Iron-Based Catalytically Active Complexes in Preparation of Functional Materials
Abstract
:1. Introduction
2. Applications of Iron-Based Complexes Containing N Donor Ligands in Homogeneous Catalysis
2.1. Functionalization of C-H, C-C, C-N Bond by Iron Complexes with N Donor Ligands
2.2. Application Complexes Containing N Donor Ligands as Switchable Material, Sensitizer
2.3. Complexes with N Donor Ligands as Materials in the Effective Treatment of Cancer
2.4. Iron N-Heterocyclic Carbene Complexes
2.5. C-Scorpionate Iron(II) Complexes
3. Heterogeneous Applications of Iron Complexes with Nitrogen-Containing Ligands
3.1. Nitrogen-Containing Iron Complexes Anchored on a Solid Support (Non-Treated Thermally)
3.2. Iron-Nitrogen Functionalities on a Solid Support (Obtained by Thermal Treatment of Precursors)
4. Iron-Based Catalyst in Controlled Radical Polymerization
5. Future Prospects and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
6-Me2-BPBP | (R,R)-1,1′-bis(6-methyl-2-pyridinylmethyl)-2,2′-bipyrrolidine) |
nBA | n-butyl acrylate |
nBMA | n-butyl methacrylate |
BPBP | 1,1′-bis(pyridin-2-ylmethyl)-2,2′-bipyrrolidine |
BPMCN | N,N’-bis(2-pyridylmethyl)-N,N’-dimethyl-trans-1,2-diaminocyclohexane |
BPMEN | N1,N2-dimethyl-N1,N2-bis(2-pyridylmethyl)ethane-1,2-diamine |
Bpy | 2,2′-bipyridine |
BPyA | 1-(bis(2-methylpyridyl)amino)-2-methyl-2-propanoate |
CNC | 2,6-bis-[3-(2,6-diisopropylphenyl)-imidazol-2-ylidene]pyridine |
CNF | carbon nanofiber |
CNT | carbon nanotube |
CO2RR | carbon dioxide reduction |
Cp | cyclopentadienyl |
CPN | 2-chloropropionitrile |
CPP | cell-penetrating peptide |
CTSNSs | surfaces of chitosan nanospheres |
DEGA | di(ethylene glycol) ethyl ether acrylate |
DFMA | dodecafluoroheptyl methacrylate |
DFT | density functional theory |
DMF | N,N-dimethylformamide |
DSSC | dye sensitized solar cell |
Fe3O4@SiO2–Br | brominated silica-coated magnetic iron oxide nanoparticles |
HER | hydrogen evolution |
H2pmen | N,N′-bis(2-pyridylmethyl)ethylenediamine |
HTC | hydrothermal carbonization |
IDA | iminodiacetic acid |
IDipp | 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene |
IL | ionic liquid |
LN4Me2 | N,N′-dimethyl-2,11-diaza[3.3](2,6)pyridinophane |
LNP | large nanoparticle |
mCPBA | m-chloroperoxybenzoic acid |
MIONPs | magnetic iron oxide nanoparticles |
Me3TACN | 1,4,7-trimethyltriazacyclononane, |
6-Me3-TPMA | tris(6-methyl-2-pyridylmethyl)amine |
6-Me2-iso-BPMEN | N1,N1-dimethyl-N2,N2-bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine |
6-Me2-BPMEN | N1,N2-dimethyl-N1,N2-bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine |
MePy2TACN | N-methyl-N,N-bis(2-picolyl)-1,4,7-triazacyclononane |
Me2PyTACN | 1,4-dimethyl-7-(2-pyridylmethyl)-1,4,7-triazacyclononane |
Me,MePyTACN | 1-(6-methyl-2-pyridylmethyl)-4,7-dimethyl-1,4,7-triazacyclononane |
MMA | methyl methacrylate |
MOF | metal organic framework |
MRI | magnetic resonance imaging |
MWCNTs-Br | brominated multiwall carbon nanotubes |
MWD | molecular weight distribution |
N4Py | N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methyl-amine) |
NCCN | bis(pyridylimidazol-2-ylidene)methane |
NHC | N-heterocyclic carbene |
NP | nanoparticle |
OER | oxygen evolution |
ORR | oxygen reduction reaction |
PBiBEM | poly[2-(2- bromoisobutyryloxy)ethyl methacrylate] |
PnBA | poly(n-butyl acrylate) |
PnBMA | poly(n-butyl methacrylate) |
PDEGA | poly(di(ethylene glycol) ethyl ether acrylate) |
PEGMA | poly(ethylene glycol) methyl ether methacrylate |
PEGMA475 | poly(ethylene glycol) methyl ether methacrylate with average molecular weight 475 |
PGM | precious group metal |
PiPhen | 2-(2-(4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)pyridin-2-yl)pyridin-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline |
PMe3 | trimethylphosphine |
PMMA | poly(methyl methacrylate) |
PLA | poly(lactic acid) |
PPh3 | triphenylphosphine |
Ppy | 2-phenylpyridine |
PS | photosensitizer |
PSt | polystyrene |
PyTACN | 1-(2′-pyridylmethyl)-4,7-dimethyl-1,4,7-triazacyclononane |
Pz | pyrazol-1-yl |
RDE | rotating disc electrode |
RDRP | reversible deactivation radical polymerization |
rGO | reduced graphite oxide |
(R,R′)-PDP | (+)-(2R,2′R)-1,1′-bis(2-pyridylmethyl)-2,2′-bipyrrolidine |
SA | succinic acid |
scCO2 | supercritical carbon dioxide |
SC | single crystal |
seATRP | simplified electrochemically mediated ATRP |
SEBS | polystyrene-b-poly(ethylene-co-1-butene)-b-polystyrene |
SG-Cl | chloro-modified silica gel |
SiO2-Br | brominated silica nanoparticles |
SrTiO3 | strontium titanate |
SSA | sulfosalicylic acid |
(S,S′)-BPBP | (2S,2S′)-1,1′-bis(pyrid-2-ylmethyl)-2,2′-bipyrrolidine |
(S,S)-PDP | N,N′-bis(2-pyridylmethyl)-(S,S)-2,2′-bipyrrolidine |
(S,S)-PDP* | N,N′-bis(3,5-dimethyl-4-methoxypyridyl-2-methyl)-(S,S)-2,2′-bipyrrolidine |
St | styrene |
SWCNT | single-wall carbon nanotube |
tBA | tert-butyl acrylate |
Terpy | 2,2′:6′,2”-terpyridine |
TA-Br | brominated tannic acid |
TBimA | tris(2-benzimidazolylmethyl)amine |
TDA-1 | tris(3,6-dioxaheptyl)amine |
THF | tetrahydrofuran |
TiO2 | titanium dioxide |
tips3TPMA | tris-isopropylsilyl-substituted tris(2-pyridylmethyl)amine |
TMC | 1,4,8,11-tetramethylcyclam |
TON | turnover number |
TPMA | tris(2-pyridylmethyl)amine |
TPMA* | tris(3,5-dimethyl-4-methoxypyridyl-2-methyl)amine |
VBK | 9-(4-vinylbenzyl)-9H-carbazole |
References
- Chen, K.; Costas, M.; Kim, J.H.; Tipton, A.K.; Que, L. Olefin cis-dihydroxylation versus epoxidation by non-heme iron catalysts: Two faces of an FeIII-OOH coin. J. Am. Chem. Soc. 2002, 124, 3026–3035. [Google Scholar] [CrossRef] [PubMed]
- Zima, A.M.; Lyakin, O.Y.; Bryliakov, K.P.; Talsi, E.P. On the nature of the active intermediates in iron-catalyzed oxidation of cycloalkanes with hydrogen peroxide and peracids. Mol. Catal. 2018, 455, 6–13. [Google Scholar] [CrossRef]
- Clemente-Tejeda, D.; Bermejo, F.A. Oxidation of alkenes with non-heme iron complexes: Suitability as an organic synthetic method. Tetrahedron 2014, 70, 9381–9386. [Google Scholar] [CrossRef]
- Borrell, M.; Costas, M. Greening oxidation catalysis: Iron catalyzed alkene syn-dihydroxylation with aqueous hydrogen peroxide in green solvents. ACS Sustain. Chem. Eng. 2018, 6, 8410–8416. [Google Scholar] [CrossRef]
- Lyakin, O.Y.; Zima, A.M.; Samsonenko, D.G.; Bryliakov, K.P.; Talsi, E.P. EPR spectroscopic detection of the elusive Fe-V=O intermediates in selective catalytic oxofunctionalizations of hydrocarbons mediated by biomimetic ferric complexes. ACS Catal. 2015, 5, 2702–2707. [Google Scholar] [CrossRef]
