1. Introduction
Friction between tools and workpieces inevitably occurs in most metal forming processes and has a significant impact on these processes’ performance, the quality of the product’s surface, and other factors. Tresca’s friction law is most often used as the friction boundary condition for modeling metal forming processes. This law postulates that the friction stress at sliding is equal to a portion of the local shear yield stress. A particular case of this friction law is the maximum friction law. In this case, the friction stress at sliding is equal to the local shear yield stress. The surface on which the maximum friction law applies is called the maximum friction surface. The qualitative behavior of solutions near the maximum friction surface is complex and includes nonexistence and singularity under certain conditions. These features of solutions may require special numerical methods for solving boundary value problems and the verification of assumptions that are usually used to simplify boundary value problems for solving by approximate analytical methods.
The qualitative behavior of solutions near maximum friction surfaces depends on the constitutive equations. Several boundary value problems that involve the maximum friction law have been formulated and solved analytically for rigid perfectly plastic models in [
1,
2]. The asymptotic analysis of these solutions shows that all of them are singular in the sense that the quadratic invariant of the strain rate tensor approaches infinity in the vicinity of the maximum friction surfaces. These solutions have been extended to the double-shearing model proposed in [
3] in [
4,
5,
6]. The qualitative behavior of these solutions is the same as that of the rigid perfectly plastic solutions. It has been shown in [
7] that it is a general feature of rigid perfectly plastic solutions that the quadratic invariant of the strain rate tensor is inversely proportional to the square root of the distance to maximum friction surfaces. For this reason, such boundary value problems cannot be solved using traditional finite elements. The extended finite element method [
8] should be capable of solving these problems. However, no attempt has yet been made. The strain rate intensity factor has been introduced in [
7]. This factor controls the magnitude of the quadratic invariant of the strain rate tensor in the vicinity of maximum friction surfaces.
The solution behavior near maximum friction surfaces is more complicated in the case of rigid viscoplastic materials. For example, an analytic solution for compression of a viscoplastic layer between two parallel, rough plates has been proposed in [
9]. This solution is based on the same assumptions as the solutions found in [
1] and [
4] for the rigid perfectly plastic and double-shearing models, respectively. In general, the solution given in [
9] is a generalization of the solution in [
1]. However, the solution in [
9] does not exist if the maximum friction law applies. This is because the maximum friction law inevitably results in the regime of sticking at the maximum friction surface in the case of the constitutive equations adopted in [
9]. A proof of this statement has been given in [
10]. On the other hand, the assumptions accepted in [
9] require the regime of sliding. This contradiction between the exact solution’s qualitative behavior and the assumptions involved in the approximate solution leads to the nonexistence of the approximate solution. The regime of sliding at maximum friction surfaces is possible if the viscoplastic constitutive equations involve saturation stress [
11,
12]. Such solutions’ qualitative behavior is affected by the dependence of the equivalent stress on the equivalent strain rate in the vicinity of the saturation stress. However, the quadratic invariant of the strain rate tensor approaches infinity in the vicinity of maximum friction surfaces in any case. The viscoplastic solution’s asymptotic behavior may or may not coincide with that of the corresponding rigid perfectly plastic solution.
The asymptotic representation of solutions near maximum friction surfaces for other constitutive equations has been derived in [
13,
14]. All these solutions are singular.
The short review above shows the importance of understanding the exact asymptotic behavior of solutions near maximum friction surfaces. However, none of the results mentioned deal with work hardening constitutive equations. On the other hand, such material models are most often used to simulate cold metal forming processes. The present paper deals with a boundary value problem that can be considered as an approximation of the final stage of the hole-flanging process [
15].
