A New Control Performance Evaluation Based on LQG Benchmark for the Heating Furnace Temperature Control System
Abstract
:1. Introduction
2. LQG Benchmark
LQG Solution via State Space Model
3. FO-PFC Controller Principle
4. Case Study
4.1. System Description
4.2. Process Model Establishment
4.3. Computation of LQG Benchmark
4.4. Simulation Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
References
- Paulonis, M.A.; Cox, J.W. A practical approach for large-scale controller performance assessment, diagnosis, and improvement. J. Process Control. 2003, 13, 155–168. [Google Scholar] [CrossRef]
- Zhang, R.; Jin, Q. Design and Implementation of hybrid mode-ling and PFC for oxygen content regulation in a coke furnace. IEEE Trans. Ind. Inf. 2018, 14, 2335–2342. [Google Scholar] [CrossRef]
- Zhang, R.D.; Wang, S.Q. Support vector machine based predictive functional control design for output temperature of coking furnace. J. Process Control. 2008, 18, 439–448. [Google Scholar] [CrossRef]
- Li, R.; Wu, F.; Hou, P.; Zou, H. Performance assessment of FO-PID temperature control system using a fractional order LQG benchmark. IEEE Access 2020, 8, 116653–116662. [Google Scholar] [CrossRef]
- Devries, W.; Wu, S. Evaluation of process control effectiveness and diagnosis of variation in paper basis weight via multivariate time-series analysis. IEEE Trans. Autom. Contr. 1978, 23, 702–708. [Google Scholar] [CrossRef]
- Stanfelj, N.; Marlin, T.E.; MacGregor, J.F. Monitoring and diagnosing process control performance: The single-loop case. Ind. Eng. Chem. Res. 1993, 2, 301–314. [Google Scholar] [CrossRef]
- Li, Z.; Evans, R.J. Minimum variance control of linear time-varying systems. Automatica 1997, 33, 1531–1537. [Google Scholar] [CrossRef]
- Huang, B.; Shah, S.L.; Miller, R. Feed/forward plus feedback controller performance assessment of MIMO systems. IEEE Trans. Control Syst. Technol. 2000, 8, 580–587. [Google Scholar] [CrossRef]
- Grimble, M.J. Controller performance benchmarking and tuning using generalized minimum variance control. Automatica 2002, 38, 2111–2119. [Google Scholar] [CrossRef]
- Kadali, R.; Huang, B. Controller performance analysis with LQG benchmark obtained under closed loop conditions. ISA Trans. 2002, 41, 521–537. [Google Scholar] [CrossRef]
- Huang, B. A pragmatic approach towards assessment of control loop performance. Int. J. Adapt. Control Signal Process 2003, 17, 589–608. [Google Scholar] [CrossRef]
- Olaleye, F.; Huang, B.; Tamayo, E. Performance assessment of control loops with time-variant disturbance dynamics. J. Process Contr. 2004, 14, 867–877. [Google Scholar] [CrossRef]
- Chen, J.; Huang, S.C.; Yea, Y. Achievable performance assessment and design for parallel cascade control systems. J. Chem. Eng. Jpn. 2005, 38, 188–201. [Google Scholar] [CrossRef]
- Xu, F.; Huang, B. Performance monitoring of SISO control loop subject to LTV disturbance dynamics: An improved LTI benchmark. J. Process Contr. 2006, 16, 567–579. [Google Scholar] [CrossRef]
- Harris, T.J.; Yu, W. Controller assessment for a class of nonlinear systems. J. Process Contr. 2007, 17, 607–619. [Google Scholar] [CrossRef]
- Danesh Pour, N.; Huang, B.; Shah, S.L. Consistency of noise covariance estimation in joint input-output closed-loop subspace identification with application in LQG benchmarking. J. Process Contr. 2009, 19, 1649–1657. [Google Scholar] [CrossRef]