- Oloo, W.N.; Meier, K.K.; Wang, Y.; Shaik, S.; Munck, E.; Que, L. Identification of a low-spin acylperoxoiron(III) intermediate in bio-inspired non-heme iron-catalysed oxidations. Nat. Commun. 2014, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Morris, L.S.; Girouard, M.P.; Everhart, M.H.; McClain, W.E.; van Paridon, J.A.; Pike, R.D.; Goh, C. Epoxidation of alkenes bearing a carboxylic acid group by iron complexes of the tetradentate ligand N,N ′-dimethyl-N,N′-bis (2-pyridylmethyl)-1,2-diaminoethane and its derivatives. Inorg. Chim. Acta 2014, 413, 149–159. [Google Scholar] [CrossRef]
- Kuck, J.W.; Raba, A.; Markovits, I.I.E.; Cokoja, M.; Kuhn, F.E. Epoxidation of olefins catalyzed by a molecular iron N-heterocyclic carbene complex: Influence of reaction parameters on the catalytic activity. ChemCatChem 2014, 6, 1882–1886. [Google Scholar] [CrossRef]
- Jasinski, R. A new fuel cell cathode catalyst. Nature 1964, 201, 1212–1213. [Google Scholar] [CrossRef]
- Gu, L.; Chu, Y.; Du, H.M.; Zhang, Y.; Zhao, J.S.; Xie, Y. Supramolecular iron complex formed between nitrogen riched phenanthroline derivative and iron with improved oxygen reduction activity in alkaline electrolyte. Front. Chem. 2019, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ao, X.; Zhang, W.; Li, Z.; Li, J.G.; Soule, L.; Huang, X.; Chiang, W.H.; Chen, H.M.; Wang, C.; Liu, M.; et al. Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano 2019, 13, 11853–11862. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L.J.; Wang, J.Q.; Hu, J.S.; Wei, Z.D.; Wan, L.J. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-N-x. J. Am. Chem. Soc. 2016, 138, 3570–3578. [Google Scholar] [CrossRef] [PubMed]
- Shui, J.-L.; Karan, N.K.; Balasubramanian, M.; Li, S.-Y.; Liu, D.-J. Fe/N/C composite in Li–O2 battery: Studies of catalytic structure and activity toward oxygen evolution reaction. J. Am. Chem. Soc. 2012, 134, 16654–16661. [Google Scholar] [CrossRef] [PubMed]
- Dhara, B.; Sappati, S.; Singh, S.K.; Kurungot, S.; Ghosh, P.; Ballav, N. Coordination polymers of Fe(III) and Al(III) ions with TCA ligand: Distinctive fluorescence, CO2 uptake, redox-activity and oxygen evolution reaction. Dalton Trans. 2016, 45, 6901–6908. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.; Mondal, B.; Sen, P.; Dey, S.; Dey, A. Activating Fe(I) porphyrins for the hydrogen evolution reaction using second-sphere proton transfer residues. Inorg. Chem. 2017, 56, 1783–1793. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Q.; Liao, R.-Z. Reaction mechanism of hydrogen evolution catalysed by Co and Fe complexes containing a tetra-dentate phosphine ligand—A DFT study. Phys. Chem. Chem. Phys. 2017, 19, 32589–32596. [Google Scholar] [CrossRef] [PubMed]
- Zee, D.Z.; Nippe, M.; King, A.E.; Chang, C.J.; Long, J.R. Tuning second coordination sphere interactions in polypyridyl iron complexes to achieve selective electrocatalytic reduction of carbon dioxide to carbon monoxide. Inorg. Chem. 2020, 59, 5206–5217. [Google Scholar] [CrossRef]
- Liu, Y.; You, T.; Wang, H.-X.; Tang, Z.; Zhou, C.-Y.; Che, C.-M. Iron- and cobalt-catalyzed C(sp3)–H bond functionalization reactions and their application in organic synthesis. Chem. Soc. Rev. 2020, 49, 5310–5358. [Google Scholar] [CrossRef]
- Casadevall, C.; Bucci, A.; Costas, M.; Lloret-Fillol, J. Chapter Four—Water oxidation catalysis with well-defined molecular iron complexes. In Advances in Inorganic Chemistry; van Eldik, R., Hubbard, C.D., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 74, pp. 151–196. [Google Scholar]
- Pereira, M.M.; Dias, L.D.; Calvete, M.J.F. Metalloporphyrins: Bioinspired oxidation catalysts. ACS Catal. 2018, 8, 10784–10808. [Google Scholar] [CrossRef]
- Calvete, M.J.F.; Piñeiro, M.; Dias, L.D.; Pereira, M.M. Hydrogen peroxide and metalloporphyrins in oxidation catalysis: Old dogs with some new tricks. ChemCatChem 2018, 10, 3615–3635. [Google Scholar] [CrossRef]
- Dadashi-Silab, S.; Matyjaszewski, K. Iron catalysts in atom transfer radical polymerization. Molecules 2020, 25, 1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poli, R.; Allan, L.E.N.; Shaver, M.P. Iron-mediated reversible deactivation controlled radical polymerization. Prog. Polym. Sci. 2014, 39, 1827–1845. [Google Scholar] [CrossRef]
- Zang, Y.; Kim, J.; Dong, Y.H.; Wilkinson, E.C.; Appelman, E.H.; Que, L. Models for nonheme iron intermediates: Structural basis for tuning the spin states of Fe(TPA) complexes. J. Am. Chem. Soc. 1997, 119, 4197–4205. [Google Scholar] [CrossRef]
- Kim, J.; Kim, C.; Harrison, R.G.; Wilkinson, E.C.; Que, L. Fe(TPA)-catalyzed alkane hydroxylation can be a metal-based oxidation. J. Mol. Catal. A Chem. 1997, 117, 83–89. [Google Scholar] [CrossRef]
- Kaizer, J.; Klinker, E.J.; Oh, N.Y.; Rohde, J.U.; Song, W.J.; Stubna, A.; Kim, J.; Munck, E.; Nam, W.; Que, L. Nonheme (FeO)-O-IV complexes that can oxidize the C-H bonds of cyclohexane at room temperature. J. Am. Chem. Soc. 2004, 126, 472–473. [Google Scholar] [CrossRef]
- Costas, M.; Mehn, M.P.; Jensen, M.P.; Que, L. Dioxygen activation at mononuclear nonheme iron active sites: Enzymes, models, and intermediates. Chem. Rev. 2004, 104, 939–986. [Google Scholar] [CrossRef]
- Kerber, W.D.; Perez, K.A.; Ren, C.Q.; Siegler, M.A. Speciation of ferric phenoxide intermediates during the reduction of iron(III)-mu-Oxo dimers by hydroquinone. Inorg. Chem. 2014, 53, 11507–11516. [Google Scholar] [CrossRef]
- Ansari, A.; Rajaraman, G. ortho-Hydroxylation of aromatic acids by a non-heme Fe-V=O species: How important is the ligand design? Phys. Chem. Chem. Phys. 2014, 16, 14601–14613. [Google Scholar] [CrossRef]
- Nam, W. Synthetic mononuclear nonheme iron-oxygen intermediates. Acc. Chem. Res. 2015, 48, 2415–2423. [Google Scholar] [CrossRef]
- Chakraborty, B.; Jana, R.D.; Singh, R.; Paria, S.; Paine, T.K. Reductive activation of O2 by non-heme Iron(II) benzilate complexes of N4 ligands: Effect of ligand topology on the reactivity of O2-derived oxidant. Inorg. Chem. 2017, 56, 359–371. [Google Scholar] [CrossRef]
- Porter, D.; Poon, B.M.L.; Rutledge, P.J. Iron complexes of tetramine ligands catalyse allylic hydroxyamination via a nitroso-ene mechanism. Beilstein J. Org. Chem. 2015, 11, 2549–2556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakshman, T.R.; Chatterjee, S.; Chakraborty, B.; Paine, T.K. Substrate-dependent aromatic ring fission of catechol and 2-aminophenol with O2 catalyzed by a nonheme iron complex of a tripodal N4 ligand. Dalton Trans. 2016, 45, 8835–8844. [Google Scholar] [CrossRef]
