Functional Polymer Hybrid Nanocomposites Based on Polyolefins: A Review
Abstract
:1. Introduction
2. Processing
2.1. Solution Blending
2.2. Melt Blending
3. Properties
3.1. Mechanical Properties
3.2. Thermal Properties
3.3. Electrical Conductivity
3.4. Other Functional Properties
4. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Sauter, D.W.; Taoufik, M.; Clement, A. Polyolefins, a Success Story. Polymers 2017, 9, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AlMa’adeed, M.A.-A.; Krupa, I. Introduction. In Polyolefin Compounds and Materials; International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 1–11. [Google Scholar]
- Vasile, C. Handbook of Polyolefins, 2nd ed.; Marcel Dekker Inc.: Basel, Switzerland, 2000. [Google Scholar]
- Stürzel, M.; Mihan, S.; Mülhaupt, R. From Multisite Polymerization Catalysis to Sustainable Materials and All-Polyolefin Composites. Chem. Rev. 2016, 116, 1398–1433. [Google Scholar] [CrossRef] [PubMed]
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Mülhaupt, R. Green Polymer Chemistry and Bio-based Plastics: Dreams and Reality. Macromol. Chem. Phys. 2012, 214, 159–174. [Google Scholar] [CrossRef]
- Hussain, F.; Hojjati, M.; Okamoto, M.; Gorga, R.E. Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview. J. Compos. Mater. 2006, 40, 1511–1575. [Google Scholar] [CrossRef]
- Omanović-Mikličanin, E.; Badnjević, A.; Kazlagić, A.; Hajlovac, M. Nanocomposites: A brief review. Health Technol. 2020, 10, 51–59. [Google Scholar] [CrossRef]
- Chen, J.; Liu, B.; Gao, X.; Xu, D. A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Adv. 2018, 8, 28048–28085. [Google Scholar] [CrossRef] [Green Version]
- Rittigstein, P.; Torkelson, J.M. Polymer-nanoparticle interfacial interactions in polymer nanocomposites: Confinement effects on glass transition temperature and suppression of physical aging. J. Polym. Sci. Part. B: Polym. Phys. 2006, 44, 2935–2943. [Google Scholar] [CrossRef]
- Kumar, D.P. Optimization of Interfacial Interactions to Achieve Nanoscale Dispersion of Clay in Polymer/Clay Nanocomposites. Ph.D. Thesis, University of Tennessee, Knoxville, TN, USA, 2007. [Google Scholar]
- Roslaniec, Z.; Krolikowski, W. Polymer nanocomposites. Kompozyty 2004, 4, 3–16. [Google Scholar]
- Thostenson, E.T.; Li, C.; Chou, T.-W. Nanocomposites in context. Compos. Sci. Technol. 2005, 65, 491–516. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Winey, K.I. Polymer Nanocomposites Containing Carbon Nanotubes. Macromolecules 2006, 39, 5194–5205. [Google Scholar] [CrossRef]
- Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 2010, 35, 357–401. [Google Scholar] [CrossRef]
- Sahoo, N.G.; Rana, S.; Cho, J.W.; Li, L.; Chan, S.H. Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 2010, 35, 837–867. [Google Scholar] [CrossRef]
- Ma, P.-C.; Siddiqui, N.A.; Marom, G.; Kim, J.-K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part. A Appl. Sci. Manuf. 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Coleman, J.N.; Khan, U.; Blau, W.J.; Gun’Ko, Y.K. Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon 2006, 44, 1624–1652. [Google Scholar] [CrossRef]
- Burzynski, M.; Paszkiewicz, S.; Piesowicz, E.; Irska, I.; Dydek, K.; Boczkowska, A.; Wysocki, S.; Sieminski, J. Comparison study of the influence of carbon and halloysite nanotubes on the preparation and rheological behavior of linear low density polyethylene. Polimers 2020, 65, 95–98. [Google Scholar] [CrossRef]
- Polanský, R.; Kadlec, P.; Slepička, P.; Kolská, Z.; Švorčík, V. Testing the applicability of LDPE/HNT composites for cable core insulation. Polym. Test. 2019, 78, 78. [Google Scholar] [CrossRef]
- Szpilska, K.; Czaja, K.; Kudla, S. Halloysite nanotubes as polyolefin fillers. Polimers 2015, 60, 359–371. [Google Scholar] [CrossRef]
- Rooj, S.; Das, A.; Heinrich, G. Tube-like natural halloysite/fluoroelastomer nanocomposites with simultaneous enhanced mechanical, dynamic mechanical and thermal properties. Eur. Polym. J. 2011, 47, 1746–1755. [Google Scholar] [CrossRef]
- Esawi, A.; Morsi, K.; Sayed, A.; Taher, M.; Lanka, S. The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites. Compos. Part. A Appl. Sci. Manuf. 2011, 42, 234–243. [Google Scholar] [CrossRef]
- Chemistry. Available online: https://www.sigmaaldrich.com (accessed on 7 September 2020).