- Liu, Z.; Gu, Y.; Xie, L. An improved LQG benchmark for MPC economic performance assessment and optimisation in process industry. Can. J. Chem. Eng. 2012, 90, 1434–1441. [Google Scholar] [CrossRef]
- Wei, S.L.; Wang, Y.Q. LQG benchmark based performance assessment for ILC based on two-dimensional model. In Proceedings of the 2014 IEEE International Conference on Information and Automation (ICIA), Hailar, China, 28–30 July 2014; pp. 141–146. [Google Scholar]
- Wang, Y.; Wei, S.; Cheng, J. Data-driven two-dimensional LQG benchmark based performance assessment for batch processes under ILC. IFAC Pap. Online 2015, 48, 291–296. [Google Scholar]
- Wang, Y.Q.; Zhang, H.; Wei, S.L.; Zhou, D.H.; Huang, B. Control Performance Assessment for ILC-Controlled Batch Processes in a 2-D System Framework. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 1493–1504. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.G.; Lee, F.; Chen, Q.; Sun, Z. Improved renyi entropy benchmark for performance assessment of common cascade control system. IEEE Access 2019, 7, 6796–6803. [Google Scholar] [CrossRef]
- Ko, B.S.; Edgar, T.F. Performance assessment of constrained model predictive control systems. AICHE J. 2001, 47, 1363–1371. [Google Scholar] [CrossRef]
- Sendjaja, A.Y.; Kariwala, V. Achievable PID performance using sums of squares programming. J. Process Contr. 2009, 19, 1061–1065. [Google Scholar] [CrossRef]
- Horton, E.C.; Foley, M.W.; Kwok, K.E. Performance assessment of level controllers. Int. J. Adapt. Control Signal Process. 2003, 17, 663–684. [Google Scholar] [CrossRef]
- Fang, T.; Zhang, R.; Gao, F. LQG benchmark based performance assessment of IMC-PID temperature control system. Ind. Eng. Chem. Res. 2017, 56, 15102–15111. [Google Scholar] [CrossRef]
- Cervin, A.; Andrén, T. LQG-Optimal versus Simple Event-Based PID Controllers. In Proceedings of the American Control Conference, Denver, CO, USA, 1–3 July 2020; pp. 3678–3684. [Google Scholar]
- Zhang, R.; Zou, Q.; Cao, Z.; Gao, F. Design of fractional order modeling based extended non-minimal state space MPC for temperature in an industrial electric heating furnace. J. Process Contr. 2017, 56, 13–22. [Google Scholar] [CrossRef]
- Oldham, K.B. Fractional differential equations in electrochemistry. Adv. Eng. Softw. 2010, 41, 9–12. [Google Scholar] [CrossRef]
- Gabano, J.D.; Poinot, T. Fractional modeling and identification of thermal systems. Signal Process. 2011, 91, 531–541. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, Y.Q. Fractional order proportional derivative controller for a class of fractional order systems. Automatica 2009, 45, 2446–2450. [Google Scholar] [CrossRef]
- Zheng, S.; Tang, X.; Song, B. A graphical tuning method of fractional order proportional integral derivative controllers for interval fractional order plant. J. Process Contr. 2014, 24, 1691–1709. [Google Scholar] [CrossRef]
- Bettayeb, M.; Mansouri, R. Fractional IMC-PID-filter controllers design for non-integer order systems. J. Process Contr. 2014, 24, 261–271. [Google Scholar] [CrossRef]
- Rakhtala, S.M.; Roudbari, E.S. Fuzzy PID control of a stand-alone system based on PEM fuel cell. Int. J. Electr. Power Energy Syst. 2016, 78, 576–590. [Google Scholar] [CrossRef]