- Chakraborty, B.; Bhunya, S.; Paul, A.; Paine, T.K. Reactivity of biomimetic iron(II)-2-aminophenolate complexes toward dioxygen: Mechanistic investigations on the oxidative C-C bond cleavage of substituted 2-aminophenols. Inorg. Chem. 2014, 53, 4899–4912. [Google Scholar] [CrossRef]
- Lakk-Bogath, D.; Speier, G.; Kaizer, J. Oxoiron(IV)-mediated Baeyer-Villiger oxidation of cyclohexanones generated by dioxygen with co-oxidation of aldehydes. New J. Chem. 2015, 39, 8245–8248. [Google Scholar] [CrossRef]
- Ayad, M.; Gebbink, R.; Le Mest, Y.; Schollhammer, P.; Le Poul, N.; Petillon, F.Y.; Mandon, D. Mononuclear iron(II) complexes containing a tripodal and macrocyclic nitrogen ligand: Synthesis, reactivity and application in cyclohexane oxidation catalysis. Dalton Trans. 2018, 47, 15596–15612. [Google Scholar] [CrossRef] [PubMed]
- McArthur, S.; Baird, M.C. Oxyfunctionalization of polystyrene by hydrogen peroxide using non-heme iron catalysts. Eur. Polym. J. 2014, 55, 170–178. [Google Scholar] [CrossRef]
- Parent, A.R.; Nakazono, T.; Lin, S.; Utsunomiya, S.; Sakai, K. Mechanism of water oxidation by non-heme iron catalysts when driven with sodium periodate. Dalton Trans. 2014, 43, 12501–12513. [Google Scholar] [CrossRef]
- Zhang, B.B.; Li, F.; Yu, F.S.; Cui, H.H.; Zhou, X.; Li, H.; Wang, Y.; Sun, L.C. Homogeneous oxidation of water by iron complexes with macrocyclic ligands. Chem. Asian J. 2014, 9, 1515–1518. [Google Scholar] [CrossRef]
- Acuna-Pares, F.; Costas, M.; Luis, J.M.; Lloret-Fillol, J. Theoretical study of the water oxidation mechanism with non-heme Fe(Pytacn) Iron complexes. Evidence that the FeIV(O)(Pytacn) species cannot react with the water molecule to form the O-O bond. Inorg. Chem. 2014, 53, 5474–5485. [Google Scholar] [CrossRef]
- Hon, Y.H.; Jung, J.; Awa, T.N.; Sharma, N.; Lee, Y.M.; Nam, W.; Fukuzumi, S. Photodriven oxidation of water by plastoquinone analogs with a nonheme iron catalyst. J. Am. Chem. Soc. 2019, 141, 6748–6754. [Google Scholar]
- Sun, X.P.; Wei, R.J.; Yao, Z.S.; Tao, J. Solvent effects on the structural packing and spin-crossover properties of a mononuclear iron(II) complex. Cryst. Growth Des. 2018, 18, 6853–6862. [Google Scholar] [CrossRef]
- Zheng, C.Y.; Xu, J.P.; Wang, F.; Tao, J.; Li, D.F. Spin crossover and reversible single-crystal to single-crystal transformation behaviour in two cyanide-bridged mixed-valence {FeIII2 FeII2} clusters. Dalton Trans. 2016, 45, 17254–17263. [Google Scholar] [CrossRef]
- Perera, I.R.; Daeneke, T.; Makuta, S.; Yu, Z.; Tachibana, Y.; Mishra, A.; Bauerle, P.; Ohlin, C.A.; Bach, U.; Spiccia, L. Application of the tris(acetylacetonato)iron(III)/(II) redox couple in p-type dye-sensitized solar cells. Angew. Chem. Int. Ed. 2015, 54, 3758–3762. [Google Scholar] [CrossRef]
- Popov, I.A.; Davis, B.L.; Mukundan, R.; Batista, E.R.; Yang, P. Catalyst-inspired charge carriers for high energy density redox flow batteries. Front. Phys. 2019, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lakshman, T.R.; Deb, J.; Ghosh, I.; Sarkar, S.; Paine, T.K. Combining anti-inflammatory and anti-proliferative activities in ternary metal-NSAID complexes of a polypyridylamine ligand. Inorg. Chim. Acta 2019, 486, 663–668. [Google Scholar] [CrossRef]
- Li, Q.; van der Wijst, M.G.P.; Kazernier, H.G.; Rots, M.G.; Roelfes, G. Efficient nuclear DNA cleavage in human cancer cells by synthetic bleomycin mimics. ACS Chem. Biol. 2014, 9, 1044–1051. [Google Scholar] [CrossRef]
- Gonzalez-Bartulos, M.; Aceves-Luquero, C.; Qualai, J.; Cusso, O.; Martinez, M.A.; de Mattos, S.F.; Menendez, J.A.; Villalonga, P.; Costas, M.; Ribas, X.; et al. Pro-oxidant activity of amine-pyridine-based iron complexes efficiently kills cancer and cancer stem-like cells. PLoS ONE 2015, 10, e0137800. [Google Scholar] [CrossRef]
- Soler, M.; Gonzalez-Bartulos, M.; Figueras, E.; Massaguer, A.; Feliu, L.; Planas, M.; Ribas, X.; Costas, M. Delivering aminopyridine ligands into cancer cells through conjugation to the cell-penetrating peptide BP16. Org. Biomol. Chem. 2016, 14, 4061–4070. [Google Scholar] [CrossRef] [Green Version]
- Raba, A.; Cokoja, M.; Herrmann, W.A.; Kuhn, F.E. Catalytic hydroxylation of benzene and toluene by an iron complex bearing a chelating di-pyridyl-di-NHC ligand. Chem. Commun. 2014, 50, 11454–11457. [Google Scholar] [CrossRef] [Green Version]
- Karaca, O.; Anneser, M.R.; Kuck, J.W.; Lindhorst, A.C.; Cokoja, M.; Kuhn, F.E. Iron(II) N-heterocyclic carbene complexes in catalytic one-pot Wittig reactions: Mechanistic insights. J. Catal. 2016, 344, 213–220. [Google Scholar] [CrossRef]
- Pradeep, T.; Velusamy, M.; Mayilmurugan, R. Novel iron(II)-N-heterocyclic carbene catalysts for efficient transfer hydrogenations under mild condition. Mol. Catal 2018, 459, 71–77. [Google Scholar] [CrossRef]
- Chen, M.Z.; Sun, H.M.; Li, W.F.; Wang, Z.G.; Shen, Q.; Zhang, Y. Synthesis, structure of functionalized N-heterocyclic carbene complexes of Fe(II) and their catalytic activity for ring-opening polymerization of epsilon-caprolactone. J. Organomet. Chem. 2006, 691, 2489–2494. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, H.; Tao, X.; Shen, Q.; Zhang, Y. Enolate chelating N-heterocyclic carbene complexes of Fe(II): Synthesis, structure and their catalytic activity for ring-opening polymerization of epsilon-caprolactone. Chin. Sci. Bull. 2007, 52, 3193–3199. [Google Scholar] [CrossRef]
- Manna, C.M.; Kaplan, H.Z.; Li, B.; Byers, J.A. High molecular weight poly(lactic acid) produced by an efficient iron catalyst bearing a bis(amidinato)-N-heterocyclic carbene ligand. Polyhedron 2014, 84, 160–167. [Google Scholar] [CrossRef]
- Zimmer, P.; Muller, P.; Burkhardt, L.; Schepper, R.; Neuba, A.; Steube, J.; Dietrich, F.; Florke, U.; Mangold, S.; Gerhards, M.; et al. N-heterocyclic carbene complexes of iron as photosensitizers for light-induced water reduction. Eur. J. Inorg. Chem. 2017, 2017, 1504–1509. [Google Scholar] [CrossRef]
- Pastore, M.; Duchanois, T.; Liu, L.; Monari, A.; Assfeld, X.; Haacke, S.; Gros, P.C. Interfacial charge separation and photovoltaic efficiency in Fe(II)-carbene sensitized solar cells. Phys. Chem. Chem. Phys. 2016, 18, 28069–28081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinagreiro, C.S.; Lopes, R.; Royo, B.; Da Silva, G.J.; Pereira, M.M. Synthesis of iron(II)-N-heterocyclic carbene complexes: Paving the way for a new class of antibiotics. Molecules 2020, 25, 2917. [Google Scholar] [CrossRef] [PubMed]