- NC7000™. Industrial Multiwall Carbon Nanotubes. Available online: https://www.nanocyl.com/product/nc7000/ (accessed on 7 September 2020).
- Li, Y.; Huang, X.; Zeng, L.; Li, R.; Tian, H.; Fu, X.; Wang, Y.; Zhong, W.-H. A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites. J. Mater. Sci. 2018, 54, 1036–1076. [Google Scholar] [CrossRef]
- Ng, K.-M.; Lau, Y.-T.R.; Chan, C.-M.; Weng, L.-T.; Wu, J. Surface studies of halloysite nanotubes by XPS and ToF-SIMS. Surf. Interface Anal. 2011, 43, 795–802. [Google Scholar] [CrossRef]
- Maiti, P.; Nam, P.H.; Okamoto, M.; Hasegawa, N.; Usuki, A. Influence of Crystallization on Intercalation, Morphology, and Mechanical Properties of Polypropylene/Clay Nanocomposites. Macromolecules 2002, 35, 2042–2049. [Google Scholar] [CrossRef]
- Yano, K.; Usuki, A.; Okada, A. Synthesis and properties of polyimide-clay hybrid films. J. Polym. Sci. Part. A Polym. Chem. 1997, 35, 2289–2294. [Google Scholar] [CrossRef]
- Bharadwaj, R.; Mehrabi, A.; Hamilton, C.; Trujillo, C.; Murga, M.; Fan, R.; Chavira, A.; Thompson, A. Structure–property relationships in cross-linked polyester–clay nanocomposites. Polymers 2002, 43, 3699–3705. [Google Scholar] [CrossRef]
- Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H.L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Bunch, J.S.; Verbridge, S.S.; Alden, J.S.; Van Der Zande, A.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Impermeable Atomic Membranes from Graphene Sheets. Nano Lett. 2008, 8, 2458–2462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Abdala, A.; Macosko, C.; Mukhopadhyay, P.; Gupta, R. Graphene/Polymer Nanocomposites. Graphi. Graphe. Polymer Nanocomp. 2012, 513–556. [Google Scholar] [CrossRef]
- Zagho, M.M.; Al, M.; Almaadeed, A. Mechanical properties of gamma irradiated TiO 2 NPs/MWCNTs/LDPE hybrid nanocomposites. Emergent Mater. 2020. [Google Scholar] [CrossRef]
- Akpan, E.; Shen, X.; Wetzel, B.; Friedrich, K. Design and Synthesis of Polymer Nanocomposites; Elsevier BV: Berlin, Germany, 2019; pp. 47–83. [Google Scholar]
- Thomas, S.; Stephen, R. Rubber Nanocomposites: Preparation, Properties, and Applications; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Bhattacharya, M. Polymer Nanocomposites—A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers. Materials 2016, 9, 262. [Google Scholar] [CrossRef]
- Pötschke, P.; Arnaldo, M.H.; Radusch, H.J. Percolation behavior and mechanical properties of polycarbonate composites filled with carbon black/carbon nanotube systems. Polimery/Polymers 2012, 57, 204–211. [Google Scholar]
- Huang, J.-C. Carbon black filled conducting polymers and polymer blends. Adv. Polym. Technol. 2002, 21, 299–313. [Google Scholar] [CrossRef]
- De Oliveira, A.D.; Beatrice, C.A.G. Polymer Nanocomposites with Different Types of Nanofiller. In Nanocomposites Recent Evolutions; IntechOpen: London, UK, 2019; Volume 6, pp. 103–128. [Google Scholar]
- Passador, F.; Ruvolo-Filho, A.; Pessan, L. Nanocomposites of Polymer Matrices and Lamellar Clays. Nanostructures 2017, 187–207. [Google Scholar] [CrossRef]
