doi.org/10.3390/pr8111353
Han J, Yu S, Yun J. PEMFC Transient Response Characteristics Analysis in Case of Temperature Sensor Failure. Processes. 2020; 8(11):1353. https://doi.org/10.3390/pr8111353
Chicago/Turabian StyleHan, Jaeyoung, Sangseok Yu, and Jinwon Yun. 2020. "PEMFC Transient Response Characteristics Analysis in Case of Temperature Sensor Failure" Processes 8, no. 11: 1353. https://doi.org/10.3390/pr8111353
APA StyleHan, J., Yu, S., & Yun, J. (2020). PEMFC Transient Response Characteristics Analysis in Case of Temperature Sensor Failure. Processes, 8(11), 1353. https://doi.org/10.3390/pr8111353