- Matias, I.A.S.; Ribeiro, A.P.C.; Alegria, E.; Pombeiro, A.J.L.; Martins, L. C-scorpionate iron(II) complexes as highly selective catalysts for the hydrocarboxylation of cyclohexane. Inorg. Chim. Acta 2019, 489, 269–274. [Google Scholar] [CrossRef]
- Ribeiro, A.P.C.; Martins, L.; Pombeiro, A.J.L. N2O-Free single-pot conversion of cyclohexane to adipic acid catalysed by an iron(II) scorpionate complex. Green Chem. 2017, 19, 1499–1501. [Google Scholar] [CrossRef]
- Ribeiro, A.P.C.; Martins, L.; Pombeiro, A.J.L. Carbon dioxide-to-methanol single-pot conversion using a C-scorpionate iron(II) catalyst. Green Chem. 2017, 19, 4811–4815. [Google Scholar] [CrossRef]
- Mendes, M.; Ribeiro, A.P.C.; Alegria, E.C.B.A.; Martins, L.M.D.R.S.; Pombeiro, A.J.L. Liquid phase oxidation of xylenes catalyzed by the tripodal C-scorpionate iron(II) complex [FeCl2{κ3-HC(pz)3}]. Polyhedron 2017, 125, 151–155. [Google Scholar] [CrossRef]
- Ribeiro, A.P.C.; Martins, L.; Alegria, E.; Matias, I.A.S.; Duarte, T.A.G.; Pombeiro, A.J.L. Catalytic performance of Fe(II)-scorpionate complexes towards cyclohexane oxidation in organic, ionic liquid and/or supercritical CO2 media: A comparative study. Catalysts 2017, 7, 230. [Google Scholar] [CrossRef] [Green Version]
- Louie, J.; Grubbs, R.H. Highly active iron imidazolylidene catalysts for atom transfer radical polymerization. Chem. Commun. 2000, 16, 1479–1480. [Google Scholar] [CrossRef] [Green Version]
- Riener, K.; Haslinger, S.; Raba, A.; Hogerl, M.P.; Cokoja, M.; Herrmann, W.A.; Kuhn, F.E. Chemistry of iron N-heterocyclic carbene complexes: Syntheses, structures, reactivities, and catalytic applications. Chem. Rev. 2014, 114, 5215–5272. [Google Scholar] [CrossRef]
- Charra, V.; de Fremont, P.; Braunstein, P. Multidentate N-heterocyclic carbene complexes of the 3d metals: Synthesis, structure, reactivity and catalysis. Coord. Chem. Rev. 2017, 341, 53–176. [Google Scholar] [CrossRef]
- Johnson, C.; Albrecht, M. Piano-stool N-heterocyclic carbene iron complexes: Synthesis, reactivity and catalytic applications. Coord. Chem. Rev. 2017, 352, 1–14. [Google Scholar] [CrossRef]
- Liang, Q.M.; Song, D.T. Iron N-heterocyclic carbene complexes in homogeneous catalysis. Chem. Soc. Rev. 2020, 49, 1209–1232. [Google Scholar] [CrossRef]
- Lindh, L.; Chabera, P.; Rosemann, N.W.; Uhlig, J.; Warnmark, K.; Yartsev, A.; Sundstrom, V.; Persson, P. Photophysics and photochemistry of iron carbene complexes for solar energy conversion and photocatalysis. Catalysts 2020, 10, 315. [Google Scholar] [CrossRef] [Green Version]
- Pettinari, C.; Pettinari, R.; Marchetti, F. Golden jubilee for scorpionates: Recent advances in organometallic chemistry and their role in catalysis. In Advances in Organometallic Chemistry; Perez, P.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 65, pp. 175–260. [Google Scholar]
- Pettinari, C. Scorpionate compounds. Eur. J. Inorg. Chem. 2016, 2016, 2209–2211. [Google Scholar] [CrossRef]
- Martins, L.; Pombeiro, A.J.L. Tris(pyrazol-1-yl)methane metal complexes for catalytic mild oxidative functionalizations of alkanes, alkenes and ketones. Coord. Chem. Rev. 2014, 265, 74–88. [Google Scholar] [CrossRef]
- Martins, L. C-scorpionate complexes: Ever young catalytic tools. Coord. Chem. Rev. 2019, 396, 89–102. [Google Scholar] [CrossRef]
- Dalle, K.E.; Warnan, J.; Leung, J.J.; Reuillard, B.; Karmel, I.S.; Reisner, E. Electro- and solar-driven fuel synthesis with first row transition metal complexes. Chem. Rev. 2019, 119, 2752–2875. [Google Scholar] [CrossRef]
- Haag, W.O.; Whitehurst, D.D. Insoluble resin-metal compound complex prepared by contacting weak base ion exchange resin with solution of metal-ligand. U.S. Patent 4111856A, 29 August 1974. [Google Scholar]
- Maurin, A.; Robert, M. Noncovalent immobilization of a molecular iron-based electrocatalyst on carbon electrodes for selective, efficient CO2-to-CO conversion in water. J. Am. Chem. Soc. 2016, 138, 2492–2495. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, P.; Joshi, C.; Ponnada, S.; Pathak, A.K.; Ali, A.; Sreedhar, B.; Jain, S.L. A [Fe(bpy)3]2+ grafted graphitic carbon nitride hybrid for visible light assisted oxidative coupling of benzylamines under mild reaction conditions. Green Chem. 2016, 18, 2514–2521. [Google Scholar] [CrossRef]
- Sobkowiak, A.; Szczepanik, A.; Narog, D.; Charczuk, M. Oxidation of limonene with dioxygen catalyzed by 2,2’-bipyridyl manganese(II) and iron(II) complexes supported on a bentonite carrier. Przem Chem. 2015, 94, 2006–2009. [Google Scholar]
- Venegas, R.; Recio, F.J.; Riquelme, J.; Neira, K.; Marco, J.F.; Ponce, I.; Zagal, J.H.; Tasca, F. Biomimetic reduction of O2 in an acid medium on iron phthalocyanines axially coordinated to pyridine anchored on carbon nanotubes. J. Mater. Chem. A 2017, 5, 12054–12059. [Google Scholar] [CrossRef]
- Hod, I.; Sampson, M.D.; Deria, P.; Kubiak, C.P.; Farha, O.K.; Hupp, J.T. Fe-Porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal. 2015, 5, 6302–6309. [Google Scholar] [CrossRef]
- Race, N.A.; Zhang, W.; Screen, M.E.; Barden, B.A.; McNamara, W.R. Iron polypyridyl catalysts assembled on metal oxide semiconductors for photocatalytic hydrogen generation. Chem. Commun. 2018, 54, 3290–3293. [Google Scholar] [CrossRef]
- Hailu, S.L.; Nair, B.U.; Redi-Abshiro, M.; Aravindhan, R.; Diaz, I.; Tessema, M. Experimental and computational studies on zeolite-Y encapsulated iron(III) and nickel(II) complexes containing mixed-ligands of 2,2’-bipyridine and 1,10-phenanthroline. RSC Adv. 2015, 5, 88636–88645. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; He, T.; Chabu, J.M.; Liu, J.J.; Wu, H.Q.; Zheng, J.; Tan, M.L.; Ma, J.; Shen, R.J.; Deng, L.; et al. Iron single clusters anchored on N-doped porous carbon as superior trace-metal catalysts toward oxygen reduction. Adv. Mater. Interfaces 2018, 5, 1701345. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, X.; Li, R.; Su, H.; Zhang, H.; Liu, Q. Subnano amorphous Fe-based clusters with high mass activity for efficient electrocatalytic oxygen reduction reaction. ACS Appl. Mater. Interfaces 2019, 11, 41432–41439. [Google Scholar] [CrossRef]
- Jagadeesh, R.V.; Surkus, A.E.; Junge, H.; Pohl, M.M.; Radnik, J.; Rabeah, J.; Huan, H.M.; Schunemann, V.; Bruckner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 2013, 342, 1073–1076. [Google Scholar] [CrossRef]
- Jagadeesh, R.V.; Natte, K.; Junge, H.; Beller, M. Nitrogen-doped graphene-activated iron-oxide-based nanocatalysts for selective transfer hydrogenation of nitroarenes. ACS Catal. 2015, 5, 1526–1529. [Google Scholar] [CrossRef]