- Naz, A.; Kausar, A.; Siddiq, M.; Choudhary, M.A. A Comparative Review on Structure, Properties, Fabrication Techniques and Relevance of Polymer Nanocomposites Reinforced with Carbon Nanotube and Graphite Fillers. Polym. Technol. Eng. 2015, 55, 171–198. [Google Scholar] [CrossRef]
- Cong, H.; Radosz, M.; Towler, B.; Shen, Y. Polymer–inorganic nanocomposite membranes for gas separation. Sep. Purif. Technol. 2007, 55, 281–291. [Google Scholar] [CrossRef]
- Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog. Polym. Sci. 2013, 38, 1232–1261. [Google Scholar] [CrossRef]
- Deka, B.K.; Maji, T.K. Effect of TiO2 and nanoclay on the properties of wood polymer nanocomposite. Compos. Part. A Appl. Sci. Manuf. 2011, 42, 2117–2125. [Google Scholar] [CrossRef]
- Deka, B.K.; Maji, T.K. Effect of SiO2 and nanoclay on the properties of wood polymer nanocomposite. Polym. Bull. 2012, 70, 403–417. [Google Scholar] [CrossRef]
- Li, Q.; Kim, J.W.; Shim, T.H.; Jang, Y.K.; Lee, J.H. Positive Temperature Coefficient Behavior of the Graphite Nanofibre and Carbon Black Filled High-Density Polyethylene Hybrid Composites. Adv. Mater. Res. 2008, 47, 226–229. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, S.K.; Kim, N.H. Effects of the addition of multi-walled carbon nanotubes on the positive temperature coefficient characteristics of carbon-black-filled high-density polyethylene nanocomposites. Scr. Mater. 2006, 55, 1119–1122. [Google Scholar] [CrossRef]
- Mallakpour, S.; Naghdi, M. Polymer/SiO2 nanocomposites: Production and applications. Prog. Mater. Sci. 2018, 97, 409–447. [Google Scholar] [CrossRef]
- Rong, M.Z.; Zhang, M.Q.; Ruan, W.H. Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: A review. Mater. Sci. Technol. 2006, 22, 787–796. [Google Scholar] [CrossRef]
- Dong, Q.; Ding, Y.; Wen, B.; Wang, F.; Dong, H.; Zhang, S.; Wang, T.; Yang, M. Improvement of thermal stability of polypropylene using DOPO-immobilized silica nanoparticles. Colloid Polym. Sci. 2012, 290, 1371–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, M.; van Vliet, G.; Jain, S.; Schrauwen, B.A.; Sarkissov, A.; van Zyl, W.E.; Boukamp, B.A. Polypropylene / SiO2 nanocomposites with improved mechanical properties. Rev. Adv. Mater. Sci. 2004, 6, 169–175. [Google Scholar]
- Lin, O.H.; Akil, H.M.; Ishak, Z.M. Surface-activated nanosilica treated with silane coupling agents/polypropylene composites: Mechanical, morphological, and thermal studies. Polym. Compos. 2011, 32, 1568–1583. [Google Scholar] [CrossRef]
- Grala, M.; Bartczak, Z.; Różański, A. Morphology, thermal and mechanical properties of polypropylene/SiO2 nanocomposites obtained by reactive blending. J. Polym. Res. 2016, 23, 1–19. [Google Scholar] [CrossRef]
- Etienne, S.; Becker, C.H.; Ruch, D.; Grignard, B.; Cartigny, G.; Detrembleur, C.; Calberg, C.; Jerome, R. Effects of incorporation of modified silica nanoparticles on the mechanical and thermal properties of PMMA. J. Therm. Anal. Calorim. 2007, 87, 101–104. [Google Scholar] [CrossRef]
- Tanahashi, M. Development of Fabrication Methods of Filler/Polymer Nanocomposites: With Focus on Simple Melt-Compounding-Based Approach without Surface Modification of Nanofillers. Materials 2010, 3, 1593–1619. [Google Scholar] [CrossRef] [Green Version]