In addition to the fundamental aspects of continuum mechanics noted above, this research has practical applications. Thin, hardened layers of material are often generated in the vicinity of frictional interfaces in machining and deformation processes [
16]. Standard tests used for determining material properties are not representative of the real material behavior within such layers [
17]. In particular, shearing deformation is very intensive near frictional surfaces, whereas it is negligible in the uniaxial tension test that is usually used for determining the hardening law. A new approach for predicting the evolution of material properties in subsurface layers has been proposed in [
18]. The approach is based on the strain rate intensity factor introduced in [
7]. Several experimental studies have been carried out to apply this approach to specific materials [
19,
20,
21]. However, there is an inconsistency between the experiments and theory. The experiments were carried out on strain hardening materials, whereas the theory is for rigid perfectly plastic material. The present paper attempts to smooth this inconsistency for one specific case. The theoretical solution derived can also be used in conjunction with the experimental results of the friction test proposed and developed in [
22,
23,
24]. In these works and in [
19,
20,
21], many micrographs illustrating the difference between the material microstructure near the friction surface and the bulk have been presented.
2. Statement of the Problem
A tubular specimen of plastic material is confined between rigid solid and hollow cylinders (
Figure 1). The inner and outer radii of the specimen are denoted as
a and
b, respectively. The outer rigid cylinder moves with velocity
V. The inner cylinder is motionless. The maximum friction law is assumed at the interfaces between each of the rigid cylinders and the specimen. End effects are neglected. Then, the deformation induced by the rigid cylinders is telescopic shearing. These assumptions are consistent with the modeling of the hole-flanging process with ironing conditions [
15].
It is convenient to use a cylindrical coordinate system
, the
z axis of which coincides with the axis of symmetry of the process (
Figure 1). In the case of telescopic shearing, the only nonzero strain rate component referred to this coordinate system is the shear strain rate
.
Then, the strain rate tensor is
Accordingly, the stress tensor is
Here,
is the hydrostatic stress and
is the only nonzero shear stress. The direction of the velocity vector
V suggests that
Without considering the anisotropy, which has little influence on this type of process, the solution is independent of both
and
z. Moreover,
is constant. Then, it follows from (2) that the only nontrivial equilibrium equation is
The equivalent stress,
, and the equivalent strain rate,
, are defined as
Using (1)–(3), Equation (5) transforms to
The equivalent strain,
, is determined from the equation
where
denotes the convected derivative. In the case of telescopic shearing, the only nonzero velocity component is the axial velocity
. Therefore,
Using (8) and the second equation in (6), one can rewrite (7):
The constitutive equations of rigid plastic, strain hardening material comprise a yield criterion and its associated flow rule. Equation (2) implies that any yield criterion for incompressible material reduces to
where
is the initial yield stress in tension and
is an arbitrary function of its argument satisfying the conditions
at
and
for all
. The associated flow rule is automatically satisfied due to (1)–(3).
The equivalent strain vanishes on rigid/plastic boundaries. Therefore, it is seen from (10) that
on such boundaries.
3. General Solution
The maximum friction law allows two regimes: sticking and sliding. One should find from the solution which regime occurs on each friction surface. Equations (3) and (4) show that
everywhere. Therefore,
attains its maximum value at
. Then, there are two possible cases: (
i) the regime of sticking occurs on both friction surfaces, and (
ii) the regime of sticking occurs at
and the regime of sliding at
. In either case, one of the velocity boundary conditions is
for
. The specific form of the boundary condition at
depends on the regime of friction. In Case (
i),
for
. If there is a rigid region, then the boundary condition (12) transforms to
for
. Here,
is the radius of the rigid/plastic boundary. In Case (
ii), the boundary condition at
is formulated in terms of stresses and depends on the constitutive equations.
Equations (4) and (6) combine to give
Since the velocity vector is parallel to the
z axes and the solution is independent of
z,
. This equation, together with (9), leads to
At the beginning of the process, a plastic region initiates at
and then propagates to the surface
. This stage of the process lasts until the rigid/plastic boundary reaches the surface
. The solution of Equation (15) satisfying the condition (11) is
Substituting (10) into (17) yields
where
is the function inverse to
.