- Stemmler, T.; Surkus, A.E.; Pohl, M.M.; Junge, K.; Beller, M. Iron-catalyzed synthesis of secondary amines: On the way to green reductive aminations. Chemsuschem 2014, 7, 3012–3016. [Google Scholar] [CrossRef]
- Natte, K.; Neumann, H.; Jagadeesh, R.V.; Beller, M. Convenient iron-catalyzed reductive aminations without hydrogen for selective synthesis of N-methylamines. Nat. Commun. 2017, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ryabchuk, P.; Junge, K.; Beller, M. Heterogeneous iron-catalyzed hydrogenation of nitroarenes under water-gas shift reaction conditions. Synth. Stuttg. 2018, 50, 4369–4376. [Google Scholar]
- Jagadeesh, R.V.; Junge, H.; Beller, M. Green synthesis of nitriles using non-noble metal oxides-based nanocatalysts. Nat. Commun. 2014, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Jagadeesh, R.V.; Junge, H.; Beller, M. “Nanorust”-catalyzed benign oxidation of amines for selective synthesis of nitriles. Chemsuschem 2015, 8, 92–96. [Google Scholar] [CrossRef]
- Lee, H.; Kim, M.J.; Lim, T.; Sung, Y.E.; Kim, H.J.; Lee, H.N.; Kwon, O.J.; Cho, Y.H. A facile synthetic strategy for iron, aniline-based non-precious metal catalysts for polymer electrolyte membrane fuel cells. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Li, J.C.; Yang, Z.Q.; Tang, D.M.; Zhang, L.; Hou, P.X.; Zhao, S.Y.; Liu, C.; Cheng, M.; Li, G.X.; Zhang, F.; et al. N-doped carbon nanotubes containing a high concentration of single iron atoms for efficient oxygen reduction. NPG Asia Mater 2018, 10, e461. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liu, T.; Yang, W.; Zhu, Z.; Zhai, Y.; Gu, W.; Zhu, C. Multiscale porous Fe–N–C networks as highly efficient catalysts for the oxygen reduction reaction. Nanoscale 2019, 11, 19506–195011. [Google Scholar] [CrossRef]
- Boulatov, R.; Collman, J.P.; Shiryaeva, I.M.; Sunderland, C.J. Functional analogues of the dioxygen reduction site in cytochrome oxidase: Mechanistic aspects and possible effects of Cu-B. J. Am. Chem. Soc. 2002, 124, 11923–11935. [Google Scholar] [CrossRef]
- Alt, H.; Binder, H.; Sandstede, G. Mechanism of the electrocatalytic reduction of oxygen on metal chelates. J. Catal. 1973, 28, 8–19. [Google Scholar] [CrossRef]
- Jahnke, H.; Schönborn, M.; Zimmermann, G. Organic dyestuffs as catalysts for fuel cells. Topp. Curr. Chem. 1976, 61, 133–181. [Google Scholar]
- Sa, Y.J.; Kim, J.H.; Joo, S.H. Recent progress in the identification of active sites in pyrolyzed Fe-N/C catalysts and insights into their role in oxygen reduction reaction. J. Electrochem. Sci. Te. 2017, 8, 169–182. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Nicolae, S.A.; Qiao, M.; Preuss, K.; Szilágyi, P.A.; Moores, A.; Titirici, M.-M. Homogenous meets heterogenous and electro-catalysis: Iron-nitrogen molecular complexes within carbon materials for catalytic applications. ChemCatChem 2019, 11, 3602–3625. [Google Scholar] [CrossRef]
- Shen, H.; Thomas, T.; Rasaki, S.A.; Saad, A.; Hu, C.; Wang, J.; Yag, M. Oxygen reduction reactions of Fe-N-C catalysts: Current status and the way forward. Electrochem. Energ. Rev. 2019, 2, 252–276. [Google Scholar] [CrossRef]
- Wang, Y.C.; Lai, Y.J.; Song, L.; Zhou, Z.Y.; Liu, J.G.; Wang, Q.; Yang, X.D.; Chen, C.; Shi, W.; Zheng, Y.P.; et al. S-doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density. Angew. Chem. Int. Ed. 2015, 54, 9907–9910. [Google Scholar] [CrossRef]
- Hu, S.; Wang, X. Ultrathin nanostructures: Smaller size with new phenomena. Chem. Soc. Rev. 2013, 42, 5577–5594. [Google Scholar] [CrossRef]
- Chen, Y.J.; Ji, S.F.; Wang, Y.G.; Dong, J.C.; Chen, W.X.; Li, Z.; Shen, R.A.; Zheng, L.R.; Zhuang, Z.B.; Wang, D.S.; et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 2017, 56, 6937–6941. [Google Scholar] [CrossRef]
- Chen, P.Z.; Zhou, T.P.; Xing, L.L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L.D.; Yan, W.S.; Chu, W.S.; Wu, C.Z.; et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem. Int. Ed. 2017, 56, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.G.; Hwang, S.; Wang, M.Y.; Feng, Z.X.; Karakalos, S.; Luo, L.L.; Qiao, Z.; Xie, X.H.; Wang, C.M.; Su, D.; et al. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143–14149. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Lu, B.Z.; Chen, S.W. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 2018, 30, 1801995. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Ji, S.F.; Zhao, S.; Chen, W.X.; Dong, J.C.; Cheong, W.C.; Shen, R.A.; Wen, X.D.; Zheng, L.R.; Rykov, A.I.; et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Huang, Y.; Zhang, X.; Tu, X.; Wang, M.; Ma, L.; Wang, B.; He, J.; Ni, P.; Wei, H. Fabrication of cyclic brush copolymers with heterogeneous amphiphilic polymer brushes for controlled drug release. Macromolecules 2018, 51, 7672–7679. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Y.; Huang, L.B.; Liu, X.Z.; Zhang, Q.H.; He, C.; Wu, Z.Y.; Zhang, L.J.; Wu, J.P.; Yang, W.L.; et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, B.; Shi, Y.; Wang, X. The sub-nanometer scale as a new focus in nanoscience. Adv. Mater. 2018, 30, 1802031. [Google Scholar] [CrossRef]
- Osmieri, L. Transition metal–nitrogen–carbon (M–N–C) catalysts for oxygen reduction reaction. Insights on synthesis and performance in polymer electrolyte fuel cells. ChemEngineering 2019, 3, 16. [Google Scholar] [CrossRef] [Green Version]
- González-Cervantes, E.; Crisóstomo, A.A.; Gutiérrez-Alejandre, A.; Varela, A.S. Optimizing FeNC materials as electrocatalysts for the CO2 reduction reaction: Heat-treatment temperature, structure and performance correlations. ChemCatChem 2019, 11, 4854–4861. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Wei, D.; Li, M. A “MOF-protective-pyrolysis” strategy for the preparation of Fe–N–C catalysts and the role of Fe, N, and C in the oxygen reduction reaction in acidic medium. ACS Appl. Mater. Interfaces 2019, 11, 35755–35763. [Google Scholar] [CrossRef]