- Zubkiewicz, A.; Szymczyk, A.; Paszkiewicz, S.; Jędrzejewski, R.; Piesowicz, E.; Siemiński, J. Ethylene vinyl acetate copolymer/halloysite nanotubes nanocomposites with enhanced mechanical and thermal properties. J. Appl. Polym. Sci. 2020, 137, 49135. [Google Scholar] [CrossRef]
- Zubkiewicz, A.; Szymczyk, A.; Franciszczak, P.; Kochmanska, A.; Janowska, I.; Paszkiewicz, S. Comparing Multi-Walled Carbon Nanotubes and Halloysite Nanotubes as Reinforcements in EVA Nanocomposites. Materials 2020, 13, 3809. [Google Scholar] [CrossRef]
- Sun, S.; Li, C.; Zhang, L.; Du, H.; Burnell-Gray, J. Effects of surface modification of fumed silica on interfacial structures and mechanical properties of poly(vinyl chloride) composites. Eur. Polym. J. 2006, 42, 1643–1652. [Google Scholar] [CrossRef]
- Chau, J.L.H.; Hsu, S.L.-C.; Chen, Y.-M.; Yang, C.-C.; Hsu, P.C. A simple route towards polycarbonate–silica nanocomposite. Adv. Powder Technol. 2010, 21, 341–343. [Google Scholar] [CrossRef]
- Oliveira, A.D.; Larocca, N.M.; Paul, D.R.; Pessan, L.A. Effects of mixing protocol on the performance of nanocomposites based on polyamide 6/acrylonitrile–butadiene–styrene blends. Polym. Eng. Sci. 2012, 52, 1909–1919. [Google Scholar] [CrossRef]
- Paszkiewicz, S.; Szymczyk, A.; Pawlikowska, D.; Subocz, J.; Zenker, M.; Masztak, R. Electrically and Thermally Conductive Low Density Polyethylene-Based Nanocomposites Reinforced by MWCNT or Hybrid MWCNT/Graphene Nanoplatelets with Improved Thermo-Oxidative Stability. Nanomaterials 2018, 8, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zagho, M.M.; Almaadeed, M.A.; Majeed, K. Thermal Properties of TiO2NP/CNT/LDPE Hybrid Nanocomposite Films. Polymers 2018, 10, 1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paszkiewicz, S.; Szymczyk, A.; Zubkiewicz, A.; Subocz, J.; Stanik, R.; Szczepaniak, J. Enhanced Functional Properties of Low-Density Polyethylene Nanocomposites Containing Hybrid Fillers of Multi-Walled Carbon Nanotubes and Nano Carbon Black. Polymers 2020, 12, 1356. [Google Scholar] [CrossRef]
- Badgayan, N.D.; Sahu, S.K.; Samanta, S.; Sreekanth, P.R. Assessment of nanoscopic dynamic mechanical properties and B-C-N triad effect on MWCNT/h-BNNP nanofillers reinforced HDPE hybrid composite using oscillatory nanoindentation: An insight into medical applications. J. Mech. Behav. Biomed. Mater. 2018, 80, 180–188. [Google Scholar] [CrossRef]
- Mekhzoum, M.E.M.; Essabir, H.; Rodrigue, D.; Qaiss, A.E.K.; Bouhfid, R. Graphene/montmorillonite hybrid nanocomposites based on polypropylene: Morphological, mechanical, and rheological properties. Polym. Compos. 2016, 39, 2046–2053. [Google Scholar] [CrossRef]
- Franciszczak, P.; Taraghi, I.; Paszkiewicz, S.; Burzynski, M.; Piesowicz, E. Polypropylene Reinforced with Short Kenaf Fibers and Halloysite Nanoclay: Mechanical properties, Thermal stability and Morphology of Manufactured Hybrid Biocomposites. Materials 2020, 13, 4459. [Google Scholar] [CrossRef]