- Škarda, R.; Čech, M.; Schlegel, M. Bode-like control loop performance index evaluated for a class of fractional-order processes. IFAC Proc. Vol. 2014, 47, 10622–10627. [Google Scholar] [CrossRef] [Green Version]
- Škarda, R.; Čech, M.; Schlegel, M. Simultaneous control loop performance assessment and process identification based on fractional models. IFAC Pap. 2015, 48, 859–864. [Google Scholar]
- Meneses, H.; Guevara, E.; Arrieta, O.; Padula, F.; Vilanova, R.; Visioli, A. Improvement of the control system performance based on fractional-order pid controllers and models with robustness considerations. IFAC Pap. 2018, 51, 551–556. [Google Scholar] [CrossRef]
- Huang, B.; Kadali, R. Dynamic Modeling Predictive Control and Performance Monitoring, 3rd ed.; Springer: London, UK, 2008; pp. 31–53. [Google Scholar]
- Zou, Q.; Zhang, J.; Lu, R.; Zhang, R. Design of fractional order control using predictive functional control structure. In Proceedings of the IEEE Chinese Control Conference (CCC), Chengdu, China, 27–29 July 2016; pp. 4402–4406. [Google Scholar]
- Xue, D.Y. Computer Aided Control Systems Design—Using MATLAB Language, 3rd ed.; TsingHua University, Inc.: Beijing, China, 2010; pp. 471–472. [Google Scholar]
- Yu, M.; Liu, J.C.; Wang, H.H. Nuclear norm subspace identification for continuous-time stochastic systems based on distribution theory method. ISA Trans. 2018, 83, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhou, D.H.; Wang, Y.Q. Improved closed-loop subspace identification based on principal component analysis and prior information. J. Process Contr. 2019, 80, 235–246. [Google Scholar] [CrossRef]
Setpoint | Model | ||||||
---|---|---|---|---|---|---|---|
600 °C | Model 1 | 0.0321 | 0.7944 | 0.0112 | 34.89 | 0.6257 | 78.76 |
Model 2 | 0.0302 | 0.7486 | 0.0127 | 42.05 | 0.6289 | 81.01 | |
Model 3 | 0.0335 | 0.8388 | 0.0102 | 30.53 | 0.6239 | 74.38 | |
605 °C | Model 1 | 0.0395 | 0.9907 | 0.0080 | 20.25 | 0.6172 | 62.29 |
Model 2 | 0.0367 | 0.9164 | 0.0088 | 23.97 | 0.6199 | 66.20 | |
Model 3 | 0.0412 | 1.0108 | 0.0075 | 18.20 | 0.6157 | 59.67 |
Setpoint | Model | ||||||
---|---|---|---|---|---|---|---|
600 °C | Model 1 | 0.0212 | 0.7578 | 0.0124 | 66.98 | 0.6542 | 86.32 |
Model 2 | 0.0202 | 0.7176 | 0.0142 | 70.29 | 0.6594 | 91.88 | |
Model 3 | 0.0221 | 0.7985 | 0.0111 | 50.22 | 0.6503 | 82.45 | |
605 °C | Model 1 | 0.0248 | 0.8957 | 0.0091 | 36.29 | 0.6409 | 71.55 |
Model 2 | 0.0236 | 0.8570 | 0.0098 | 42.91 | 0.6447 | 75.22 | |
Model 3 | 0.0261 | 0.9255 | 0.0087 | 33.33 | 0.6473 | 69.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Li, R.; Wu, F. A New Control Performance Evaluation Based on LQG Benchmark for the Heating Furnace Temperature Control System. Processes 2020, 8, 1428. https://doi.org/10.3390/pr8111428
Li H, Li R, Wu F. A New Control Performance Evaluation Based on LQG Benchmark for the Heating Furnace Temperature Control System. Processes. 2020; 8(11):1428. https://doi.org/10.3390/pr8111428
Chicago/Turabian StyleLi, Haisheng, Rongxuan Li, and Feng Wu. 2020. "A New Control Performance Evaluation Based on LQG Benchmark for the Heating Furnace Temperature Control System" Processes 8, no. 11: 1428. https://doi.org/10.3390/pr8111428
APA StyleLi, H., Li, R., & Wu, F. (2020). A New Control Performance Evaluation Based on LQG Benchmark for the Heating Furnace Temperature Control System. Processes, 8(11), 1428. https://doi.org/10.3390/pr8111428