- Li, J.; Jia, Q.; Ghoshal, S.; Liang, W.; Mukerjee, S. Highly active and stable Fe–N–C catalyst for oxygen depolarized cathode applications. Langmuir 2017, 33, 9246–9253. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.; Bi, W.; Zhou, T.; Zhang, N.; Zhong, C.A.; Chu, W.; Yan, W.; Xu, Q.; Wu, C.; Xie, Y. Two-dimensional hierarchical Fe–N–C electrocatalyst for Zn-Air batteries with ultrahigh specific capacity. ACS Mater. Lett. 2020, 2, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Cammisuli, F.; Giordani, S.; Gianoncelli, A.; Rizzardi, C.; Radillo, L.; Zweyer, M.; Da Ros, T.; Salomé, M.; Melato, M.; Pascolo, L. Iron-related toxicity of single-walled carbon nanotubes and crocidolite fibres in human mesothelial cells investigated by Synchrotron XRF microscopy. Sci. Rep. 2018, 8, 706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, D.; Yu, L.; Chen, X.; Wang, G.; Jin, L.; Pan, X.; Deng, J.; Sun, G.; Bao, X. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem. Int. Ed. 2013, 52, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Yu, L.; Deng, D.; Chen, X.; Yang, F.; Bao, X. Highly active reduction of oxygen on a FeCo alloy catalyst encapsulated in pod-like carbon nanotubes with fewer walls. J. Mater. Chem. A 2013, 1, 14868–14873. [Google Scholar] [CrossRef]
- Deng, J.; Ren, P.; Deng, D.; Yu, L.; Yang, F.; Bao, X. Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 1919–1923. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Xia, J. Atom transfer radical polymerization. Chem. Rev. 2001, 101, 2921–2990. [Google Scholar] [CrossRef]
- Matyjaszewski, K. Atom transfer radical polymerization (ATRP): Current status and future perspectives. Macromolecules 2012, 45, 4015–4039. [Google Scholar] [CrossRef]
- Peng, C.-H.; Kong, J.; Seeliger, F.; Matyjaszewski, K. Mechanism of halogen exchange in ATRP. Macromolecules 2011, 44, 7546–7557. [Google Scholar] [CrossRef]
- Pintauer, T.; Matyjaszewski, K. Atom transfer radical addition and polymerization reactions catalyzed by ppm amounts of copper complexes. Chem. Soc. Rev. 2008, 37, 1087–1097. [Google Scholar] [CrossRef]
- Ribelli, T.G.; Lorandi, F.; Fantin, M.; Matyjaszewski, K. Atom transfer radical polymerization: Billion times more active catalysts and new initiation systems. Macromol. Rapid Commun. 2019, 40, 1800616. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; He, D.; Xie, X. Iron-catalyzed atom transfer radical polymerization. Polym. Chem 2015, 6, 1660–1687. [Google Scholar] [CrossRef]
- Gualandi, A.; Mengozzi, L.; Cozzi, P.G. Iron-promoted radical reactions: Current status and perspectives. Asian J. Org. Chem. 2017, 6, 1160–1179. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, Z.; Shi, S.; Li, Q.; Zhu, X. AGET ATRP of methyl methacrylate catalyzed by FeCl3/iminodiacetic acid in the presence of air. Polymer 2008, 49, 3054–3059. [Google Scholar] [CrossRef]
- Wang, J.; Han, J.; He, D.; Peng, H.; Xue, Z.; Xie, X. Active, effective, and “green” iron(III)/polar solvent catalysts for AGET ATRP of methyl methacrylate with various morphologies of elemental silver as a reducing agent. RSC Adv. 2016, 6, 88490–88497. [Google Scholar] [CrossRef]
- Wu, J.; Jiang, X.; Zhang, L.; Cheng, Z.; Zhu, X. Iron-mediated homogeneous ICAR ATRP of methyl methacrylate under ppm level organometallic catalyst iron(III) acetylacetonate. Polymers 2016, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Simakova, A.; Park, S.; Wang, Y.; Fantin, M.; Matyjaszewski, K. Axially ligated mesohemins as bio-mimicking catalysts for atom transfer radical polymerization. Molecules 2019, 24, 3969. [Google Scholar] [CrossRef] [Green Version]
- Mukumoto, K.; Li, Y.; Nese, A.; Sheiko, S.S.; Matyjaszewski, K. Synthesis and characterization of molecular bottlebrushes prepared by iron-based ATRP. Macromolecules 2012, 45, 9243–9249. [Google Scholar] [CrossRef]
- Zaborniak, I.; Chmielarz, P.; Wolski, K.; Grzes´, G.; Isse, A.A.; Gennaro, A.; Zapotoczny, S.; Sobkowiak, A. Tannic acid-inspired star-like macromolecules via temporally controlled multi-step potential electrolysis. Macromol. Chem. Phys. 2019, 220, 1900073. [Google Scholar] [CrossRef]
- Liu, J.; He, W.; Zhang, L.; Zhang, Z.; Zhu, J.; Yuan, L.; Chen, H.; Cheng, Z.; Zhu, X. Bifunctional nanoparticles with fluorescence and magnetism via surface-initiated AGET ATRP mediated by an iron catalyst. Langmuir 2011, 27, 12684–12692. [Google Scholar] [CrossRef]
- Ji, N.; Chen, H.; Zong, G.; Wang, D. Synthesis of novel high oil-absorption resins of poly(methyl methacrylate–butyl methacrylate) by surface-initiated atom transfer radical polymerization using activators regenerated by electron transfer for efficient removal of oil. Polym. Int. 2012, 61, 1786–1791. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Q.; Yang, G.; Zhang, L.; Liu, Z.; Cheng, Z.; Zhu, X. Magnetic nanomaterials with near-infrared pH-activatable fluorescence via iron-catalyzed AGET ATRP for tumor acidic microenvironment imaging. J. Mater. Chem. B 2015, 3, 2786–2800. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tian, C.; Jiang, H.; Zhang, L.; Zhu, X. Surface modification of carbon nanotubes by using iron-mediated activators generated by electron transfer for atom transfer radical polymerization. RSC Adv. 2018, 8, 11150–11156. [Google Scholar] [CrossRef] [Green Version]
- Al-Roomi, Y.M.; Hussain, K.F. Antiscaling properties of novel maleic-anhydride copolymers prepared via iron (II)—chloride mediated ATRP. J. Appl. Polym. Sci. 2014, 131, 1–10. [Google Scholar] [CrossRef]
- Sun, Y.; Du, H.; Lan, Y. Preparation and properties of fluorinated amphiphilic copolymers via iron-mediated AGET ATRP. Iran. Polym. J. 2015, 24, 95–103. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, L.; Zhang, Z.; Zhou, N.; Cheng, Z.; Zhu, X. Air-tolerantly surface-initiated AGET ATRP mediated by iron catalyst from silica nanoparticles. J. Polym. Sci. A Polym.Chem. 2010, 48, 2006–2015. [Google Scholar] [CrossRef]
- Xu, W.; Cheng, Z.; Zhang, Z.; Zhang, L.; Zhu, X. Modification of SEBS rubber via iron-mediated AGET ATRP in the presence of limited amounts of air. React. Funct. Polym. 2011, 71, 634–640. [Google Scholar] [CrossRef]
- Tang, F.; Zhang, L.; Zhu, J.; Cheng, Z.; Zhu, X. Surface functionalization of chitosan nanospheres via surface-initiated AGET ATRP mediated by iron catalyst in the presence of limited amounts of air. Ind. Eng. Chem. Res. 2009, 48, 6216–6223. [Google Scholar] [CrossRef]
- Siegwart, D.J.; Oh, J.K.; Matyjaszewski, K. ATRP in the design of functional materials for biomedical applications. Prog. Polym. Sci. 2012, 37, 18–37. [Google Scholar] [CrossRef] [Green Version]
- Zaborniak, I.; Chmielarz, P.; Matyjaszewski, K. Modification of wood-based materials by atom transfer radical polymerization methods. Eur. Polym. J. 2019, 120, 109253. [Google Scholar] [CrossRef]
- Flejszar, M.; Chmielarz, P. Surface-initiated atom transfer radical polymerization for the preparation of well-defined organic–inorganic hybrid nanomaterials. Materials 2019, 12, 3030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, N.; Hyeon, T. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem. Soc. Rev. 2012, 41, 2575–2589. [Google Scholar] [CrossRef] [PubMed]