The solution above is written in terms of the independent variables
t and
r. It is convenient to continue to solve the boundary value problem for the stage of the process under consideration in terms of the following independent variables:
Here,
s is the distance traveled by the outer cylinder from its initial position. It is evident that
. Then, using (19), one can find
The second equation in (18) becomes
. Thus, the equivalent strain is independent of
s in the new independent variables. Then, Equations (16) and (20) combine to give
Eliminating the equivalent strain in this equation by means of the second equation in (18) results in
In the new independent variables, the boundary condition (14) becomes
for
. The solution of Equation (22) satisfying this boundary condition is
Here,
is a dummy variable of integration. In the new independent variables, the boundary condition (13) becomes
for
. The solution (23) and this boundary condition combine to give
Integrating by parts and taking into account that
at
, one can find
This is an ordinary differential equation for finding
s as a function of
. The initial condition to this equation is
at
. The solution of Equation (25) satisfying this initial condition is
The solution above is valid if
. Therefore, this stage of the process ends when
. The corresponding value of
s is determined from (27) as
It is also seen from (17) that
on the surface
at this instant.
If
, then the plastic region occupies the domain
. The independent variables introduced in (19) cannot be used for solving the boundary value problem during this stage of the process. The solution of Equation (15) can be written as
where
is the value of
at
. The value of
should be found from the solution. Substituting (30) into (10) yields
Introduce the following independent variables:
The second equation in (31) becomes
. Thus, the equivalent strain is independent of
s in the new independent variables. Then, Equations (16) and (20) combine to give
Eliminating the equivalent strain in this equation by means of the second equation in (31) results in
In the new independent variables, the boundary condition (12) becomes
for
. The solution of Equation (35) satisfying this boundary condition is
In the new independent variables, the boundary condition (13) becomes
for
. The solution (36) and this boundary condition combine to give
This is an ordinary differential equation for finding
s as a function of
. The initial condition to this equation is determined from (29) and (30) as
at
. The solution of Equation (38) satisfying this initial condition is
If s is given, then Equation (40) serves for determining the corresponding value of . This equation may or may not have a solution. If the solution exists, then the regime of sticking always occurs at (i.e., Case (ii) never occurs). If the solution breaks down at a certain value of , then one should search for a solution for Case (ii) in the range . The precise structure of the solution depends on the function .
5. Conclusions
The initial/boundary value problem for the flow of the material resulting from the problem formulated in
Section 2 has been solved in
Section 3 and
Section 4, with the resulting solution being in closed form. The general solution given in
Section 3 is valid for any strain hardening law. However, without specifying the strain hardening law, it is impossible to determine which regime of friction—sticking or sliding—occurs at the tubular specimen’s inner surface.
Three widely used hardening laws have been considered in
Section 4: Swift’s law, Ludwik’s law, and Voce’s law. The first two predict that the equivalent stress approaches infinity as the equivalent strain approaches infinity. The third one involves saturation stress. This qualitative difference in the equivalent stress behavior as the equivalent strain approaches infinity results in the qualitative difference in solutions’ behavior. In particular, Equations (43) and (49) show that Swift’s and Ludwik’s laws are always compatible with the regime of sticking at the maximum friction surface. On the other hand, the analysis of the general solution in
Section 4.3 demonstrates that the solution based on Voce’s law requires sliding under certain conditions. It is worthy of note that this requirement is a feature of the constitutive equation rather than the friction law.
In the case of Voce’s law, the solution at sliding is singular. In particular, the equivalent strain approaches infinity in the vicinity of the maximum friction surface, and Equation (62) shows the exact asymptotic expansion of the equivalent strain near this surface. This feature of the solution is in qualitative agreement with experimental results on the generation of hardened layers in the vicinity of frictional interfaces in deformation processes [
16]. The solutions for Swift’s and Ludwik’s laws do not have such a feature. Therefore, it is reasonable to hypothesize that Voce’s law and, probably, other strain hardening laws that involve saturation stress are capable of predicting the generation of hardened layers near frictional interfaces without any additional assumptions, whereas the strain hardening laws with no saturation stress are not.
The effect of temperature has not been considered in the present paper. However, the temperature of the metal rises during plastic deformation because of the heat generated by mechanical work. It is seen from (62) that the temperature gradient should be quite large in the friction surface’s vicinity. This feature of the temperature field has already been demonstrated for rigid/perfectly plastic and viscoplastic solids [
26,
27]. For this reason, the material can soften in the vicinity of frictional interfaces and hardening laws represented by curve 1 in
Figure 2 can approach the hardening laws represented by curve 2.