- Sánchez-Valdés, S. Influence of maleated elastomer on filler dispersion, mechanical and antimicrobial properties of hybrid HDPE/clay/silver nanocomposites. J. Adhes. Sci. Technol. 2016, 30, 1006–1016. [Google Scholar] [CrossRef]
- Dabees, S.; Ahmed, B.; Sanad, M.; Elsshalakny, A.B. Experimental Design of AL2O3/MWCNT/HDPE Hybrid Nanocomposites for Hip Joint Replacement. Res. Sq. 2020, 11, 1–19. [Google Scholar] [CrossRef]
- Aguilar, H.; Yazdani-Pedram, M.; Toro, P.; Quijada, R.; López-Manchado, M.Á. Synergic Effect of Two Inorganic Fillers on the Mechanical and Thermal Properties of Hybrid Polypropylene Composites. J. Chil. Chem. Soc. 2014, 59, 2468–2473. [Google Scholar] [CrossRef]
- Pandey, P.; Mohanty, S.; Nayak, S.K. Hybrid Effect of Nanosilicates and MWNT on Mechanical, Thermal, and Dynamic Mechanical Properties of Polypropylene. Chin. J. Eng. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, H.; Moghbeli, M.R. Polypropylene/organically modified-grafted mica/organoclay hybrid nanocomposites: Preparation, characterization, and mechanical properties. Polym. Compos. 2018, 40, 1718–1730. [Google Scholar] [CrossRef]
- Majeed, K.; Ahmed, A.; Abu Bakar, M.S.; Mahlia, T.M.I.; Saba, N.; Hassan, A.; Jawaid, M.; Hussain, M.; Iqbal, J.; Ali, Z. Mechanical and Thermal Properties of Montmorillonite-Reinforced Polypropylene/Rice Husk Hybrid Nanocomposites. Polymers 2019, 11, 1557. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Rahman, R.; Hamdan, S.; Hossen, F. Effect of Silicon Dioxide/Nanoclay on the Properties of Jute Fiber/Polyethylene Biocomposites. J. Vinyl Addit. Technol. 2015, 23, E107–E112. [Google Scholar] [CrossRef]
- Xu, J.-Z.; Zhong, G.-J.; Hsiao, B.S.; Fu, Q.; Li, Z.-M. Low-dimensional carbonaceous nanofiller induced polymer crystallization. Prog. Polym. Sci. 2014, 39, 555–593. [Google Scholar] [CrossRef]
- Khandelwal, N.; Kaur, G.; Kumar, N.; Tiwari, A. Application of silver nanoparticles in viral inhibition: A new hope for antivirals. Dig. J. Nanomater. Biostruct. 2014, 9, 175–186. [Google Scholar]
- Badgayan, N.D.; Samanta, S.; Sahu, S.K.; Siva, S.B.V.; Sadasivuni, K.K.; Sahu, D.; Sreekanth, P.S.R. Tribological behaviour of 1D and 2D nanofiller based high density poly-ethylene hybrid nanocomposites: A run-in and steady state phase analysis. Wear 2017, 376–377, 1379–1390. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paszkiewicz, S.; Pypeć, K.; Irska, I.; Piesowicz, E. Functional Polymer Hybrid Nanocomposites Based on Polyolefins: A Review. Processes 2020, 8, 1475. https://doi.org/10.3390/pr8111475
Paszkiewicz S, Pypeć K, Irska I, Piesowicz E. Functional Polymer Hybrid Nanocomposites Based on Polyolefins: A Review. Processes. 2020; 8(11):1475. https://doi.org/10.3390/pr8111475
Chicago/Turabian StylePaszkiewicz, Sandra, Krzysztof Pypeć, Izabela Irska, and Elzbieta Piesowicz. 2020. "Functional Polymer Hybrid Nanocomposites Based on Polyolefins: A Review" Processes 8, no. 11: 1475. https://doi.org/10.3390/pr8111475
APA StylePaszkiewicz, S., Pypeć, K., Irska, I., & Piesowicz, E. (2020). Functional Polymer Hybrid Nanocomposites Based on Polyolefins: A Review. Processes, 8(11), 1475. https://doi.org/10.3390/pr8111475