Ligand/Catalyst | Solvent | Type of Reaction | Product | Ref. |
---|---|---|---|---|
TPMA 6-Me3-TPMA 6-Me2-iso-BPMEN iso-BPMEN TBimA BPMEN, 6-Me2-BPMEN | acetonitrile | decarboxylation of benzylic acid—O2 as oxidizer | benzophenone | [31] |
TPMA BPMEN (R,R′)-PDP | acetonitrile | allylic hydroxyamination of cyclohexene—O2 as oxidizer (C-N bond formation) | tert-butyl cyclohex-2-en-1-yl(hydroxy)carbamate | [32] |
TPMA | acetonitrile-phthalate buffer | oxygenative regioselective C-C bond cleavage of catechol and 2-aminophenol—O2 as oxidizer | aromatic ring fission products | [33] |
6-Me3-TPMA | acetonitrile | selectivity C-C bond cleavage of substituted 2-aminophenols—O2 as oxidizer | 2-picolinic acid, 4,6-di-tert-butyl-2H-pyran-2-imine, 4,6-di-tert-butyl-2-picolinic acid | [34] |
N4Py | acetonitrile | oxidation of cyclohexanone derivatives—O2 as oxidizer | ε-caprolactones | [35] |
TPMA BPMEN | acetonitrile | epoxidation, cis-dihydroxylation, oxidation of aliphatic C-H bonds—H2O2 as oxidizer | oxidized olefins | [1] |
TPMA | acetonitrile | oxidation of cyclohexane—H2O2 and mCPBA as oxidizer | cyclohexanol, cyclohexanone | [36] |
(S,S)-PDP (S,S)-PDP* TPMA TPMA* | acetonitrile | hydroxylation/oxidation of cycloalkanes—H2O2, paracetic acid and mCPBA as oxidizer | cyclohexanol, cyclohexanone | [2] |
TPMA* (S,S)-PDP* | acetonitrile | epoxidation of cycloalkenes—H2O2 as oxidizer | cyclohexene oxide, 2-cyclohexen-1-one, 2-cyclohexen-1-ol | [5] |
TPMA* | acetonitrile | epoxidation of 1-octene, cyclooctene or 2-heptene—H2O2 as oxidizer | alcohols and ketones corresponding to the substrate | [6] |
tips3TPMA LN4Me2 Me,MePyTACN | acetonitrile, acetone, γ-butyrolactone, ethyl hexanoate, ethyl acetate, propylene carbonate | dihydroxylation/oxidation of olefins, cholesteryl oleate—H2O2 as oxidizer | diols and epoxides corresponding to the substrate | [4] |
TPMA BPMEN | dichloromethane | oxyfunctionalization of polystyrene—H2O2 as oxidizer | polymer product with keto and hydroxyl groups | [37] |
TPMA BPMEN | acetonitrile | cis-dihydroxylation of alkenes—H2O2 as oxidizer | epoxide and the trans-dihydroxylation, cis-dihydroxylation products, cis-diols | [3] |
BPMEN | acetonitrile | epoxidation of alkenes bearing a carboxylic acid functional groups—H2O2 as oxidizer | epoxides, lactones | [7] |
TPMA BPyA | water | water oxidation—sodium periodate as oxidizer | O2, H2 | [38] |
TPMA Me3TACN LN4Me2 | water | water oxidation—cerium(IV) ammonium nitrate as oxidizer | O2, H2 | [39] |
PyTACN | water | water oxidation—cerium(IV) ammonium nitrate as oxidizer | O2, H2 | [40] |
N4Py | water/acetonitrile | photodriven water oxidation—plastoquinone as oxidazer | O2, H2 | [41] |
TPMA | methanol, ethanol, acetonitrile, dichloromethane | - | spin-crossover compounds | [42] |
TPMA | methanol, water | - | spin-crossover compounds | [43] |
acetylacetonato ligand (a) | acetonitrile | redox processes | p-type dye-sensitized solar cells | [44] |
PyTACN H2pmen | acetonitrile/ionic liquid | redox processes | redox flow batteries | [45] |
TPMA | DMSO/water DMSO/Dulbecco’s modified eagle’s medium | redox processes | drug with anti-proliferative and anti-inflammatory activities | [46] |
N4Py | DMSO/water | oxidative DNA cleavage | drug antitumor activity | [47] |
BPBP 6-Me2-BPBP BPMCN Me2PyTACN MePy2TACN | water | oxidative DNA cleavage | drug antitumor activity | [48] |
(S,S′)-BPBP Me2PyTACN | water | oxidative DNA cleavage | peptide conjugates with antitumor activity | [49] |
NCCN | acetonitrile | epoxidation of olefins - H2O2, tert-butyl hydroperoxide and urea hydrogen peroxide adduct as oxidizer | epoxides | [8] |
NCCN | acetonitrile | hydroxylation of benzene and toluene-H2O2 as oxidizer | phenol, cresols (o-, m- and p-) | [50] |
NCCN analogous-bis(N-heterocyclic carbene)- bis(pyridine), tetra(N-heterocyclic carbene) | acetonitrile | olefination of aldehyde | E-ethyl cinnamate | [51] |
3-methyl-1-(pyridin-2-ylmethyl)-benzimidazol-2-ylidene 3-benzyl-1-(pyridin-2-ylmethyl)-benzimidazol-2-ylidene 3-(4-tert-butyl-benzyl)-1-(pyridin-2-ylmethyl)-benzimidazol-2-ylidene 1,3-di-(2-ethylenepyridyl methyl)-benzimidazol-2-ylidene | isopropanol | transfer hydrogenation of aldehydes, ketones | alcohols | [52] |
enolate chelating N-heterocyclic carbenes | toluene | ring-opening polymerization of ε-caprolactone | polycaprolactone | [53,54] |
bis(amidinato)-N-heterocyclic carbene ancillary ligand | 1,2-dimethoxyethane | polymerization of (rac)-lactide | poly(lactic acid) | [55] |
CNC | acetonitrile/water | water reduction | H2 | [56] |
N-heterocyclic carbene with strong electron-donating substituents | acetonitrile | redox processes | iron-based dye sensitized solar cells | [57] |
N-heterocyclic carbene ligands | water/DMSO | - | iron complexes with antibacterial activities | [58] |
C-functionalized neutral and anionic tris(pyrazolyl)methanes | acetonitrile/water | hydrocarboxylation of cyclohexane | cyclohexanecarboxylic acid | [59] |
tris(pyrazolyl)methanes | - | oxidation of cyclohexane with ozone | adipic acid | [60] |
tris(pyrazolyl)methanes | - | CO2 hydrogenation with H2 | methanol | [61] |
tris(pyrazolyl)methanes | acetonitrile | oxidation of o-, m- or p-xylene—H2O2 as oxidizer | corresponding methylbenzyl alcohols, tolualdehydes and toluic acids | [62] |
tris(pyrazolyl)methanes | acetonitrile, IL, sCO2 IL/sCO2 | oxidation of cyclohexane-tert-butyl hydroperoxide as oxidizer | cyclohexanol, cyclohexanone | [63] |
Ligand/Catalyst | Type of Solid Substrate | Type of Attachment | Solvent | Type of Reaction | Product | Ref. |
---|---|---|---|---|---|---|
5,10,15-tris(2,6-hydroxyphenyl)-20-(3-(pyren-1-yl)propyl)porphyrin | CNTs, glassy carbon electrode | non-covalent bonds | water | CO2 to CO conversion | highly active catalytic carbon based materials | [76] |
bpy | nonporous graphitic carbon nitride support | non-covalent (π-π interaction) | acetonitrile | oxidative coupling of benzylamines | hybrid visible light driven photocatalyst | [77] |
bpy | bentonite | non-covalent (π-π interaction) | - | limonene oxidation | selective catalyst for oxidation of limonene | [78] |
iron(II) phthalocyanine iron(II) 1,2,3,4,8,9,10,11,15, 16,17,18,22,23,24,25-hexadeca(chloro)phthalocyanine | double-walled CNTs | covalent bonds | isopropyl alcohol | reduction of O2 in an acid medium | efficient and inexpensive catalyst for the oxygen reduction reaction | [79] |
iron(II) tetraphenylporphyrin | metal organic framework | covalent bonds | DMF | CO2 reduction | high-surface concentration catalysts for CO2 reduction | [80] |
(4-(3-((bis(pyridin-2-ylmethyl)amino)methyl)-4hydroxybenzamido)phenyl)phosphonic acid (a) | TiO2, SrTiO3 | non-covalent | ethanol/water | photocatalytic hydrogen generation | Highly active and stable photocatalytic system for hydrogen generation | [81] |
PIPhen | carbon powder | non-covalent | KOH | ORR in alkaline electrolyte | novel non-noble metal ORR catalyst as alternative for Pt catalyst in fuel cell | [10] |
bpy, 1,10-phenanthroline | zeolite | encapsulation in porous material | - | decomposition of hydrogen peroxide, oxidation of 2-phenyl phenol | highly efficient zeolite encapsulated metal complex for oxidation organic pollutants in the tanning industry | [82] |
N-doped porous carbon that anchors both atomically dispersed Fe-N4 sites and Fe atomic clusters (FeAC@FeSA-N-C) | (4-aminophenyl) benzene-terephthaldehyde covalent organic framework (TAPB-PDA COF) | covalent | KOH, methanol | ORR | alternative catalyst to noble metal-based catalysts for highly efficient ORR | [11] |
graphene encapsulated Fe/Fe3C nanocrystals- Fe-Nx configurations (Fe@C-FeNC) | - | - | HClO4 with addition of NaSCN, KOH | ORR | high-performance non-precious metal catalyst for ORR | [12] |
meso-tetra (4-pyridyl) porphyrin | porous carbon | noncovalent bonds | KOH, HClO4 | ORR | trace-metal catalyst toward ORR in both alkaline and acidic mediums | [83] |
iron nanoparticle/hierarchical carbon framework (Fe NP/3D-C) | - | - | KOH | ORR | electrocatalyst with superior ORR catalytic activity and excellent durability with large mass activity | [84] |
1,10-phenanthroline | carbon, titanium dioxide, aluminum oxide | noncovalent bonds | water/THF | hydrogenation of nitroarenes to anilines | earth-abundant alternative catalysts with excellent yield under industrially viable conditions | [85] |
1,10-phenanthroline, bpy, 2,2′,6′,2″-terpyridine, pyridinebisbenzimidazole | carbon | noncovalent bonds | THF | chemoselective transfer hydrogenation of nitroarenes to anilines | durable and reusable catalysts for transfer hydrogenation of nitroarenes to anilines with unique selectivity for the nitro group reduction | [86] |
1,10-phenanthroline | carbon | noncovalent bonds | THF/water, dioxane/water, THF, dioxane, water | reductive amination with hydrogen between nitroarenes and aldehydes | efficient catalyst for synthesis of secondary amines | [87] |
1,10-phenanthroline | carbon | noncovalent bonds | DMSO/water | reductive aminations without hydrogen | efficient catalyst for reductive aminations without hydrogen for selective synthesis of N-methylamines | [88] |
1,10-phenanthroline | carbon | noncovalent bonds | THF/water | hydrogenation of nitroarenes | efficient catalyst for hydrogenation of nitroarenes under water-gas shift reaction conditions | [89] |
1,10-phenanthroline | carbon | noncovalent bonds | t-amyl alcohol | synthesis of nitriles from alcohols and aqueous ammonia using molecular oxygen | efficient catalyst for synthesis of substituted and functionalized benzonitriles, heterocyclic nitriles and aliphatic nitriles | [90] |
1,10-phenanthroline, bpy, 2,2′,6′,2′’-terpyridine, 2,6-bis(2-benzimidazolyl)pyridine | carbon | noncovalent bonds | t-amyl alcohol | oxidation of amines in the presence of aqueous ammonia using molecular oxygen | efficient catalyst for synthesis of substituted and functionalized benzonitriles, heterocyclic nitriles and aliphatic nitriles | [91] |
polyaniline-derived Fe-N-C | - | - | KOH | ORR | non-precious metal catalysts for the ORR with performance in a practical anion exchange membrane fuel cell | [92] |
Fe-N-C nanostructures | CNT, carbon black, graphene oxide SWCNT | - | HClO4 | ORR | efficient substituent of commercial C/Pt catalysts | [93] |
Fe-N-C nanostructures | SiO2, Zn | noncovalent bonds | KOH | ORR | efficient substituent of commercial C/Pt catalysts | [94] |
Catalytic Complex | Initiator | Monomer | Solvent | Final Product | Ref. |
---|---|---|---|---|---|
FeIICl2/SA | CPN, MCPN | maleic acid, N-mropylacrylamide, N-butylacrylamide, N-hexylacrylamide, N-acryloylbenzamide | o-xylene | maleic anhydride copolymers with antiscalant performance | [137] |
FeIIICl3·6H2O/SSA (a) | EBIB, DFMA | IBMA, HEMA | butanone | fluorinated amphiphilic copolymers | [138] |
FeIIBr2/FeIIIBr3/TBABr | PBiBEM | nBA, St, DEGA | anisole | amphiphilic molecular bottlebrushes | [131] |
FeIIIBr3/IDipp (b) | TA-Br | nBA | DMF | star-shaped polymers as polyelectrolytes precursors | [132] |
FeIIICl3·6H2O/TDA-1 (a) | brominated MIONPs | VBK, PEGMA | DMF | fluorescent/magnetic nanoparticles for magnetic resonance imaging (MRI) | [133] |
FeIIICl3·6H2O/TDA-1 (a) | Fe3O4@SiO2–Br | PEGMA475, tBA | DMF | magnetic nanoparticles with near-infrared pH-activatable fluorescence to visualize the solid tumor in vivo | [135] |
FeIIICl3·6H2O/PPh3 (a) | SiO2-Br | MMA, PEGMA300 | DMF | amphiphilic silica nanoparticles | [139] |
FeIIICl3/IDA (a) | SG-Cl | MMA, BMA | DMF | high oil-absorption resins | [134] |
FeIIICl3·6H2O/TDA-1 (a) | MWCNTs-Br | St, MMA, PEGMA | DMF | hybrid multiwall carbon nanotubes material for biomedical applications | [136] |
FeIIICl3·6H2O/TDA-1, FeIIICl3·6H2O/PPh3 (a) | SEBS@CH2Cl (chloromethylated SEBS) | MMA, St, tBA | THF | SEBS with improved compatibility with other materials | [140] |
FeIIICl3·6H2O/PPh3 (a) | CTSNSs-Br (brominated CTSNSs) | MMA, PEGMA | DMF | CTSNSs hybrid materials with potential biomedical use | [141] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rydel-Ciszek, K.; Pacześniak, T.; Zaborniak, I.; Błoniarz, P.; Surmacz, K.; Sobkowiak, A.; Chmielarz, P. Iron-Based Catalytically Active Complexes in Preparation of Functional Materials. Processes 2020, 8, 1683. https://doi.org/10.3390/pr8121683
Rydel-Ciszek K, Pacześniak T, Zaborniak I, Błoniarz P, Surmacz K, Sobkowiak A, Chmielarz P. Iron-Based Catalytically Active Complexes in Preparation of Functional Materials. Processes. 2020; 8(12):1683. https://doi.org/10.3390/pr8121683
Chicago/Turabian StyleRydel-Ciszek, Katarzyna, Tomasz Pacześniak, Izabela Zaborniak, Paweł Błoniarz, Karolina Surmacz, Andrzej Sobkowiak, and Paweł Chmielarz. 2020. "Iron-Based Catalytically Active Complexes in Preparation of Functional Materials" Processes 8, no. 12: 1683. https://doi.org/10.3390/pr8121683
APA StyleRydel-Ciszek, K., Pacześniak, T., Zaborniak, I., Błoniarz, P., Surmacz, K., Sobkowiak, A., & Chmielarz, P. (2020). Iron-Based Catalytically Active Complexes in Preparation of Functional Materials. Processes, 8(12), 1683. https://doi.org/10.3390/pr8121683